Binary Optimization and Layout Tool - A linux command-line utility used for optimizing performance of binaries
Switch branches/tags
Nothing to show
Clone or download
maksfb and facebook-github-bot Better tracking of process forking
Summary:
Improve tracking of forked processes.

If a process corresponding to the input binary has forked/started
before 'perf record' was initiated, then the full name of the binary
will be recorded in a corresponding MMAP2 event. We've being handling
such cases well so far.

However, if the process was forked after 'perf record' has started, and
execve(2) wasn't called afterwards, then there will be no MMAP2 event
recorded corresponding to the mapping of the main binary (unrelated
MMAP2 events could still be recorded).

To track such cases, we need to parse 'perf script --show-task-events'
command output, and to scan for PERF_RECORD_FORK events, and then add
forked process PIDs to the list associated with the input binary. If
the fork event was followed by an exec event (PERF_RECORD_COMM exec)
of a different binary, then the forked PID should be ignored. If the
exec event was associated with our input binary, then the correct MMAP2
event was recorded and parsed.

To track if the event occurred before or after 'perf record', we parse
event's time. This helps us to differentiate some events. E.g. the exec
event is only registered correctly if it happened after perf recording
has started (otherwise the "exec" part is missing), and thus we only
record forks with non-zero time stamps.

Reviewed By: rafaelauler

Differential Revision: D13250904

fbshipit-source-id: 785702e8a0c
Latest commit ebfdc69 Nov 22, 2018

README.md

BOLT

BOLT is a post-link optimizer developed to speed up large applications. It achieves the improvements by optimizing application's code layout based on execution profile gathered by sampling profiler, such as Linux perf tool. An overview of the ideas implemented in BOLT along with a discussion of its potential and current results is available in an arXiv paper.

Input Binary Requirements

BOLT operates on X86-64 and AArch64 ELF binaries. At the minimum, the binaries should have an unstripped symbol table, and, to get maximum performance gains, they should be linked with relocations (--emit-relocs or -q linker flag).

BOLT disassembles functions and reconstructs the control flow graph (CFG) before it runs optimizations. Since this is a nontrivial task, especially when indirect branches are present, we rely on certain heuristics to accomplish it. These heuristics have been tested on a code generated with Clang and GCC compilers. The main requirement for C/C++ code is not to rely on code layout properties, such as function pointer deltas. Assembly code can be processed too. Requirements for it include a clear separation of code and data, with data objects being placed into data sections/segments. If indirect jumps are used for intra-function control transfer (e.g. jump tables), the code patterns should be matching those generated by Clang/GCC.

NOTE: BOLT is currently incompatible with the "-freorder-blocks-and-partition" compiler option. Since GCC8 enables this option by default, you have to explicitly disable it by adding "-fno-freorder-blocks-and-partition" flag if you compiling with GCC8.

PIE and .so support has been added recently. Please report bugs if you encounter any issues.

Installation

BOLT heavily uses LLVM libraries and by design it is built as one of LLVM tools. The build process is not much different from a regular LLVM build. The following instructions are assuming that you are running under Linux.

Start with cloning LLVM and BOLT repos:

> git clone https://github.com/llvm-mirror/llvm llvm
> cd llvm/tools
> git checkout -b llvm-bolt f137ed238db11440f03083b1c88b7ffc0f4af65e
> git clone https://github.com/facebookincubator/BOLT llvm-bolt
> cd ..
> patch -p 1 < tools/llvm-bolt/llvm.patch

Proceed to a normal LLVM build using a compiler with C++11 support (for GCC use version 4.9 or later):

> cd ..
> mkdir build
> cd build
> cmake -G Ninja ../llvm -DLLVM_TARGETS_TO_BUILD="X86;AArch64" -DCMAKE_BUILD_TYPE=Release
> ninja

llvm-bolt will be available under bin/. Add this directory to your path to ensure the rest of the commands in this tutorial work.

Note that we use a specific revision of LLVM as we currently rely on a set of patches that are not yet upstreamed.

Usage

For a complete practical guide of using BOLT see Optimizing Clang with BOLT.

Step 0

In order to allow BOLT to re-arrange functions (in addition to re-arranging code within functions) in your program, it needs a little help from the linker. Add --emit-relocs to the final link step of your application. You can verify the presence of relocations by checking for .rela.text section in the binary. BOLT will also report if it detects relocations while processing the binary.

Step 1: Collect Profile

This step is different for different kinds of executables. If you can invoke your program to run on a representative input from a command line, then check For Applications section below. If your programs typically runs as a server/service, then skip to For Services section.

The version of perf command used for the following steps has to support -F brstack option. We recommend using perf version 4.5 or later.

For Applications

This assumes you can run your program from a command line with a typical input. In this case, simply prepend the command line invocation with perf:

$ perf record -e cycles:u -j any,u -o perf.data -- <executable> <args> ...

For Services

Once you get the service deployed and warmed-up, it is time to collect perf data with LBR (branch information). The exact perf command to use will depend on the service. E.g. to collect the data for all processes running on the server for the next 3 minutes use:

$ perf record -e cycles:u -j any,u -a -o perf.data -- sleep 180

Depending on the application, you may need more samples to be included with your profile. It's hard to tell upfront what would be a sweet spot for your application. We recommend the profile to cover 1B instructions as reported by BOLT -dyno-stats option. If you need to increase the number of samples in the profile, you can either run the sleep command for longer, and/or use -F<N> option with perf to increase sampling frequency.

Note that for profile collection we recommend using cycle events and not BR_INST_RETIRED.*. Empirically we found it to produce better results.

If collection of a profile with branches is not available, e.g. when you run on a VM or on a hardware that does not support it, then you can use only sample events, such as cycles. In this case, the quality of the profile information would not be as good, and performance gains with BOLT are expected to be lower.

Step 2: Convert Profile to BOLT Format

NOTE: you can skip this step and feed perf.data directly to BOLT using experimental -p perf.data option.

For this step you will need perf.data file collected from the previous step and a copy of the binary that was running. The binary has to be either unstripped, or should have a symbol table intact (i.e. running strip -g is okay).

Make sure perf is in your PATH, and execute perf2bolt:

$ perf2bolt -p perf.data -o perf.fdata <executable>

This command will aggregate branch data from perf.data and store it in a format that is both more compact and more resilient to binary modifications.

If the profile was collected without LBRs, you will need to add -nl flag to the command line above.

Step 3: Optimize with BOLT

Once you have perf.fdata ready, you can use it for optimizations with BOLT. Assuming your environment is setup to include the right path, execute llvm-bolt:

$ llvm-bolt <executable> -o <executable>.bolt -data=perf.fdata -reorder-blocks=cache+ -reorder-functions=hfsort+ -split-functions=3 -split-all-cold -split-eh -dyno-stats

If you do need an updated debug info, then add -update-debug-sections option to the command above. The processing time will be slightly longer.

For a full list of options see -help/-help-hidden output.

The input binary for this step does not have to 100% match the binary used for profile collection in Step 1. This could happen when you are doing an active development, and the source code constantly changes, yet you want to benefit from profile-guided optimizations. However, since the binary is not exactly the same, the profile information could become invalid or stale, and BOLT will report the number of functions with stale profile. The higher the number, the less performance improvement should be expected. Thus, it is important to update .fdata for important releases.

Multiple Profiles

Suppose your application can run in different modes, and you can generate multiple profiles for each one of them. To generate a single binary that can benefit all modes (assuming the profiles don't contradict each other) you can use merge-fdata tool:

$ merge-fdata *.fdata > combined.fdata

Use combined.fdata for Step 3 above to generate a universally optimized binary.

License

BOLT is licensed under University of Illinois/NCSA Open Source License.