-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Traits.h
1224 lines (1073 loc) · 37.7 KB
/
Traits.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// @author: Andrei Alexandrescu
#pragma once
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <folly/Portability.h>
namespace folly {
template <typename...>
struct tag_t {};
template <typename... T>
FOLLY_INLINE_VARIABLE constexpr tag_t<T...> tag{};
#if __cpp_lib_bool_constant || _MSC_VER
using std::bool_constant;
#else
// mimic: std::bool_constant, C++17
template <bool B>
using bool_constant = std::integral_constant<bool, B>;
#endif
template <std::size_t I>
using index_constant = std::integral_constant<std::size_t, I>;
// always_false
//
// A variable template that is always false but requires template arguments to
// be provided (which are then ignored). This is useful in very specific cases
// where we want type-dependent expressions to defer static_assert's.
//
// A common use-case is for exhaustive constexpr if branches:
//
// template <typename T>
// void foo(T value) {
// if constexpr (std::is_integral_v<T>) foo_integral(value);
// else if constexpr (std::is_same_v<T, std::string>) foo_string(value);
// else static_assert(always_false<T>, "Unsupported type");
// }
//
// If we had used static_assert(false), then this would always fail to compile,
// even if foo is never instantiated!
//
// Another use case is if a template that is expected to always be specialized
// is erroneously instantiated with the base template.
//
// template <typename T>
// struct Foo {
// static_assert(always_false<T>, "Unsupported type");
// };
// template <>
// struct Foo<int> {};
//
// Foo<int> a; // fine
// Foo<std::string> b; // fails! And you get a nice (custom) error message
//
// This is similar to leaving the base template undefined but we get a nicer
// compiler error message with static_assert.
template <typename...>
FOLLY_INLINE_VARIABLE constexpr bool always_false = false;
namespace detail {
template <typename Void, typename T>
struct require_sizeof_ {
static_assert(always_false<T>, "application of sizeof fails substitution");
};
template <typename T>
struct require_sizeof_<decltype(void(sizeof(T))), T> {
template <typename V>
using apply_t = V;
static constexpr std::size_t size = sizeof(T);
};
} // namespace detail
// require_sizeof
//
// Equivalent to sizeof, but with a static_assert enforcing that application of
// sizeof would not fail substitution.
template <typename T>
constexpr std::size_t require_sizeof = detail::require_sizeof_<void, T>::size;
// is_unbounded_array_v
// is_unbounded_array
//
// A trait variable and type to check if a given type is an unbounded array.
//
// mimic: std::is_unbounded_array_d, std::is_unbounded_array (C++20)
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_unbounded_array_v = false;
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_unbounded_array_v<T[]> = true;
template <typename T>
struct is_unbounded_array : bool_constant<is_unbounded_array_v<T>> {};
// is_bounded_array_v
// is_bounded_array
//
// A trait variable and type to check if a given type is a bounded array.
//
// mimic: std::is_bounded_array_d, std::is_bounded_array (C++20)
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_bounded_array_v = false;
template <typename T, std::size_t S>
FOLLY_INLINE_VARIABLE constexpr bool is_bounded_array_v<T[S]> = true;
template <typename T>
struct is_bounded_array : bool_constant<is_bounded_array_v<T>> {};
namespace detail {
// is_instantiation_of_v
// is_instantiation_of
//
// A trait variable and type to check if a given type is an instantiation of a
// class template.
//
// Note that this only works with type template parameters. It does not work
// with non-type template parameters, template template parameters, or alias
// templates.
template <template <typename...> class, typename>
FOLLY_INLINE_VARIABLE constexpr bool is_instantiation_of_v = false;
template <template <typename...> class C, typename... T>
FOLLY_INLINE_VARIABLE constexpr bool is_instantiation_of_v<C, C<T...>> = true;
template <template <typename...> class C, typename... T>
struct is_instantiation_of : bool_constant<is_instantiation_of_v<C, T...>> {};
template <typename, typename>
FOLLY_INLINE_VARIABLE constexpr bool is_similar_instantiation_v = false;
template <template <typename...> class C, typename... A, typename... B>
FOLLY_INLINE_VARIABLE constexpr bool
is_similar_instantiation_v<C<A...>, C<B...>> = true;
template <typename A, typename B>
struct is_similar_instantiation
: bool_constant<is_similar_instantiation_v<A, B>> {};
} // namespace detail
// member_pointer_traits
//
// For a member-pointer, reveals its constituent member-type and object-type.
//
// Works for both member-object-pointer and member-function-pointer.
template <typename>
struct member_pointer_traits;
template <typename M, typename O>
struct member_pointer_traits<M O::*> {
using member_type = M;
using object_type = O;
};
namespace detail {
struct is_constexpr_default_constructible_ {
template <typename T>
static constexpr auto make(tag_t<T>) -> decltype(void(T()), 0) {
return (void(T()), 0);
}
// second param should just be: int = (void(T()), 0)
// but under clang 10, crash: https://bugs.llvm.org/show_bug.cgi?id=47620
// and, with assertions disabled, expectation failures showing compiler
// deviation from the language spec
// xcode renumbers clang versions so detection is tricky, but, if detection
// were desired, a combination of __apple_build_version__ and __clang_major__
// may be used to reduce frontend overhead under correct compilers: clang 12
// under xcode and clang 10 otherwise
template <typename T, int = make(tag<T>)>
static std::true_type sfinae(T*);
static std::false_type sfinae(void*);
template <typename T>
static constexpr bool apply =
!require_sizeof<T> || decltype(sfinae(static_cast<T*>(nullptr)))::value;
};
} // namespace detail
// is_constexpr_default_constructible_v
// is_constexpr_default_constructible
//
// A trait variable and type which determines whether the type parameter is
// constexpr default-constructible, that is, default-constructible in a
// constexpr context.
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_constexpr_default_constructible_v =
detail::is_constexpr_default_constructible_::apply<T>;
template <typename T>
struct is_constexpr_default_constructible
: bool_constant<is_constexpr_default_constructible_v<T>> {};
/***
* _t
*
* Instead of:
*
* using decayed = typename std::decay<T>::type;
*
* With the C++14 standard trait aliases, we could use:
*
* using decayed = std::decay_t<T>;
*
* Without them, we could use:
*
* using decayed = _t<std::decay<T>>;
*
* Also useful for any other library with template types having dependent
* member types named `type`, like the standard trait types.
*/
template <typename T>
using _t = typename T::type;
/**
* A type trait to remove all const volatile and reference qualifiers on a
* type T
*/
template <typename T>
struct remove_cvref {
using type =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
};
template <typename T>
using remove_cvref_t = typename remove_cvref<T>::type;
namespace detail {
template <typename Src>
struct like_ {
template <typename Dst>
using apply = Dst;
};
template <typename Src>
struct like_<Src const> {
template <typename Dst>
using apply = Dst const;
};
template <typename Src>
struct like_<Src volatile> {
template <typename Dst>
using apply = Dst volatile;
};
template <typename Src>
struct like_<Src const volatile> {
template <typename Dst>
using apply = Dst const volatile;
};
template <typename Src>
struct like_<Src&> {
template <typename Dst>
using apply = typename like_<Src>::template apply<Dst>&;
};
template <typename Src>
struct like_<Src&&> {
template <typename Dst>
using apply = typename like_<Src>::template apply<Dst>&&;
};
} // namespace detail
// mimic: like_t, p0847r0
template <typename Src, typename Dst>
using like_t = typename detail::like_<Src>::template apply<remove_cvref_t<Dst>>;
// mimic: like, p0847r0
template <typename Src, typename Dst>
struct like {
using type = like_t<Src, Dst>;
};
/**
* type_t
*
* A type alias for the first template type argument. `type_t` is useful for
* controlling class-template and function-template partial specialization.
*
* Example:
*
* template <typename Value>
* class Container {
* public:
* template <typename... Args>
* Container(
* type_t<in_place_t, decltype(Value(std::declval<Args>()...))>,
* Args&&...);
* };
*
* void_t
*
* A type alias for `void`. `void_t` is useful for controling class-template
* and function-template partial specialization.
*
* Example:
*
* // has_value_type<T>::value is true if T has a nested type `value_type`
* template <class T, class = void>
* struct has_value_type
* : std::false_type {};
*
* template <class T>
* struct has_value_type<T, folly::void_t<typename T::value_type>>
* : std::true_type {};
*/
/**
* There is a bug in libstdc++, libc++, and MSVC's STL that causes it to
* ignore unused template parameter arguments in template aliases and does not
* cause substitution failures. This defect has been recorded here:
* http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558.
*
* This causes the implementation of std::void_t to be buggy, as it is likely
* defined as something like the following:
*
* template <typename...>
* using void_t = void;
*
* This causes the compiler to ignore all the template arguments and does not
* help when one wants to cause substitution failures. Rather declarations
* which have void_t in orthogonal specializations are treated as the same.
* For example, assuming the possible `T` types are only allowed to have
* either the alias `one` or `two` and never both or none:
*
* template <typename T,
* typename std::void_t<std::decay_t<T>::one>* = nullptr>
* void foo(T&&) {}
* template <typename T,
* typename std::void_t<std::decay_t<T>::two>* = nullptr>
* void foo(T&&) {}
*
* The second foo() will be a redefinition because it conflicts with the first
* one; void_t does not cause substitution failures - the template types are
* just ignored.
*/
namespace traits_detail {
template <class T, class...>
struct type_t_ {
using type = T;
};
} // namespace traits_detail
template <class T, class... Ts>
using type_t = typename traits_detail::type_t_<T, Ts...>::type;
template <class... Ts>
using void_t = type_t<void, Ts...>;
// nonesuch
//
// A tag type which traits may use to indicate lack of a result type.
//
// Similar to void in that no values of this type may be constructed. Different
// from void in that no functions may be defined with this return type and no
// complete expressions may evaluate with this expression type.
//
// mimic: std::experimental::nonesuch, Library Fundamentals TS v2
struct nonesuch {
~nonesuch() = delete;
nonesuch(nonesuch const&) = delete;
void operator=(nonesuch const&) = delete;
};
namespace detail {
template <typename Void, typename D, template <typename...> class, typename...>
struct detected_ {
using value_t = std::false_type;
using type = D;
};
template <typename D, template <typename...> class T, typename... A>
struct detected_<void_t<T<A...>>, D, T, A...> {
using value_t = std::true_type;
using type = T<A...>;
};
} // namespace detail
// detected_or
//
// If T<A...> substitutes, has member type alias value_t as std::true_type
// and has member type alias type as T<A...>. Otherwise, has member type
// alias value_t as std::false_type and has member type alias type as D.
//
// mimic: std::experimental::detected_or, Library Fundamentals TS v2
//
// Note: not resilient against incomplete types; may violate ODR.
template <typename D, template <typename...> class T, typename... A>
using detected_or = detail::detected_<void, D, T, A...>;
// detected_or_t
//
// A trait type alias which results in T<A...> if substitution would succeed
// and in D otherwise.
//
// Equivalent to detected_or<D, T, A...>::type.
//
// mimic: std::experimental::detected_or_t, Library Fundamentals TS v2
//
// Note: not resilient against incomplete types; may violate ODR.
template <typename D, template <typename...> class T, typename... A>
using detected_or_t = typename detected_or<D, T, A...>::type;
// detected_t
//
// A trait type alias which results in T<A...> if substitution would succeed
// and in nonesuch otherwise.
//
// Equivalent to detected_or_t<nonesuch, T, A...>.
//
// mimic: std::experimental::detected_t, Library Fundamentals TS v2
//
// Note: not resilient against incomplete types; may violate ODR.
template <template <typename...> class T, typename... A>
using detected_t = detected_or_t<nonesuch, T, A...>;
// is_detected_v
// is_detected
//
// A trait variable and type to test whether some metafunction from types to
// types would succeed or fail in substitution over a given set of arguments.
//
// The trait variable is_detected_v<T, A...> is equivalent to
// detected_or<nonesuch, T, A...>::value_t::value.
// The trait type is_detected<T, A...> unambiguously inherits bool_constant<V>
// where V is is_detected_v<T, A...>.
//
// mimic: std::experimental::is_detected, std::experimental::is_detected_v,
// Library Fundamentals TS v2
//
// Note: not resilient against incomplete types; may violate ODR.
//
// Note: the trait type is_detected differs here by being deferred.
template <template <typename...> class T, typename... A>
FOLLY_INLINE_VARIABLE constexpr bool is_detected_v =
detected_or<nonesuch, T, A...>::value_t::value;
template <template <typename...> class T, typename... A>
struct is_detected : detected_or<nonesuch, T, A...>::value_t {};
template <typename T>
using aligned_storage_for_t =
typename std::aligned_storage<sizeof(T), alignof(T)>::type;
// Older versions of libstdc++ do not provide std::is_trivially_copyable
#if defined(__clang__) && !defined(_LIBCPP_VERSION)
template <class T>
struct is_trivially_copyable : bool_constant<__is_trivially_copyable(T)> {};
#else
template <class T>
using is_trivially_copyable = std::is_trivially_copyable<T>;
#endif
template <class T>
FOLLY_INLINE_VARIABLE constexpr bool is_trivially_copyable_v =
is_trivially_copyable<T>::value;
// ----
namespace fallback {
template <typename From, typename To>
FOLLY_INLINE_VARIABLE constexpr bool is_nothrow_convertible_v =
(std::is_void<From>::value && std::is_void<To>::value) ||
( //
std::is_convertible<From, To>::value &&
std::is_nothrow_constructible<To, From>::value);
template <typename From, typename To>
struct is_nothrow_convertible
: bool_constant<is_nothrow_convertible_v<From, To>> {};
} // namespace fallback
// is_nothrow_convertible
// is_nothrow_convertible_v
//
// Import or backport:
// * std::is_nothrow_convertible
// * std::is_nothrow_convertible_v
//
// mimic: is_nothrow_convertible, C++20
#if defined(__cpp_lib_is_nothrow_convertible) && \
__cpp_lib_is_nothrow_convertible >= 201806L
using std::is_nothrow_convertible;
using std::is_nothrow_convertible_v;
#else
using fallback::is_nothrow_convertible;
using fallback::is_nothrow_convertible_v;
#endif
/**
* IsRelocatable<T>::value describes the ability of moving around
* memory a value of type T by using memcpy (as opposed to the
* conservative approach of calling the copy constructor and then
* destroying the old temporary. Essentially for a relocatable type,
* the following two sequences of code should be semantically
* equivalent:
*
* void move1(T * from, T * to) {
* new(to) T(from);
* (*from).~T();
* }
*
* void move2(T * from, T * to) {
* memcpy(to, from, sizeof(T));
* }
*
* Most C++ types are relocatable; the ones that aren't would include
* internal pointers or (very rarely) would need to update remote
* pointers to pointers tracking them. All C++ primitive types and
* type constructors are relocatable.
*
* This property can be used in a variety of optimizations. Currently
* fbvector uses this property intensively.
*
* The default conservatively assumes the type is not
* relocatable. Several specializations are defined for known
* types. You may want to add your own specializations. Do so in
* namespace folly and make sure you keep the specialization of
* IsRelocatable<SomeStruct> in the same header as SomeStruct.
*
* You may also declare a type to be relocatable by including
* `typedef std::true_type IsRelocatable;`
* in the class header.
*
* It may be unset in a base class by overriding the typedef to false_type.
*/
/*
* IsZeroInitializable describes the property that value-initialization
* is the same as memset(dst, 0, sizeof(T)).
*/
namespace traits_detail {
#define FOLLY_HAS_TRUE_XXX(name) \
template <typename T> \
using detect_##name = typename T::name; \
template <class T> \
struct name##_is_true : std::is_same<typename T::name, std::true_type> {}; \
template <class T> \
struct has_true_##name : std::conditional< \
is_detected_v<detect_##name, T>, \
name##_is_true<T>, \
std::false_type>::type {}
FOLLY_HAS_TRUE_XXX(IsRelocatable);
FOLLY_HAS_TRUE_XXX(IsZeroInitializable);
#undef FOLLY_HAS_TRUE_XXX
} // namespace traits_detail
struct Ignore {
Ignore() = default;
template <class T>
constexpr /* implicit */ Ignore(const T&) {}
template <class T>
const Ignore& operator=(T const&) const {
return *this;
}
};
template <class...>
using Ignored = Ignore;
namespace traits_detail_IsEqualityComparable {
Ignore operator==(Ignore, Ignore);
template <class T, class U = T>
struct IsEqualityComparable
: std::is_convertible<
decltype(std::declval<T>() == std::declval<U>()),
bool> {};
} // namespace traits_detail_IsEqualityComparable
/* using override */ using traits_detail_IsEqualityComparable::
IsEqualityComparable;
namespace traits_detail_IsLessThanComparable {
Ignore operator<(Ignore, Ignore);
template <class T, class U = T>
struct IsLessThanComparable
: std::is_convertible<
decltype(std::declval<T>() < std::declval<U>()),
bool> {};
} // namespace traits_detail_IsLessThanComparable
/* using override */ using traits_detail_IsLessThanComparable::
IsLessThanComparable;
namespace traits_detail_IsNothrowSwappable {
#if defined(__cpp_lib_is_swappable) || (_CPPLIB_VER && _HAS_CXX17)
// MSVC already implements the C++17 P0185R1 proposal which adds
// std::is_nothrow_swappable, so use it instead if C++17 mode is
// enabled.
template <typename T>
using IsNothrowSwappable = std::is_nothrow_swappable<T>;
#elif _CPPLIB_VER
// MSVC defines the base even if C++17 is disabled, and MSVC has
// issues with our fallback implementation due to over-eager
// evaluation of noexcept.
template <typename T>
using IsNothrowSwappable = std::_Is_nothrow_swappable<T>;
#else
/* using override */ using std::swap;
template <class T>
struct IsNothrowSwappable
: bool_constant<std::is_nothrow_move_constructible<T>::value&& noexcept(
swap(std::declval<T&>(), std::declval<T&>()))> {};
#endif
} // namespace traits_detail_IsNothrowSwappable
/* using override */ using traits_detail_IsNothrowSwappable::IsNothrowSwappable;
template <class T>
struct IsRelocatable
: std::conditional<
!require_sizeof<T> ||
is_detected_v<traits_detail::detect_IsRelocatable, T>,
traits_detail::has_true_IsRelocatable<T>,
is_trivially_copyable<T>>::type {};
template <class T>
struct IsZeroInitializable
: std::conditional<
!require_sizeof<T> ||
is_detected_v<traits_detail::detect_IsZeroInitializable, T>,
traits_detail::has_true_IsZeroInitializable<T>,
bool_constant< //
!std::is_class<T>::value && //
!std::is_union<T>::value && //
!std::is_member_object_pointer<T>::value && // itanium
true>>::type {};
namespace detail {
template <bool>
struct conditional_;
template <>
struct conditional_<false> {
template <typename, typename T>
using apply = T;
};
template <>
struct conditional_<true> {
template <typename T, typename>
using apply = T;
};
} // namespace detail
// conditional_t
//
// Like std::conditional_t but with only two total class template instances,
// rather than as many class template instances as there are uses.
//
// As one effect, the result can be used in deducible contexts, allowing
// deduction of conditional_t<V, T, F> to work when T or F is a template param.
template <bool V, typename T, typename F>
using conditional_t = typename detail::conditional_<V>::template apply<T, F>;
template <typename...>
struct Conjunction : std::true_type {};
template <typename T>
struct Conjunction<T> : T {};
template <typename T, typename... TList>
struct Conjunction<T, TList...>
: std::conditional<T::value, Conjunction<TList...>, T>::type {};
template <typename...>
struct Disjunction : std::false_type {};
template <typename T>
struct Disjunction<T> : T {};
template <typename T, typename... TList>
struct Disjunction<T, TList...>
: std::conditional<T::value, T, Disjunction<TList...>>::type {};
template <typename T>
struct Negation : bool_constant<!T::value> {};
template <bool... Bs>
struct Bools {
using valid_type = bool;
static constexpr std::size_t size() { return sizeof...(Bs); }
};
// Lighter-weight than Conjunction, but evaluates all sub-conditions eagerly.
template <class... Ts>
struct StrictConjunction
: std::is_same<Bools<Ts::value...>, Bools<(Ts::value || true)...>> {};
template <class... Ts>
struct StrictDisjunction
: Negation<
std::is_same<Bools<Ts::value...>, Bools<(Ts::value && false)...>>> {};
namespace detail {
template <typename T>
using is_transparent_ = typename T::is_transparent;
} // namespace detail
// is_transparent_v
// is_transparent
//
// A trait variable and type to test whether a less, equal-to, or hash type
// follows the is-transparent protocol used by containers with optional
// heterogeneous access.
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_transparent_v =
is_detected_v<detail::is_transparent_, T>;
template <typename T>
struct is_transparent : bool_constant<is_transparent_v<T>> {};
namespace detail {
template <typename T, typename = void>
FOLLY_INLINE_VARIABLE constexpr bool is_allocator_ = !require_sizeof<T>;
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_allocator_<
T,
void_t<
typename T::value_type,
decltype(std::declval<T&>().allocate(std::size_t{})),
decltype(std::declval<T&>().deallocate(
static_cast<typename T::value_type*>(nullptr), std::size_t{}))>> =
true;
} // namespace detail
// is_allocator_v
// is_allocator
//
// A trait variable and type to test whether a type is an allocator according
// to the minimum protocol required by std::allocator_traits.
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_allocator_v = detail::is_allocator_<T>;
template <typename T>
struct is_allocator : bool_constant<is_allocator_v<T>> {};
} // namespace folly
/**
* Use this macro ONLY inside namespace folly. When using it with a
* regular type, use it like this:
*
* // Make sure you're at namespace ::folly scope
* template <> FOLLY_ASSUME_RELOCATABLE(MyType)
*
* When using it with a template type, use it like this:
*
* // Make sure you're at namespace ::folly scope
* template <class T1, class T2>
* FOLLY_ASSUME_RELOCATABLE(MyType<T1, T2>)
*/
#define FOLLY_ASSUME_RELOCATABLE(...) \
struct IsRelocatable<__VA_ARGS__> : std::true_type {}
/**
* The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode the
* assumption that the type is relocatable per IsRelocatable
* above. Many types can be assumed to satisfy this condition, but
* it is the responsibility of the user to state that assumption.
* User-defined classes will not be optimized for use with
* fbvector (see FBVector.h) unless they state that assumption.
*
* Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this:
*
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType)
*
* The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4
* allow using the macro for describing templatized classes with 1, 2,
* 3, and 4 template parameters respectively. For template classes
* just use the macro with the appropriate number and pass the name of
* the template to it. Example:
*
* template <class T1, class T2> class MyType { ... };
* ...
* // Make sure you're at global scope
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType)
*/
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \
namespace folly { \
template <> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__); \
}
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \
namespace folly { \
template <class T1> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1>); \
}
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \
namespace folly { \
template <class T1, class T2> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2>); \
}
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \
namespace folly { \
template <class T1, class T2, class T3> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3>); \
}
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \
namespace folly { \
template <class T1, class T2, class T3, class T4> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3, T4>); \
}
namespace folly {
// STL commonly-used types
template <class T, class U>
struct IsRelocatable<std::pair<T, U>>
: bool_constant<IsRelocatable<T>::value && IsRelocatable<U>::value> {};
// Is T one of T1, T2, ..., Tn?
template <typename T, typename... Ts>
using IsOneOf = StrictDisjunction<std::is_same<T, Ts>...>;
/*
* Complementary type traits for integral comparisons.
*
* For instance, `if(x < 0)` yields an error in clang for unsigned types
* when -Werror is used due to -Wtautological-compare
*
*
* @author: Marcelo Juchem <marcelo@fb.com>
*/
// same as `x < 0`
template <typename T>
constexpr bool is_negative(T x) {
return std::is_signed<T>::value && x < T(0);
}
// same as `x <= 0`
template <typename T>
constexpr bool is_non_positive(T x) {
return !x || folly::is_negative(x);
}
// same as `x > 0`
template <typename T>
constexpr bool is_positive(T x) {
return !is_non_positive(x);
}
// same as `x >= 0`
template <typename T>
constexpr bool is_non_negative(T x) {
return !x || is_positive(x);
}
namespace detail {
// folly::to integral specializations can end up generating code
// inside what are really static ifs (not executed because of the templated
// types) that violate -Wsign-compare and/or -Wbool-compare so suppress them
// in order to not prevent all calling code from using it.
FOLLY_PUSH_WARNING
FOLLY_GNU_DISABLE_WARNING("-Wsign-compare")
FOLLY_GCC_DISABLE_WARNING("-Wbool-compare")
FOLLY_MSVC_DISABLE_WARNING(4287) // unsigned/negative constant mismatch
FOLLY_MSVC_DISABLE_WARNING(4388) // sign-compare
FOLLY_MSVC_DISABLE_WARNING(4804) // bool-compare
template <typename RHS, RHS rhs, typename LHS>
bool less_than_impl(LHS const lhs) {
// clang-format off
return
// Ensure signed and unsigned values won't be compared directly.
(!std::is_signed<RHS>::value && is_negative(lhs)) ? true :
(!std::is_signed<LHS>::value && is_negative(rhs)) ? false :
rhs > std::numeric_limits<LHS>::max() ? true :
rhs <= std::numeric_limits<LHS>::lowest() ? false :
lhs < rhs;
// clang-format on
}
template <typename RHS, RHS rhs, typename LHS>
bool greater_than_impl(LHS const lhs) {
// clang-format off
return
// Ensure signed and unsigned values won't be compared directly.
(!std::is_signed<RHS>::value && is_negative(lhs)) ? false :
(!std::is_signed<LHS>::value && is_negative(rhs)) ? true :
rhs > std::numeric_limits<LHS>::max() ? false :
rhs < std::numeric_limits<LHS>::lowest() ? true :
lhs > rhs;
// clang-format on
}
FOLLY_POP_WARNING
} // namespace detail
template <typename RHS, RHS rhs, typename LHS>
bool less_than(LHS const lhs) {
return detail::
less_than_impl<RHS, rhs, typename std::remove_reference<LHS>::type>(lhs);
}
template <typename RHS, RHS rhs, typename LHS>
bool greater_than(LHS const lhs) {
return detail::
greater_than_impl<RHS, rhs, typename std::remove_reference<LHS>::type>(
lhs);
}
} // namespace folly
// Assume nothing when compiling with MSVC.
#ifndef _MSC_VER
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr)
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr)
#endif
namespace folly {
// Some compilers have signed __int128 and unsigned __int128 types, and some
// libraries with some compilers have traits for those types. It's a mess.
// Import things into folly and then fill in whatever is missing.
//
// The aliases:
// int128_t
// uint128_t
//
// The traits:
// is_arithmetic
// is_arithmetic_v
// is_integral
// is_integral_v
// is_signed
// is_signed_v
// is_unsigned
// is_unsigned_v
// make_signed
// make_signed_t
// make_unsigned
// make_unsigned_t
template <typename T>
struct is_arithmetic : std::is_arithmetic<T> {};
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
template <typename T>
struct is_integral : std::is_integral<T> {};
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_integral_v = is_integral<T>::value;
template <typename T>
struct is_signed : std::is_signed<T> {};
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_signed_v = is_signed<T>::value;
template <typename T>
struct is_unsigned : std::is_unsigned<T> {};
template <typename T>
FOLLY_INLINE_VARIABLE constexpr bool is_unsigned_v = is_unsigned<T>::value;
template <typename T>
struct make_signed : std::make_signed<T> {};
template <typename T>
using make_signed_t = typename make_signed<T>::type;
template <typename T>
struct make_unsigned : std::make_unsigned<T> {};
template <typename T>
using make_unsigned_t = typename make_unsigned<T>::type;
#if FOLLY_HAVE_INT128_T
using int128_t = signed __int128;
using uint128_t = unsigned __int128;
template <>
struct is_arithmetic<int128_t> : std::true_type {};
template <>