-
Notifications
You must be signed in to change notification settings - Fork 24.2k
/
VirtualizeUtils.js
254 lines (237 loc) · 7.33 KB
/
VirtualizeUtils.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
* @flow
* @format
*/
'use strict';
import invariant from 'invariant';
/**
* Used to find the indices of the frames that overlap the given offsets. Useful for finding the
* items that bound different windows of content, such as the visible area or the buffered overscan
* area.
*/
export function elementsThatOverlapOffsets(
offsets: Array<number>,
itemCount: number,
getFrameMetrics: (index: number) => {
length: number,
offset: number,
...
},
zoomScale: number = 1,
): Array<number> {
const result = [];
for (let offsetIndex = 0; offsetIndex < offsets.length; offsetIndex++) {
const currentOffset = offsets[offsetIndex];
let left = 0;
let right = itemCount - 1;
while (left <= right) {
// eslint-disable-next-line no-bitwise
const mid = left + ((right - left) >>> 1);
const frame = getFrameMetrics(mid);
const scaledOffsetStart = frame.offset * zoomScale;
const scaledOffsetEnd = (frame.offset + frame.length) * zoomScale;
// We want the first frame that contains the offset, with inclusive bounds. Thus, for the
// first frame the scaledOffsetStart is inclusive, while for other frames it is exclusive.
if (
(mid === 0 && currentOffset < scaledOffsetStart) ||
(mid !== 0 && currentOffset <= scaledOffsetStart)
) {
right = mid - 1;
} else if (currentOffset > scaledOffsetEnd) {
left = mid + 1;
} else {
result[offsetIndex] = mid;
break;
}
}
}
return result;
}
/**
* Computes the number of elements in the `next` range that are new compared to the `prev` range.
* Handy for calculating how many new items will be rendered when the render window changes so we
* can restrict the number of new items render at once so that content can appear on the screen
* faster.
*/
export function newRangeCount(
prev: {
first: number,
last: number,
...
},
next: {
first: number,
last: number,
...
},
): number {
return (
next.last -
next.first +
1 -
Math.max(
0,
1 + Math.min(next.last, prev.last) - Math.max(next.first, prev.first),
)
);
}
/**
* Custom logic for determining which items should be rendered given the current frame and scroll
* metrics, as well as the previous render state. The algorithm may evolve over time, but generally
* prioritizes the visible area first, then expands that with overscan regions ahead and behind,
* biased in the direction of scroll.
*/
export function computeWindowedRenderLimits(
data: any,
getItemCount: (data: any) => number,
maxToRenderPerBatch: number,
windowSize: number,
prev: {
first: number,
last: number,
...
},
getFrameMetricsApprox: (index: number) => {
length: number,
offset: number,
...
},
scrollMetrics: {
dt: number,
offset: number,
velocity: number,
visibleLength: number,
zoomScale: number,
...
},
): {
first: number,
last: number,
...
} {
const itemCount = getItemCount(data);
if (itemCount === 0) {
return prev;
}
const {offset, velocity, visibleLength, zoomScale = 1} = scrollMetrics;
// Start with visible area, then compute maximum overscan region by expanding from there, biased
// in the direction of scroll. Total overscan area is capped, which should cap memory consumption
// too.
const visibleBegin = Math.max(0, offset);
const visibleEnd = visibleBegin + visibleLength;
const overscanLength = (windowSize - 1) * visibleLength;
// Considering velocity seems to introduce more churn than it's worth.
const leadFactor = 0.5; // Math.max(0, Math.min(1, velocity / 25 + 0.5));
const fillPreference =
velocity > 1 ? 'after' : velocity < -1 ? 'before' : 'none';
const overscanBegin = Math.max(
0,
visibleBegin - (1 - leadFactor) * overscanLength,
);
const overscanEnd = Math.max(0, visibleEnd + leadFactor * overscanLength);
const lastItemOffset =
getFrameMetricsApprox(itemCount - 1).offset * zoomScale;
if (lastItemOffset < overscanBegin) {
// Entire list is before our overscan window
return {
first: Math.max(0, itemCount - 1 - maxToRenderPerBatch),
last: itemCount - 1,
};
}
// Find the indices that correspond to the items at the render boundaries we're targeting.
let [overscanFirst, first, last, overscanLast] = elementsThatOverlapOffsets(
[overscanBegin, visibleBegin, visibleEnd, overscanEnd],
itemCount,
getFrameMetricsApprox,
zoomScale,
);
overscanFirst = overscanFirst == null ? 0 : overscanFirst;
first = first == null ? Math.max(0, overscanFirst) : first;
overscanLast = overscanLast == null ? itemCount - 1 : overscanLast;
last =
last == null
? Math.min(overscanLast, first + maxToRenderPerBatch - 1)
: last;
const visible = {first, last};
// We want to limit the number of new cells we're rendering per batch so that we can fill the
// content on the screen quickly. If we rendered the entire overscan window at once, the user
// could be staring at white space for a long time waiting for a bunch of offscreen content to
// render.
let newCellCount = newRangeCount(prev, visible);
while (true) {
if (first <= overscanFirst && last >= overscanLast) {
// If we fill the entire overscan range, we're done.
break;
}
const maxNewCells = newCellCount >= maxToRenderPerBatch;
const firstWillAddMore = first <= prev.first || first > prev.last;
const firstShouldIncrement =
first > overscanFirst && (!maxNewCells || !firstWillAddMore);
const lastWillAddMore = last >= prev.last || last < prev.first;
const lastShouldIncrement =
last < overscanLast && (!maxNewCells || !lastWillAddMore);
if (maxNewCells && !firstShouldIncrement && !lastShouldIncrement) {
// We only want to stop if we've hit maxNewCells AND we cannot increment first or last
// without rendering new items. This let's us preserve as many already rendered items as
// possible, reducing render churn and keeping the rendered overscan range as large as
// possible.
break;
}
if (
firstShouldIncrement &&
!(fillPreference === 'after' && lastShouldIncrement && lastWillAddMore)
) {
if (firstWillAddMore) {
newCellCount++;
}
first--;
}
if (
lastShouldIncrement &&
!(fillPreference === 'before' && firstShouldIncrement && firstWillAddMore)
) {
if (lastWillAddMore) {
newCellCount++;
}
last++;
}
}
if (
!(
last >= first &&
first >= 0 &&
last < itemCount &&
first >= overscanFirst &&
last <= overscanLast &&
first <= visible.first &&
last >= visible.last
)
) {
throw new Error(
'Bad window calculation ' +
JSON.stringify({
first,
last,
itemCount,
overscanFirst,
overscanLast,
visible,
}),
);
}
return {first, last};
}
export function keyExtractor(item: any, index: number): string {
if (typeof item === 'object' && item?.key != null) {
return item.key;
}
if (typeof item === 'object' && item?.id != null) {
return item.id;
}
return String(index);
}