Switch branches/tags
Nothing to show
Find file History
Latest commit d1bfabb Jul 4, 2018
Permalink
Type Name Latest commit message Commit time
..
Failed to load latest commit information.
configs added densepose-posetrack dataset Jul 1, 2018
DensePose-PoseTrack-Visualize.ipynb added densepose-posetrack dataset Jul 1, 2018
README.md Update README.md Jul 4, 2018
get_DensePose_PoseTrack.sh added densepose-posetrack dataset Jul 1, 2018

README.md

DensePose-PoseTrack

We introduce the DensePose-Posetrack dataset, which consists of videos of multiple persons containing rapid motions, occlusions and scale variations which leads to a very challenging correspondence task. DensePose-PoseTrack will be a part of the ECCV 2018 - POSETRACK CHALLENGE.

Please first follow the INSTALL.md and GETTING_STARTED.md, to install and run the DensePose inference and training. Herein, we provide instructions to download and evaluate on the DensePose-PoseTrack dataset.

Fetch DensePose-PoseTrack dataset

To download the images of the original PoseTrack dataset, please refer to the posetrack webpage: https://posetrack.net. Note that we have used the keypoints provided in the PoseTrack dataset to form the DensePose-PoseTrack dataset. Our dense correspondence annotations are distributed under NonCommercial Creative Commons license.

To downoad, run:

cd $DENSEPOSE/PoseTrack
bash get_DensePose_PoseTrack.sh

This script downloads *.json files that contains all annotations along with files that only contains annotations for images with densepose annotations. The latter is used during evaluation.

Visualization of the DensePose-PoseTrack annotations are demonstrated in the DensePose-PoseTrack-Visualize.ipynb:

Setting-up the PoseTrack dataset.

Create a symlink for the PoseTrack dataset in your datasets/data folder.

ln -s /path/to/posetrack $DENSEPOSE/detectron/datasets/data/posetrack

Create symlinks for the DensePose-PoseTrack annotations

ln -s $DENSEPOSE/PoseTrack/DensePose_PoseTrack/densepose_only_posetrack_train2017.json $DENSEPOSE/detectron/datasets/data/posetrack/
ln -s $DENSEPOSE/PoseTrack/DensePose_PoseTrack/densepose_only_posetrack_val2017.json $DENSEPOSE/detectron/datasets/data/posetrack/
ln -s $DENSEPOSE/PoseTrack/DensePose_PoseTrack/densepose_posetrack_test2017.json $DENSEPOSE/detectron/datasets/data/posetrack/

Your local PoseTrack dataset copy at /path/to/posetrack should have the following directory structure:

posetrack
|_ images
|  |_ <im-folder-1>
|  |_ ...
|  |_ <im-folder-N>.
|_ densepose_only_posetrack_train2017.json
|_ densepose_only_posetrack_val2017.json
|_ densepose_posetrack_test2017.json

Evaluation on DensePose-PoseTrack dataset

To demonstrate the evaluation, we use a DensePose-RCNN with a ResNet-50 trunk that is trained on the DensePose-COCO dataset.

cd $DENSEPOSE
python2 tools/test_net.py \
    --cfg PoseTrack/configs/DensePose_ResNet50_FPN_s1x-e2e.yaml \
    TEST.WEIGHTS https://s3.amazonaws.com/densepose/DensePose_ResNet50_FPN_s1x-e2e.pkl \
    NUM_GPUS 1

The evaluation of this baseline network should yield Bounding Box AP: 0.4438 and DensePose AP: 0.2698.