Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
LAMA/scripts/create_lama_uhn.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
171 lines (145 sloc)
5.28 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
# Code to create LAMA-UHN, a subset of LAMA-Google-RE and LAMA-T-REx | |
# where ``easy-to-guess'' questions are filtered out. | |
# | |
# Defaults parameters correspond to setup in the following paper: | |
# | |
# @article{poerner2019bert, | |
# title={BERT is Not a Knowledge Base (Yet): Factual Knowledge vs. | |
# Name-Based Reasoning in Unsupervised QA}, | |
# author={Poerner, Nina and Waltinger, Ulli and Sch{\"u}tze, Hinrich}, | |
# journal={arXiv preprint arXiv:1911.03681}, | |
# year={2019} | |
# } | |
import torch | |
import json | |
import os | |
import argparse | |
import tqdm | |
from pytorch_pretrained_bert import BertForMaskedLM, BertTokenizer | |
class LAMAUHNFilter: | |
def match(self, sub_label, obj_label, relation): | |
raise NotImplementedError() | |
def filter(self, queries): | |
return [query for query in queries if not self.match(query)] | |
class PersonNameFilter(LAMAUHNFilter): | |
TEMP = "[CLS] [X] is a common name in the following [Y] : [MASK] . [SEP]" | |
PLACENOUNS = { | |
"/people/person/place_of_birth": "city", | |
"/people/deceased_person/place_of_death": "city", | |
"P19": "city", | |
"P20": "city", | |
"P27": "country", | |
"P1412": "language", | |
"P103": "language", | |
} | |
def __init__(self, top_k, bert_name): | |
super().__init__() | |
self.do_lower_case = "uncased" in bert_name | |
self.top_k = top_k | |
self.tokenizer = BertTokenizer.from_pretrained( | |
bert_name, do_lower_case=self.do_lower_case | |
) | |
self.model = BertForMaskedLM.from_pretrained(bert_name) | |
self.model.eval() | |
def get_top_k_for_name(self, template, name): | |
tokens = self.tokenizer.tokenize(template.replace("[X]", name)) | |
input_ids = self.tokenizer.convert_tokens_to_ids(tokens) | |
output = self.model(torch.tensor(input_ids).unsqueeze(0))[0] | |
logits = output[tokens.index("[MASK]")].detach() | |
top_k_ids = torch.topk(logits, k=self.top_k)[1].numpy() | |
top_k_tokens = self.tokenizer.convert_ids_to_tokens(top_k_ids) | |
return top_k_tokens | |
def match(self, query): | |
relation = query["pred"] if "pred" in query else query["predicate_id"] | |
if not relation in self.PLACENOUNS: | |
return False | |
sub_label, obj_label = query["sub_label"], query["obj_label"] | |
if self.do_lower_case: | |
obj_label = obj_label.lower() | |
sub_label = sub_label.lower() | |
template = self.TEMP.replace("[Y]", self.PLACENOUNS[relation]) | |
for name in sub_label.split(): | |
if obj_label in self.get_top_k_for_name(template, name): | |
return True | |
return False | |
class StringMatchFilter(LAMAUHNFilter): | |
def __init__(self, do_lower_case): | |
self.do_lower_case = do_lower_case | |
def match(self, query): | |
sub_label, obj_label = query["sub_label"], query["obj_label"] | |
if self.do_lower_case: | |
sub_label = sub_label.lower() | |
obj_label = obj_label.lower() | |
return obj_label in sub_label | |
def main(args): | |
srcdir = args.srcdir | |
assert os.path.isdir(srcdir) | |
srcdir = srcdir.rstrip("/") | |
tgtdir = srcdir + "_UHN" | |
if not os.path.exists(tgtdir): | |
os.mkdir(tgtdir) | |
uhn_filters = [] | |
if "string_match" in args.filters: | |
uhn_filters.append( | |
StringMatchFilter(do_lower_case=args.string_match_do_lowercase) | |
) | |
if "person_name" in args.filters: | |
uhn_filters.append( | |
PersonNameFilter( | |
bert_name=args.person_name_bert, top_k=args.person_name_top_k | |
) | |
) | |
for filename in tqdm.tqdm(sorted(os.listdir(srcdir))): | |
infile = os.path.join(srcdir, filename) | |
outfile = os.path.join(tgtdir, filename) | |
with open(infile) as handle: | |
queries = [json.loads(line) for line in handle] | |
for uhn_filter in uhn_filters: | |
queries = uhn_filter.filter(queries) | |
with open(outfile, "w") as handle: | |
for query in queries: | |
handle.write(json.dumps(query) + "\n") | |
if __name__ == "__main__": | |
argparser = argparse.ArgumentParser() | |
argparser.add_argument( | |
"--srcdir", | |
required=True, | |
type=str, | |
help="Source directory. Should be Google_RE or TREx_alpaca.", | |
) | |
argparser.add_argument( | |
"--filters", | |
nargs="+", | |
type=str, | |
default=("string_match", "person_name"), | |
choices=("string_match", "person_name"), | |
help="Filters to be applied: string_match, person_name or both.", | |
) | |
argparser.add_argument( | |
"--person_name_top_k", | |
default=3, | |
type=int, | |
help="Parameter k for person name filter.", | |
) | |
argparser.add_argument( | |
"--person_name_bert", | |
default="bert-base-cased", | |
type=str, | |
help="BERT version to use for person name filter.", | |
) | |
argparser.add_argument( | |
"--no_string_match_do_lowercase", | |
default=True, | |
action="store_false", | |
dest="string_match_do_lowercase", | |
help="Set flag to disable lowercasing in string match filter", | |
) | |
args = argparser.parse_args() | |
print(args) | |
main(args) |