Skip to content
Branch: master
Find file History
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

COCO 2018 DensePose Task

DensePose Splash Image


The COCO DensePose Task requires dense estimation of human pose in challenging, uncontrolled conditions. The DensePose task involves simultaneously detecting people, segmenting their bodies and mapping all image pixels that belong to a human body to the 3D surface of the body. For full details of this task please see the DensePose evaluation page.

This task is part of the Joint COCO and Mapillary Recognition Challenge Workshop at ECCV 2018. For further details about the joint workshop please visit the workshop page. Please also see the related COCO detection, panoptic, keypoints and stuff tasks.

The COCO train, validation, and test sets, containing more than 39,000 images and 56,000 person instances labeled with DensePose annotations are available for download. Annotations on train ( train 1, train 2 ) and val with over 48,000 people are publicly available. Test set with the list of images is also available for download.

Evaluation server for the 2018 task is open.


August 17, 2018 Submission deadline (23:59 PST)
August 26, 2018 Challenge winners notified
September 9, 2018 Winners present at ECCV 2018 Workshop


Riza Alp Güler (INRIA, CentraleSupélec)

Natalia Neverova (Facebook AI Research)

Iasonas Kokkinos (Facebook AI Research)

Task Guidelines

Participants are recommended but not restricted to train their algorithms on COCO DensePose train and val sets. The download page has links to all COCO data. When participating in this task, please specify any and all external data used for training in the "method description" when uploading results to the evaluation server. A more thorough explanation of all these details is available on the guidelines page, please be sure to review it carefully prior to participating. Results in the correct format must be uploaded to the evaluation server. The evaluation page lists detailed information regarding how results will be evaluated. Challenge participants with the most successful and innovative methods will be invited to present at the workshop.

Tools and Instructions

We provide extensive API support for the COCO images, annotations, and evaluation code. To download the COCO DensePose API, please visit our GitHub repository. Due to the large size of COCO and the complexity of this task, the process of participating may not seem simple. To help, we provide explanations and instructions for each step of the process: download, data format, results format, upload and evaluation pages. For additional questions, please contact

You can’t perform that action at this time.