Skip to content
Separating value functions across time-scales.
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
algo first commit Jan 30, 2019
tabular camera ready May 13, 2019
CODE_OF_CONDUCT.md first commit Jan 30, 2019
CONTRIBUTING.md first commit Jan 30, 2019
LICENSE
README.md Update README.md Feb 7, 2019
arguments.py camera ready May 13, 2019
configurations.py camera ready May 13, 2019
distributions.py first commit Jan 30, 2019
enjoy.py first commit Jan 30, 2019
envs.py first commit Jan 30, 2019
main.py camera ready May 13, 2019
model.py first commit Jan 30, 2019
plot_estimators.py
random_starts.py removed unused options Feb 5, 2019
requirements.txt first commit Jan 30, 2019
reward_frequencies_trained.py removed unused options Feb 5, 2019
reward_frequency.py
storage.py camera ready May 13, 2019
test_RL_difference.py first commit Jan 30, 2019
utils.py first commit Jan 30, 2019
visualize.py camera ready May 13, 2019

README.md

Separating Value Functions Across Time-Scales

Read the full paper: https://arxiv.org/abs/1902.01883

@article{separatingvalues2019,
  title={Separating value functions across time-scales},
  author={Romoff, Joshua and Henderson, Peter and Touati, Ahmed and Olliver, Yann and Brunskill, Emma and Pineau, Joelle},
  journal={arXiv preprint arXiv:1902.01883},
  year={2019}
}

We based our code off of ikostrikov's pytorch-rl repo.

@misc{pytorchrl,
  author = {Kostrikov, Ilya},
  title = {PyTorch Implementations of Reinforcement Learning Algorithms},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ikostrikov/pytorch-a2c-ppo-acktr}},
}

Installation

PyTorch

without cuda:

conda install pytorch=0.4.1 -c pytorch

with cuda:

conda install pytorch=0.4.1 cuda90 -c pytorch

(or cuda92, cuda80, cuda 75. depending on what you have installed)

Baselines for Atari preprocessing

git clone https://github.com/openai/baselines.git cd baselines pip install -e .

Other requirements

pip install -r requirements.txt

Replicating results

To replicate our atari experiments run

python main.py --run-index [0-720]

Visualization

To visualize performance (requires Visdom) first create a visdom server:

python -m visdom.server

Then run:

python visualize.py

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

You can’t perform that action at this time.