
A Compositional Static Deadlock Detector for
Android Code Revisions

Nikos Gorogiannis (Facebook London)

Joint work with James Brotherston, Paul Brunet, Max Kanovich (UCL)

Contents

• Motivation & Problem Statement

• An Analysis for Deadlocks

• Adaptation to Java & Implementation

• Impact & Future Work

Problem Statement

Find deadlocks introduced by revisions,
during code review (in <15min),
on app code in the 10s of MLoC,
running on 1000s of revisions/day.

• Deadlock analyses are whole-program.
• A deadlock involves two traces.

• Often only one trace is affected by a revision.
• We can’t afford to analyse the whole program here.

Approach

• Partial-program analysis of modified files in revision.

• Compositional summarisation of each method.

• Sequential analysis of lock behaviour.

• Concurrency check:

• What methods may run in parallel to Foo?
Use locks acquired by Foo to find these methods.

• Collect static information on thread identity.

An Analysis for Deadlocks

Abstract Language

Non-deterministic control; no recursion.

: set of global lock names for recursive/reentrant locksℒ

Top-level programs must be balanced wrt locking (synchronized).

Op. semantics via tracking lock states .L : ℒ → ℕ

Deadlock = absence of transitions to a next state.

Critical Pairs

(X, y) ∈ Crit(C)

 acquires lock (which it does not hold)
while it holds precisely the locks in
C y

X

where is a set of locks and is a lock such that X y y ∉ X

Intuitively (definition in the paper):

Thm. deadlocks iff there are critical pairs
 and such that

 and and

C1 | |C2
(X1, ℓ1) ∈ Crit(C1) (X2, ℓ2) ∈ Crit(C2)

X1 ∩ X2 = ∅ ℓ1 ∈ X2 ℓ2 ∈ X1

A Static Analysis for Critical Pairs

α = ⟨L, Z⟩ is a set of critical pairs
 is a thread-local lock state

Z ⊆ 2ℒ × ℒ
L : ℒ → ℕ

Abstract States:

Prop. For any balanced :C

Thm. Checking for deadlock can be done in
exponential time in and is in .

P = C1 | |… | |Cn
|P | 𝖭𝖯

Example Deadlock

 deadlocks:a . foo(b) | |b . bar(a)

{(∅, a), ({a}, b)}
{(∅, a)}

{(∅, b), ({b}, a)}

Pairs and satisfy the deadlock conditions:
-
- and

({a}, b) ({b}, a)
{a} ∩ {b} = ∅
b ∈ {b} a ∈ {a}

{(∅, b)}

Critical Pairs

Adaptation to Java & Implementation

Implementation and Adaptations

• Implemented in Infer (open source, OCaml, ~3kLoC).

• Locks represented as access paths ().

• Thread identity: main-thread, worker, both, neither.

• Android lifecycle, annotations, assertions.

• + Class hierarchy + back-propagation over calls.

this . f . g . h

Analysis applied to Code Revisions

1. is analysed; it has the pair .

2. Since takes a lock in class , analyse all methods in
(which may run in parallel with).

3. Does any pair of satisfy the deadlock conditions
against any pair from methods in ?

a . foo(b) ({a : A}, b : B)

a . foo(b) B B
a . foo(b)

a . foo(b)
B

(modification)

Impact & Future Work

Impact

• Analysed >100k of revisions in >2 years.

• Issued >500 reports, with long traces.

• Fix rate is >50%.

• In last 100 days,

• Infer analysis runtime on average=~200sec.

• #methods/revision analysed on average=~5k.

Future Work

• Is the problem NP-complete?

• Which adaptations admit further study?

• Treatment of access paths.

• Can we modestly enlarge the set of dependencies?

• Eg, by precomputing the locks used by classes.

Thanks!
https://fbinfer.com

https://fbinfer.com

