A Compositional Static Deadlock Detector for
Android Code Revisions

Nikos Gorogiannis (Facebook London)

Joint work with James Brotherston, Paul Brunet, Max Kanovich (UCL)

Contents

- Motivation & Problem Statement
- An Analysis for Deadlocks
- Adaptation to Java & Implementation

- Impact & Future Work

Problem Statement

Find deadlocks introduced by revisions,
during code review (in <15min),

on app code in the 10s of MLoC,
running on 1000s of revisions/day.

-+ Deadlock analyses are whole-program.
-+ A deadlock involves two traces.
- Often only one trace is affected by a revision.
- We can’t afford to analyse the whole program here.

Approach

- Partial-program analysis of modified files in revision.

- Compositional summarisation of each method.
-+ Sequential analysis of lock behaviour.

+ Concurrency check:

- What methods may run in parallel to Foo?
Use locks acquired by Foo to find these methods.

- Collect static information on thread identity.

An Analysis for Deadlocks

Abstract Language

< set of global lock names for recursive/reentrant locks

C:= skip|p() | acq(t) | rel(t) | C;C
| if(*) then C else C | while(x) do C

Non-deterministic control; no recursion.

Top-level programs must be balanced wrt locking (synchronized).

Op. semantics via tracking lock states L : & — N.

Deadlock = absence of transitions to a next state.

Critical Pairs
(X, y) € Crit(C)
where X is a set of locks and y is a lock such that y & X

Intuitively (definition in the paper):
C acquires lock y (which it does not hold)
while it holds precisely the locks in X

Thm. C, | | C, deadlocks iff there are critical pairs
(X;,7,) € Crit(C)) and (X,, ,) € Crit(C,) such that

XlﬂX2=@aﬂdf1 EXzandfzexl

A Static Analysis for Critical Pairs

Abstract States:
. 7 C 2% x Pis a set of critical pairs
a={(L,7) .
L : ¥ — Nis athread-local lock state

Prop. For any balanced C: IClla, = (2, Crit(C))

Thm. Checking P = C, || ... || C, for deadlock can be done in
exponential time in | P | and is in NP.

—xample Deadlock

a.foo(b)||b.bar(a) deadlocks: N |
Critical Pairs

class A {
public synchronized void foo(B b) { b.foo(); } {(Qﬁ,d),({él},b)}

public synchronized void bar() {3 {(@,a)}

}

class B {
public synchronized void bar(A a) { a.bar(); } {(Q§,b),({l7},a)}
public synchronized void foo() {3}

} {(@,D))

Pairs ({a}, b) and ({b}, a) satisfy the deadlock conditions:
-{a}n{b} =T
-be {b}anda € {a}

Adaptation to Java & Implementation

Implementation and Adaptations

- Implemented in Infer (open source, OCaml, ~3kLoC).

- Locks represented as access paths (this.f. g. h).
- Thread identity: main-thread, worker, both, neither.
- Android lifecycle, annotations, assertions.

-+ Class hierarchy + back-propagation over calls.

Analysis applied to Code Revisions

class A {
public synchronized void foo(B b) { b.foo(); } (deiﬂca’[iQn)

public synchronized void bar() {}

}

class B {

public synchronized void bar(A a) { a.bar(); }
public synchronized void foo() {}

}

1. a.foo(b) is analysed; it has the pair ({a : A}, b : B).

2. Since a .1oo(b) takes a lock in class B, analyse all methods in B
(which may run in parallel with a . foo(b)).

3. Does any pair of a . foo(b) satisfy the deadlock conditions
against any pair from methods in B?

Impact & Future Work

Impact

-+ Analysed >100k of revisions in >2 years.
- Issued =500 reports, with long traces.
- Fix rate is >50%.
-+ Inlast 100 days,
- Infer analysis runtime on average=~200sec.

- #methods/revision analysed on average=~5k.

Future Work

+ |s the problem NP-complete?
- Which adaptations admit further study?
- Treatment of access paths.
-+ Can we modestly enlarge the set of dependencies?

- Eg, by precomputing the locks used by classes.

https://fbinfer.com

Docs Support Blog Twitter Facebook GitHub m Q Search

A tool to detect bugs in Java and
C/C++[Objective-C code before it ships

Infer is a static analysis tool - if you give Infer some Java or C/C++/Objective-C code it produces a list of

potential bugs. Anyone can use Infer to intercept critical bugs before they have shipped to users, and help

prevent crashes or poor performance.

¢ Star | 12,722

Android and Java C, C++, and iOS/Objective-C
Infer checks for null pointer exceptions, resource leaks, annotation Infer checks for null pointer dereferences, memory leaks, coding
reachability, missing lock guards, and concurrency race conditions in conventions and unavailable API's.

Android and Java code.

Infer in Action Try Infer
class Infer { @ o
String mayReturnNull(int i) { e
if (i>0) { P —
return B Infer Java Tutorial Hello.java Pointers.java
}
return ; & Root 2|
=) q 2 * The Infer "Hello World" Java exa
=l Hello.java 3 *
£l Pointers.java | 4 | * (Click the "Analyze" button to ru
|£] Resources.java 5 * Learn more about Infer at http:/
6 *
7 */
8
Q— -
This will display the output.
Input to your program (press Enter to send) W ‘>_ Send
User: #anonymous (sign in to save your changes) Role: Project user codeboard.io

Recorded witl

https://fbinfer.com

