A Compositional Static Deadlock Detector for
Android Code Revisions

Nikos Gorogiannis (Facebook London)

Joint work with James Brotherston, Paul Brunet, Max Kanovich (UCL)



Contents

- Motivation & Problem Statement
- An Analysis for Deadlocks
- Adaptation to Java & Implementation

- Impact & Future Work



Problem Statement

Find deadlocks introduced by revisions,
during code review (in <15min),

on app code in the 10s of MLoC,
running on 1000s of revisions/day.

-+ Deadlock analyses are whole-program.
-+ A deadlock involves two traces.
- Often only one trace is affected by a revision.
- We can’t afford to analyse the whole program here.



Approach

- Partial-program analysis of modified files in revision.

- Compositional summarisation of each method.
-+ Sequential analysis of lock behaviour.

+ Concurrency check:

- What methods may run in parallel to Foo?
Use locks acquired by Foo to find these methods.

- Collect static information on thread identity.



An Analysis for Deadlocks



Abstract Language

< set of global lock names for recursive/reentrant locks

C:= skip|p() | acq(t) | rel(t) | C;C
| if(*) then C else C | while(x) do C

Non-deterministic control; no recursion.

Top-level programs must be balanced wrt locking (synchronized).

Op. semantics via tracking lock states L : & — N.

Deadlock = absence of transitions to a next state.



Critical Pairs
(X, y) € Crit(C)
where X is a set of locks and y is a lock such that y & X

Intuitively (definition in the paper):
C acquires lock y (which it does not hold)
while it holds precisely the locks in X

Thm. C, | | C, deadlocks iff there are critical pairs
(X;,7,) € Crit(C)) and (X,, ,) € Crit(C,) such that

XlﬂX2=@aﬂdf1 EXzandfzexl



A Static Analysis for Critical Pairs

Abstract States:
. 7 C 2% x Pis a set of critical pairs
a={(L,7) .
L : ¥ — Nis athread-local lock state

Prop. For any balanced C: IClla, = (2, Crit(C))

Thm. Checking P = C, || ... || C, for deadlock can be done in
exponential time in | P | and is in NP.



—xample Deadlock

a.foo(b)||b.bar(a) deadlocks: N |
Critical Pairs

class A {
public synchronized void foo(B b) { b.foo(); } {(Qﬁ,d),({él},b)}

public synchronized void bar() {3 {(@,a)}

}

class B {
public synchronized void bar(A a) { a.bar(); } {(Q§,b),({l7},a)}
public synchronized void foo() {3}

} {(@,D))

Pairs ({a}, b) and ({b}, a) satisfy the deadlock conditions:
-{a}n{b} =T
-be {b}anda € {a}



Adaptation to Java & Implementation



Implementation and Adaptations

- Implemented in Infer (open source, OCaml, ~3kLoC).

- Locks represented as access paths (this.f. g. h).
- Thread identity: main-thread, worker, both, neither.
- Android lifecycle, annotations, assertions.

-+ Class hierarchy + back-propagation over calls.



Analysis applied to Code Revisions

class A {
public synchronized void foo(B b) { b.foo(); } (deiﬂca’[iQn)

public synchronized void bar() {}

}

class B {

public synchronized void bar(A a) { a.bar(); }
public synchronized void foo() {}

}

1. a.foo(b) is analysed; it has the pair ({a : A}, b : B).

2. Since a .1oo(b) takes a lock in class B, analyse all methods in B
(which may run in parallel with a . foo(b)).

3. Does any pair of a . foo(b) satisfy the deadlock conditions
against any pair from methods in B?



Impact & Future Work



Impact

-+ Analysed >100k of revisions in >2 years.
- Issued =500 reports, with long traces.
- Fix rate is >50%.
-+ Inlast 100 days,
- Infer analysis runtime on average=~200sec.

- #methods/revision analysed on average=~5k.



Future Work

+ |s the problem NP-complete?
- Which adaptations admit further study?
- Treatment of access paths.
-+ Can we modestly enlarge the set of dependencies?

- Eg, by precomputing the locks used by classes.



https://fbinfer.com
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