Getting Started with Falco and
Cloud-Native Distributed SQL on Google
Kubernetes Engine

Falco is an incubating CNCF project that provides cloud-native, open source runtime security for
applications running in Kubernetes environments. Falco monitors process behaviors to detect
anomalous activity and help administrators gain deeper insights into process execution. Behind
the scenes, Falco leverages the Linux-native extended Berkeley Packet Filter (eBPF) technology
to analyze network traffic and audits a system at the most fundamental level, the Linux kernel.
Flaco then enriches this data with other input streams, including container and Kubernetes
metrics, to provide even deeper insights.

D Q.
7 Falco + . yugabyteDB

Because YugabyteDB is a cloud-native, distributed SQL database that is designed to run in
Kubernetes environments, it can interoperate with Falco and many other CNCF projects right
out-of-the-box.

What’s YugabyteDB? It is an open source, high-performance distributed SQL database built on a
scalable and fault-tolerant design inspired by Google Spanner. Yugabyte’s SQL API (YSQL) is
PostgreSQL wire compatible.

Why Falco and YugabyteDB?

When it comes to running YugabyteDB in a Kubernetes environment, implementing the
recommended database security controls are a great start. However, it is also important to go
one level deeper and put in place controls and monitoring to detect unexpected behavior that
could be malicious.

For example, a malicious company insider can often find ways to eavesdrop on sensitive data like
credit card information, social security numbers, or health records by connecting on different

https://www.falco.org/
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://blog.yugabyte.com/what-is-distributed-sql/
https://github.com/yugabyte/yugabyte-db
https://docs.yugabyte.com/latest/secure/security-checklist/

ports or reading the sensitive data files directly from disk or by copying backup files, completely
bypassing the database engine. To safeguard against these types of vulnerabilities it makes
sense to deploy multiple security layers. By using Falco with a YugabyteDB deployment, it can
help create this additional layer of defense in Kubernetes environments. In this blog post we’ll
show you how to get up and running with YugabyteDB and Falco on Google Cloud Platform plus
implement and test some basic security policies.

Prerequisites

Below is the environment which we’ll use to run a YugabyteDB cluster on top of a Google
Kubernetes cluster integrated with Falco.

1. YugabyteDB (using Helm Charts) - Version 2.0.11
2. Falco (using Helm Charts) - Version 0.19.0
3. A Google Cloud Platform account

Setting Up a Kubernetes Cluster on Google Cloud
Platform

To deploy YugabyteDB on the Google Cloud Platform (GCP), we first have to set up a cluster. To
create the cluster in Google Kubernetes Engine (GKE):

Go to Kubernetes Engine> Clusters > Create Cluster > Standard cluster. For the purposes of this
example we’ll name the cluster yugabytedb-cluster-1 and use the default options.

https://docs.yugabyte.com/latest/quick-start/install/
https://github.com/helm/charts/tree/master/stable/falco
https://cloud.google.com/gcp/

'Standard cluster' template

Continucus integration, web serving, backends. Best choice for further customization or
if you are not sure what to choose.

@ some fields can' be changed after the cluster is created. Dismiss
Hover over the help icons to learn more.

Name
yugabytedb-cluster-1

Location type
® Fonal

Regional
Zone

us-centrall-a b

Master version

@ Try the new Release Channels feature Use Release Channels
instead of managing the master version
directly.

| 1.13.11-gke.23 (defaut) -

Node pools

Mode pools are separate instance groups running Kubernetes in a cluster. You
may add node pools in different zones for higher availability, or add node pools
of different type machines. To add a node pool, click Edit. Learn more

default-pool
MNumber of nodes

3

Pod address range limits the maximum size of the cluster. Learn more

Machine configuration
Machine family
General-purpose | Memory-optimized
Machine types for common workloads, optimized for cost and flexibility
Series
N1 hd

Powered by Intel Skylake CPU platform or cne of its predecessors

Machine type
n1-standard-1 (1 vCPU, 3.75 GB memory) -
</—.. 3 CPU M
s vl emory

“‘W 1 3.75GB
-

% CPU platform and GPU

Cancel Equivalent REST or command ling

Connect to the Google Cloud Shell and verify that the nodes are setup and running by using the
command:

$ gcloud container clusters list

NAME LOCATION MASTER VERSION MASTER IP MACHINE TYPE NODE_VERSION NUM NODES STATUS

yugabytedb-cluster-1 wus-centrall-a 1.13.11-gke.23 35.239.167.218 nl-standard-1 1.13.11-gke.23 3 RUNNING

Note that in this case, we have configured the cluster with ni1-standard-1 machine type.

Installing YugabyteDB

We will be using Helm charts to install YugabyteDB and Falco. However, before we dive into the
steps to install YugabyteDB, let’s make sure that the Helm prerequisites are available.

Verify and upgrade Helm

First, check to see if Helm is installed by using the Helm version command:
$ helm version

Client: &version.Version{SemVer:"v2.14.1",
GitCommit:"5270352a09¢c7e8b6e8c9593002a73535276507c0",
GitTreeState:"clean"}

Error: could not find tiller

If you run into issues associated with Tiller, such as the error above, you can initialize Helm with
the upgrade option:

$ helm init --upgrade --wait

SHELM HOME has been configured at /home/jimmy/.helm.

Tiller (the Helm server-side component) has been installed into your

Kubernetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow

unauthenticated users' policy.
To prevent this, run "helm init® with the --tiller-tls-verify flag.

For more information on securing your installation see:

https://docs.helm.sh/using helm/#securing-your-helm-installation

You should now be able to install YugabyteDB using a Helm chart.
Create a service account

Before you can create the cluster, you need to have a service account that has been granted the
cluster-admin role. Use the following command to create a yugabyte-helm service account
granted with the ClusterRole of cluster-admin.

kubectl create -f

https: raw.githubusercontent.com/vugabvte/charts/master/stable/vugab

vte/vugabyvte-rbac.vaml

serviceaccount/yugabyte-helm created
clusterrolebinding.rbac.authorization.k8s.io/yugabyte-helm created

Initialize Helm

$ helm init --service-account yugabyte-helm --upgrade --wait

SHELM HOME has been configured at /home/jimmy/.helm.
Tiller (the Helm server-side component) has been installed into your
Kubernetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow
unauthenticated users' policy.

To prevent this, run "helm init® with the --tiller-tls-verify flag.
For more information on securing your installation see:
https://docs.helm.sh/using helm/#securing-your-helm-installation

Create a namespace

$ kubectl create namespace yb-demo

namespace/yb-demo created

Add the charts repository

$ helm repo add yugabytedb https://charts.yugabyte.com

"yugabytedb" has been added to your repositories

https://docs.yugabyte.com/latest/deploy/kubernetes/oss/helm-chart/
https://raw.githubusercontent.com/yugabyte/charts/master/stable/yugabyte/yugabyte-rbac.yaml
https://raw.githubusercontent.com/yugabyte/charts/master/stable/yugabyte/yugabyte-rbac.yaml

Fetch updates from the repository

$ helm repo update

Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository

...Successfully got an update from the "yugabytedb" chart repository
...Successfully got an update from the "stable" chart repository
Update Complete.

Install YugabyteDB

By default, the YugabyteDB Helm chart will expose only the master Ul endpoint using the
LoadBalancer. For the purposes of this blog post, we also want to expose the YSQL service.
Additionally, since we used ni-standard-1type servers in our cluster, we will use the Helm
resource options for low resource environments.

helm install yugabytedb/yugabyte --set
resource.master.requests.cpu=0.1, resource.master.requests.memory=0.2G
i,resource.tserver.requests.cpu=0.1, resource.tserver.requests.memory=
0.2G1i --namespace yb-demo --name yb-demo

To check the status of the YugabyteDB cluster, execute the command below:

helm status yb-demo

jimmyfcloudshell:~ (thematic-honor-266023)%5 helm status yb-demo
LAST DEPLOYED: Tue Feb 11 17:13:43 2020
MAMES yb=demo
STATU CEPLOYED
od (related)
NAME READY STATUS RESTARTS AGE
yb-master-0 f2 PodInitializing O bb3
yb-master=1 Init:0/1
yb-master-2 Init:0/1
yb-tserver-0 Init:0/1
yb-tserver-1 | PodInitializing
yb-tzerver-2 / PodInitializing

vl/Service
NAME TYFE CLUSTER-IE
yb=-master-ui LoadBalancer 10.0.13.231
yb-masters ClusterIP None
yb-tservers ClusterIP None

==> vl/StatefulSet
NAME READY
yb-master 0
yb-t=server

==> vlbetal/PodDisruptionBudget

NAME MIN AVAILABLE MAX UNAVAILABLE ALLOWED DISRUPTICNE AGE
yb-master-pdb N/A it 0 Bbs
yb-tserver-pdb N/A 1] 663

Congrats! At this point you have a three node YugabyteDB cluster running on GKE.

Installing Falco

Now, let’s proceed with installing Falco. For the purposes of this blog, we’ll be using Helm charts
version 1.1.0.

As previously mentioned, Falco requires eBPF, and by default eBPF is not enabled in GKE’s
Cloud OS. The Helm install command that enables eBPF and installs Falco chart version 1.1.0 can

be found below:

$ helm install --name falco --set ebpf.enabled=true stable/falco
--version=1.1.0

We can now check the status of the Falco pod by executing:

$ helm status falco

jimmy@cloudshell:~ (thematic-honor-266023)% helm status faleco
LAST DEEFLOYED: Tue Feb 11 17:20:45 2020

NAMESPACE: default

STATUS: DEPLOYED

EESOURCES:

==> v1/ConfigMap
HAME CATE AGE
faleco & 42=

==> vl /DaemonsSet
MAME DESIEED CUERRENT EEADY UP=TO=-DATE AVAILAELE HNODE SELECTOE AGE
falco 3 3 3 3 3 <INone> 42=

==> vl /Pod(related)

NAME READY STATUS
falco-6zvnk 1/1 Funning
falco-bnklp 1/1 Bunning
faleco-nk22w 1/1 Funning

==> vl /ServicelAccount
NAME SECRETS AGE
falco 1 4Zs

==> ywlhetal/ClusterRole
MAME AGE
falco 42=

==> vlbetal/ClusterRocleBinding
NAME AGE
falco 42s

NOTES :

Faleco agents are spinning up on each node in your cluster. After a few
seconds, they are going to start monitoring your containers looking for
security issues.

Mo further action should be reguired.

Alternatively, the “Workloads” tab in GKE should also indicate that Falco is running.

Workloads (¥ REFRESH DEPLOY

i DELETE

Workloads are deployable units of computing that can be created and managed in a

cluster.

= Filter workloads
O Mame Status Type

O falco & oK Daemon Set
O yb-master & oK Stateful Set
O yh-tserver & oK Stateful Set

Falco Rules and Configmap

Pods

3/3

3/3

Namespace
default
yb-demo

yb-demo

Cluster

yugabytedb-cluster-1
yugabytedb-cluster-1
yugabytedb-cluster-1

Out of the box, Falco comes with a rich set of predefined rules that you can edit for flagging
abnormal behaviors. The rules are essentially yaml files (*_rules.yaml) that contain the checks that
Falco uses to generate alerts (shells being opened, files being modified, incoming connections,
etc.). In addition to the rules, there are also configuration files (such as falco.yaml/) that have
deamon settings such as output type, ports, etc.

In Kubernetes, ConfigMaps allow you to decouple configuration artifacts from image content to

keep containerized applications portable. You can view the rules and configuration files of Falco
through the “Configuration” tab in GKE, and then by selecting the Falco ConfigMap. This can be
very useful when writing custom rules for Falco.

https://falco.org/docs/rules/

Google Cloud Platform 8 My Project 37639 w

@ Kubernetes Engine & Config map details CREFRESH A EDIT @ DELETE [KUBECTL ¥

i Clusters

DETAILS YAML

B Workloads
& Services & Ingress falco
B Applications Cluster yugabytedb-cluster-1

Namespace default
B Configuration Created Feb 11, 2020, 5:20:45 PM

Labels app: falco chart: falco-1.1.0 heritage: Tiller release: falco
a8 2lotage Annotations Not set
= Object Browser

Data

application_rules.yaml #
Copyright (C) 2819 The Falco Authors.

“ MORE (7.83 KB)
falco.yaml # File(s) or Directories containing Falco rules, loaded at startup.
The name "rules_file" is only for backwards compatibility.
“ MORE (5.41 KB)
falco_rules.local.yaml it
Copyright (C) 2819 The Falco Authors.
~ MORE (1.11 KB)
falco_rules.yaml i
Copyright (C) 2819 The Falco Authors.
v MORE (104.77 KB)
kBs_audit_rules.yaml i
Copyright (C) 2819 The Falco Authors.

“ MORE (17.99 KB)

For example, Falco has preconfigured rules for databases like MongoDB, Cassandra, and
Elasticsearch. These rules are set up to catch things like inbound/outbound network traffic on a
port other than the standard ports. Similar rules could be configured to monitor inbound and
outbound YugabyteDB traffic on unauthorized ports.

Config map details (C REFRESH /' EDIT W DELETE B8 KUBECTL w

Cassandra ports
https://docs.datastax.com/en/cassandra/2.B/cassandra/security/secureFireWall_r.html
macro: cassandra_thrift_client_port
condition: fd.sport=9168
macro: cassandra_cql_port
condition: fd.sport=9842
macro: cassandra_cluster_port
condition: fd.sport=7868
macro: cassandra_ssl_cluster_port
condition: fd.sport=7881
macro: cassandra_jmx_port
condition: fd.sport=7199
macro: cassandra_port
condition: =
cassandra_thrift_client_port or
cassandra_cql_port or cassandra_cluster_port or
cassandra_ssl_cluster_port or cassandra_jmx_port

rule: Cassandra unexpected network inbound traffic

it desc: inbound network traffic to cassandra on a port other than the standard ports

condition: user.name = cassandra and inbound and not cassandra_port

it output: "Inbound network traffic to Cassandra on unexpected port (connection=%fd.name)"
priority: WARNING

rule: Cassandra unexpected network outbound traffic

desc: outbound network traffic from cassandra on a port other than the standard ports

condition: user.name = cassandra and outbound and not (cassandra_ssl_cluster_port or cassandra_cluster_port)
it output: "Outbound network traffic from Cassandra on unexpected port (connection=%fd.name)"

priority: WARNING

Creating Custom YugabyteDB Rules in Falco

Let’s go ahead and create a test rule to audit logins whenever a user named user? logs into
YugabyteDB.

Click on the edit button of the applications_rules.yaml file and make the following additions to
the yaml file.

YugabyteDB logins
- rule: Audit logins from user userl
desc: Audit logins from user userl
condition: user.name = userl and inbound and fd.sport = 5433
output: "Login from userl to YugabyteDB (connection=%fd.name)"
priority: WARNING

Connecting to Yugabyte DB with a Test Login

Finally, let’'s do a “quick and dirty” test of our auditing rule by connecting to YugabyteDB, creating
the usert login and then logging in with that new role.

$ kubectl exec -n yb-demo -it yb-tserver-0 /home/yugabyte/bin/ysglsh
-- -h yb-tserver-0.yb-tservers.yb-demo

yugabyte=# CREATE ROLE userl WITH LOGIN SUPERUSER;

\q
$ kubectl exec -n yb-demo -it yb-tserver-0 bash
$./bin/ysglsh -U userl -h yb-tserver-0 -d yugabyte

ysglsh (11.2-YB-2.0.11.0-b0)
Type "help" for help.
yugabyte=#

Inspecting Falco audit logs

The login of user? should have been logged by Falco based on the rule we configured earlier. To
view the audit trail we can inspect the logs.

$ kubectl logs --selector app=falco | grep userl

02:55:35.245247928: Error File below / or /root opened for writing
(user=root command=ysglsh -U userl -h yb-tserver-0 -d yugabyte
parent=bash file=/root/.psgl history program=ysqglsh

container id=ac8028a3c3bc image=yugabytedb/yugabyte) k8s.ns=yb-demo
k8s

.pod=yb-tserver-0 container=ac8028a3c3bc k8s.ns=yb-demo
k8s.pod=yb-tserver-0 container=ac8028a3c3bc

From the above output, we can see that Falco has logged an error saying that user=root has run
command=ysqlsh and connected to our YugabyteDB database.

That’s it! At this point you can now start to build more complex rules in Falco to monitor and audit
YugabyteDB in order to get an additional layer of defense in Kubernetes environments.

