
Introduction to Access Control
We can now start using CrypTen to carry out private computations in some common use cases.
In this tutorial, we will demonstrate how CrypTen would apply for the scenarios described in the
Introduction. In all scenarios, we'll use a simple two-party setting and demonstrate how we can
learn a linear SVM. In the process, we will see how access control works in CrypTen.

As usual, we'll begin by importing the crypten  and torch  libraries, and initialize 
crypten  with crypten.init() .
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Setup

In this tutorial, we will train a Linear SVM to perform binary classification. We will first generate
1000 ground truth samples using 100 features and a randomly generated hyperplane to
separate positive and negative examples.

(Note: this will cause our classes to be linearly separable, so a linear SVM will be able to
classify with perfect accuracy given the right parameters.)

We will also include a test set of examples (that are also linearly separable by the same
hyperplane) to show that the model learns a general hyperplane rather than memorizing the
training data.
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Now that we have generated our dataset, we will train our SVM in four different access control
scenarios across two parties, Alice and Bob:

import crypten

import torch

crypten.init()

torch.set_num_threads(1)

num_features = 100

num_train_examples = 1000

num_test_examples = 100

epochs = 40

lr = 3.0

# Set random seed for reproducibility

torch.manual_seed(1)

features = torch.randn(num_features, num_train_examples)

w_true = torch.randn(1, num_features)

b_true = torch.randn(1)

labels = w_true.matmul(features).add(b_true).sign()

test_features = torch.randn(num_features, num_test_examples)

test_labels = w_true.matmul(test_features).add(b_true).sign()



Data Labeling: Alice has access to features, while Bob has access to labels
Feature Aggregation: Alice has access to the first 50 features, while Bob has access to the
last 50 features
Data Augmentation: Alice has access to the first 500 examples, while Bob has access to
the last 500 examples
Model Hiding: Alice has access to w_true  and b_true , while Bob has access to data
samples to be classified

Throughout this tutorial, we will assume Alice is using the rank 0 process, while Bob is using the
rank 1 process. Additionally we will initialize our weights using random values.
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In each example, we will use the same code to train our linear SVM once the features and
labels are properly encrypted. This code is contained in examples/mpc_linear_svm , but it
is unnecessary to understand the training code to properly use access control. The training
process itself is discussed in depth in later tutorials.
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Saving / Loading Data
We have now generated features and labels for our model to learn. In the scenarios we explore
in this tutorial, we would like to ensure that each party only has access to some subset of the
data we have generated. To do so, we will use special save / load methods that CrypTen
provides to handle loading only to a specified party and synchronizing across processes.

We will use crypten.save()  here to save data from a particular source, then we will load
using crypten.load()  in each example to load on a particular source. The following code
will save all data we will use to files, then each example will load its data as necessary.

(Note that because we are operating on a single machine, all processes will have access to all
of the files we are using. However, this still will work as expected when operating across
machines.)

----------------------------------------------------------------------

-----

ModuleNotFoundError                       Traceback (most recent call

last) 

<ipython-input-4-7314d3ab9618> in <module>

----> 1 from examples.mpc_linear_svm.mpc_linear_svm import train_linea

r_svm, evaluate_linear_svm 

ModuleNotFoundError: No module named 'examples.mpc_linear_svm' 

ALICE = 0

BOB = 1

from examples.mpc_linear_svm.mpc_linear_svm import train_linear_svm, eva
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Scenario 1: Data Labeling
Our first example will focus on the Data Labeling scenario. In this example, Alice has access to
features, while Bob has access to the labels. We will train our linear svm by encrypting the
features from Alice and the labels from Bob, then training our SVM using an aggregation of the
encrypted data.

from crypten import mpc

# Specify file locations to save each piece of data

filenames = {

    "features": "/tmp/features.pth",

    "labels": "/tmp/labels.pth",

    "features_alice": "/tmp/features_alice.pth",

    "features_bob": "/tmp/features_bob.pth",

    "samples_alice": "/tmp/samples_alice.pth",

    "samples_bob": "/tmp/samples_bob.pth",

    "w_true": "/tmp/w_true.pth",

    "b_true": "/tmp/b_true.pth",

    "test_features": "/tmp/test_features.pth",

    "test_labels": "/tmp/test_labels.pth",

}

@mpc.run_multiprocess(world_size=2)

def save_all_data():

    # Save features, labels for Data Labeling example

    crypten.save(features, filenames["features"])

    crypten.save(labels, filenames["labels"])

    

    # Save split features for Feature Aggregation example

    features_alice = features[:50]

    features_bob = features[50:]

    

    crypten.save(features_alice, filenames["features_alice"], src=ALICE)

    crypten.save(features_bob, filenames["features_bob"], src=BOB)

    

    # Save split dataset for Dataset Aggregation example

    samples_alice = features[:, :500]

    samples_bob = features[:, 500:]

    crypten.save(samples_alice, filenames["samples_alice"], src=ALICE)

    crypten.save(samples_bob, filenames["samples_bob"], src=BOB)

    

    # Save true model weights and biases for Model Hiding example

    crypten.save(w_true, filenames["w_true"], src=ALICE)

    crypten.save(b_true, filenames["b_true"], src=ALICE)

    

    crypten.save(test_features, filenames["test_features"], src=BOB)

    crypten.save(test_labels, filenames["test_labels"], src=BOB)

    

save_all_data()



In order to indicate the source of a given encrypted tensor, we encrypt our tensor using 
crypten.load()  (from a file) or crypten.cryptensor()  (from a tensor) using a

keyword argument src . This src  argument takes the rank of the party we want to encrypt
from (recall that ALICE is 0 and BOB is 1).

(If the src  is not specified, it will default to the rank 0 party. We will use the default when
encrypting public values since the source is irrelevant in this case.)
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Scenario 2: Feature Aggregation
Next, we'll show how we can use CrypTen in the Feature Aggregation scenario. Here Alice and
Bob each have 50 features for each sample, and would like to use their combined features to
train a model. As before, Alice and Bob wish to keep their respective data private. This scenario
can occur when multiple parties measure different features of a similar system, and their
measurements may be proprietary or otherwise sensitive.

Unlike the last scenario, one of our variables is split among two parties. This means we will
have to concatenate the tensors encrypted from each party before passing them to the training
code.

from crypten import mpc

@mpc.run_multiprocess(world_size=2)

def data_labeling_example():

    """Apply data labeling access control model"""

    # Alice loads features, Bob loads labels

    features_enc = crypten.load(filenames["features"], src=ALICE)

    labels_enc = crypten.load(filenames["labels"], src=BOB)

    

    # Execute training

    w, b = train_linear_svm(features_enc, labels_enc, epochs=epochs, lr=

    

    # Evaluate model

    evaluate_linear_svm(test_features, test_labels, w, b)

        

data_labeling_example()
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Scenario 3: Dataset Augmentation
The next example shows how we can use CrypTen in a Data Augmentation scenario. Here Alice
and Bob each have 500 samples, and would like to learn a classifier over their combined
sample data. This scenario can occur in applications where several parties may each have
access to a small amount of sensitive data, where no individual party has enough data to train
an accurate model.

Like the last scenario, one of our variables is split amongst parties, so we will have to
concatenate tensors from encrypted from different parties. The main difference from the last
scenario is that we are concatenating over the other dimension (the sample dimension rather
than the feature dimension).

@mpc.run_multiprocess(world_size=2)

def feature_aggregation_example():

    """Apply feature aggregation access control model"""

    # Alice loads some features, Bob loads other features

    features_alice_enc = crypten.load(filenames["features_alice"], src=A

    features_bob_enc = crypten.load(filenames["features_bob"], src=BOB)

    

    # Concatenate features

    features_enc = crypten.cat([features_alice_enc, features_bob_enc], d

    

    # Encrypt labels

    labels_enc = crypten.cryptensor(labels)

    

    # Execute training

    w, b = train_linear_svm(features_enc, labels_enc, epochs=epochs, lr=

    

    # Evaluate model

    evaluate_linear_svm(test_features, test_labels, w, b)

        

feature_aggregation_example()
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Scenario 4: Model Hiding
The last scenario we will explore involves model hiding. Here, Alice has a pre-trained model that
cannot be revealed, while Bob would like to use this model to evaluate on private data
sample(s). This scenario can occur when a pre-trained model is proprietary or contains sensitive
information, but can provide value to other parties with sensitive data.

This scenario is somewhat different from the previous examples because we are not interested
in training the model. Therefore, we do not need labels. Instead, we will demonstrate this
example by encrypting the true model parameters ( w_true  and b_true ) from Alice and
encrypting the test set from Bob for evaluation.

(Note: Because we are using the true weights and biases used to generate the test labels, we
will get 100% accuracy.)
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In this tutorial we have reviewed four techniques where CrypTen can be used to perform
encrypted training / inference. Each of these techniques can be used to facilitate computations

@mpc.run_multiprocess(world_size=2)

def dataset_augmentation_example():

    """Apply dataset augmentation access control model""" 

    # Alice loads some samples, Bob loads other samples

    samples_alice_enc = crypten.load(filenames["samples_alice"], src=ALI

    samples_bob_enc = crypten.load(filenames["samples_bob"], src=BOB)

    

    # Concatenate features

    samples_enc = crypten.cat([samples_alice_enc, samples_bob_enc], dim=

    

    labels_enc = crypten.cryptensor(labels)

    

    # Execute training

    w, b = train_linear_svm(samples_enc, labels_enc, epochs=epochs, lr=l

    

    # Evaluate model

    evaluate_linear_svm(test_features, test_labels, w, b)

        

dataset_augmentation_example()

@mpc.run_multiprocess(world_size=2)

def model_hiding_example():

    """Apply model hiding access control model"""

    # Alice loads the model

    w_true_enc = crypten.load(filenames["w_true"], src=ALICE)

    b_true_enc = crypten.load(filenames["b_true"], src=ALICE)

    

    # Bob loads the features to be evaluated

    test_features_enc = crypten.load(filenames["test_features"], src=BOB

    

    # Evaluate model

    evaluate_linear_svm(test_features_enc, test_labels, w_true_enc, b_tr

    

model_hiding_example()



in different privacy-preserving scenarios. However, these techniques can also be combined to
increase the amount of scenarios where CrypTen can maintain privacy.

For example, we can combine feature aggregation and data labeling to train a model on data
split between three parties, where two parties each have access to a subset of features, and the
third party has access to labels.

Before exiting this tutorial, please clean up the files generated using the following code.

In [ ]: import os

for fn in filenames.values():

    if os.path.exists(fn): os.remove(fn)


