Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
469 lines (437 sloc) 10.9 KB
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This source code is licensed under the Apache 2.0 license found
// in the LICENSE file in the root directory of this source tree.
// Code generated (@generated) by entc, DO NOT EDIT.
package pet
import (
"strconv"
"github.com/facebookincubator/ent/dialect/gremlin/graph/dsl"
"github.com/facebookincubator/ent/dialect/gremlin/graph/dsl/__"
"github.com/facebookincubator/ent/dialect/gremlin/graph/dsl/p"
"github.com/facebookincubator/ent/dialect/sql"
"github.com/facebookincubator/ent/entc/integration/ent/predicate"
)
// ID filters vertices based on their identifier.
func ID(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.EQ(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(id)
},
)
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.EQ(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(p.EQ(id))
},
)
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.NEQ(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(p.NEQ(id))
},
)
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i], _ = strconv.Atoi(ids[i])
}
s.Where(sql.In(s.C(FieldID), v...))
},
func(t *dsl.Traversal) {
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
t.HasID(p.Within(v...))
},
)
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i], _ = strconv.Atoi(ids[i])
}
s.Where(sql.NotIn(s.C(FieldID), v...))
},
func(t *dsl.Traversal) {
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
t.HasID(p.Without(v...))
},
)
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.GT(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(p.GT(id))
},
)
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.GTE(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(p.GTE(id))
},
)
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.LT(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(p.LT(id))
},
)
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
id, _ := strconv.Atoi(id)
s.Where(sql.LTE(s.C(FieldID), id))
},
func(t *dsl.Traversal) {
t.HasID(p.LTE(id))
},
)
}
// Name applies equality check predicate on the "name" field. It's identical to NameEQ.
func Name(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.EQ(v))
},
)
}
// NameEQ applies the EQ predicate on the "name" field.
func NameEQ(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.EQ(v))
},
)
}
// NameNEQ applies the NEQ predicate on the "name" field.
func NameNEQ(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.NEQ(v))
},
)
}
// NameIn applies the In predicate on the "name" field.
func NameIn(vs ...string) predicate.Pet {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.PetPerDialect(
func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(vs) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldName), v...))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.Within(v...))
},
)
}
// NameNotIn applies the NotIn predicate on the "name" field.
func NameNotIn(vs ...string) predicate.Pet {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.PetPerDialect(
func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(vs) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldName), v...))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.Without(v...))
},
)
}
// NameGT applies the GT predicate on the "name" field.
func NameGT(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.GT(v))
},
)
}
// NameGTE applies the GTE predicate on the "name" field.
func NameGTE(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.GTE(v))
},
)
}
// NameLT applies the LT predicate on the "name" field.
func NameLT(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.LT(v))
},
)
}
// NameLTE applies the LTE predicate on the "name" field.
func NameLTE(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.LTE(v))
},
)
}
// NameContains applies the Contains predicate on the "name" field.
func NameContains(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.Contains(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.Containing(v))
},
)
}
// NameHasPrefix applies the HasPrefix predicate on the "name" field.
func NameHasPrefix(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.HasPrefix(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.StartingWith(v))
},
)
}
// NameHasSuffix applies the HasSuffix predicate on the "name" field.
func NameHasSuffix(v string) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s.Where(sql.HasSuffix(s.C(FieldName), v))
},
func(t *dsl.Traversal) {
t.Has(Label, FieldName, p.EndingWith(v))
},
)
}
// HasTeam applies the HasEdge predicate on the "team" edge.
func HasTeam() predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
step := sql.NewStep(
sql.From(Table, FieldID),
sql.To(TeamTable, FieldID),
sql.Edge(sql.O2O, true, TeamTable, TeamColumn),
)
sql.HasNeighbors(s, step)
},
func(t *dsl.Traversal) {
t.InE(TeamInverseLabel).InV()
},
)
}
// HasTeamWith applies the HasEdge predicate on the "team" edge with a given conditions (other predicates).
func HasTeamWith(preds ...predicate.User) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
step := sql.NewStep(
sql.From(Table, FieldID),
sql.To(TeamInverseTable, FieldID),
sql.Edge(sql.O2O, true, TeamTable, TeamColumn),
)
sql.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
},
func(t *dsl.Traversal) {
tr := __.OutV()
for _, p := range preds {
p(tr)
}
t.InE(TeamInverseLabel).Where(tr).InV()
},
)
}
// HasOwner applies the HasEdge predicate on the "owner" edge.
func HasOwner() predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
step := sql.NewStep(
sql.From(Table, FieldID),
sql.To(OwnerTable, FieldID),
sql.Edge(sql.M2O, true, OwnerTable, OwnerColumn),
)
sql.HasNeighbors(s, step)
},
func(t *dsl.Traversal) {
t.InE(OwnerInverseLabel).InV()
},
)
}
// HasOwnerWith applies the HasEdge predicate on the "owner" edge with a given conditions (other predicates).
func HasOwnerWith(preds ...predicate.User) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
step := sql.NewStep(
sql.From(Table, FieldID),
sql.To(OwnerInverseTable, FieldID),
sql.Edge(sql.M2O, true, OwnerTable, OwnerColumn),
)
sql.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
},
func(t *dsl.Traversal) {
tr := __.OutV()
for _, p := range preds {
p(tr)
}
t.InE(OwnerInverseLabel).Where(tr).InV()
},
)
}
// And groups list of predicates with the AND operator between them.
func And(predicates ...predicate.Pet) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
},
func(tr *dsl.Traversal) {
trs := make([]interface{}, 0, len(predicates))
for _, p := range predicates {
t := __.New()
p(t)
trs = append(trs, t)
}
tr.Where(__.And(trs...))
},
)
}
// Or groups list of predicates with the OR operator between them.
func Or(predicates ...predicate.Pet) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
},
func(tr *dsl.Traversal) {
trs := make([]interface{}, 0, len(predicates))
for _, p := range predicates {
t := __.New()
p(t)
trs = append(trs, t)
}
tr.Where(__.Or(trs...))
},
)
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Pet) predicate.Pet {
return predicate.PetPerDialect(
func(s *sql.Selector) {
p(s.Not())
},
func(tr *dsl.Traversal) {
t := __.New()
p(t)
tr.Where(__.Not(t))
},
)
}
You can’t perform that action at this time.