Skip to content

facebookresearch/mixup-cifar10

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
February 26, 2018 17:18
February 26, 2018 17:18
February 26, 2018 17:18
September 7, 2018 12:37

Mixup-CIFAR10

By Hongyi Zhang, Moustapha Cisse, Yann Dauphin, David Lopez-Paz.

Facebook AI Research

Introduction

Mixup is a generic and straightforward data augmentation principle. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples.

This repository contains the implementation used for the results in our paper (https://arxiv.org/abs/1710.09412).

Citation

If you use this method or this code in your paper, then please cite it:

@article{
zhang2018mixup,
title={mixup: Beyond Empirical Risk Minimization},
author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
journal={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=r1Ddp1-Rb},
}

Requirements and Installation

  • A computer running macOS or Linux
  • For training new models, you'll also need a NVIDIA GPU and NCCL
  • Python version 3.6
  • A PyTorch installation

Training

Use python train.py to train a new model. Here is an example setting:

$ CUDA_VISIBLE_DEVICES=0 python train.py --lr=0.1 --seed=20170922 --decay=1e-4

License

This project is CC-BY-NC-licensed.

Acknowledgement

The CIFAR-10 reimplementation of mixup is adapted from the pytorch-cifar repository by kuangliu.

About

mixup: Beyond Empirical Risk Minimization

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE-pytorch-cifar

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages