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Bound states in the continuum in symmetric and asymmetric photonic crystal slabs
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We develop a semianalytical model to describe bound states in the continuum (BICs) in photonic crystal slabs.
We model leaky modes supported by photonic crystal slabs as a transverse Fabry-Perot resonance composed
of a few propagative Bloch waves bouncing back and forth vertically inside the slab. This multimode Fabry-
Perot model accurately predicts the existence of BICs and their positions in the parameter space. We show that,
regardless of the slab thickness, BICs cannot exist below a cutoff frequency, which is related to the existence of
the second-order Bloch wave in the photonic crystal. Thanks to the semianalyticity of the model, we investigate
the dynamics of BICs with the slab thickness in symmetric and asymmetric photonic crystal slabs. We evidence
that, as the horizontal mirror symmetry is broken, the symmetry-protected BICs that exist in symmetric structures
at the � point of the dispersion diagram become resonance-trapped BICs, but only for specific values of the slab
thickness.
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I. INTRODUCTION

Photonic crystals (PhCs) consist of a periodic modulation
of the refractive index at the wavelength scale [1,2] and
PhC slabs are formed by etching a one- or two-dimensional
(1D or 2D) PhC in a dielectric layer acting as an optical
waveguide. Compared to three-dimensional (3D) PhCs, the
simplified architecture of PhC slabs makes them attractive for
on-chip integrated photonics [3,4]. In addition, their peculiar
diffraction properties have been used in a wide variety of
applications, including filters [5–8], vertical-cavity surface-
emitting lasers (VCSEL) [9–11], photovoltaics [12,13], ther-
mal emission [14], and structural color generation [15].

It was recently pointed out that PhC slabs can support
optical bound states in the continuum (BICs) [16–18]. A BIC
(also called embedded eigenvalue [19,20]) is a bound state
that exists at the same energy level as a continuum of radiation
modes [21,22]. In PhC slabs, it corresponds to an eigenmode
that is truly guided (no radiative leakage) despite the fact
that it lies above the light cone in the dispersion diagram
ω = f (k), with ω the angular frequency and k the wave
vector. The absence of leakage originates from two different
physical mechanisms: symmetry incompatibility for so-called
symmetry-protected BICs or destructive interference between
different leakage channels for so-called resonance-trapped or
Friedrich-Wintgen BICs [16,18,22].

From a strictly theoretical point of view, BICs, and es-
pecially the ones resulting from an interference mechanism,
are definitely counterintuitive and intriguing modes. From a
practical point of view, however, BICs do not really exist.
Indeed, in a real nonideal structure, they are anyway faintly
coupled to the radiation continuum because of technological
imperfections, roughness, or finite size of the device. A BIC
thereby becomes a leaky mode with extremely low leakage,
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i.e., with a very large quality factor Q. Therefore, if a PhC slab
can be fabricated with geometrical parameters close enough
to the ideal ones, it exhibits a very sharp resonance with an
extremely high-quality factor whose value is only limited by
technological constraints. Such high-Q resonances that result
from the existence of a BIC nearby in the parameter space
have been recently investigated [23–25] and exploited for
lasing [26,27] and sensing applications [28–30].

Up to now, the existence of BICs and their location in
the parameter space has been calculated either with rigorous
numerical methods [16,26,31–35] or with various perturba-
tion approaches based on coupled-wave theory [17,36–39].
Fully numerical approaches are cumbersome even for simple
geometries since the whole parameter space has to be explored
blindly to find a BIC. Moreover, this exploration has to be
performed with a very fine grid since the signature of a BIC in
the parameter space is often very narrow. Using a perturbation
approach is an interesting alternative. However, if perturbation
theories are accurate for PhC slabs with a low refractive-index
contrast, the accuracy drops as the contrast increases. Iterative
schemes have been proposed to improve the accuracy of the
coupled-wave formalism for high refractive-index contrasts
but at the cost of a drastic loss in simplicity [37].

To ease the practical implementation of PhC slabs sup-
porting BICs, in particular with semiconductor materials, one
needs approximate models that yield fast yet accurate predic-
tions of the BIC location in the parameter space. Improving
the understanding of the physical mechanisms that lead to
the BIC formation is also an important issue. We propose
a semianalytical model that does not rely on a perturbative
approach. The model presents several advantages. First, it
explicitly contains the interference mechanism that leads to
the formation of a BIC. Second, it yields quantitative predic-
tions of the corresponding optogeometric parameters for any
refractive-index contrast.

BICs in PhC slabs are leaky modes whose radiative leakage
vanishes for a particular set of parameters. Their modeling
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is intrinsically linked to the phenomenon of guided-mode
resonance, which corresponds to the resonant excitation of
a leaky mode. Over the years, guided-mode resonance has
been described by several theoretical formalisms, such as,
for instance, coupled-wave theory [40], perturbation meth-
ods [41], or polology framework [42,43]. Of particular interest
to the objectives of this work is an approach that consists
of modeling the reflection and transmission of a PhC slab
as a transverse Fabry-Perot resonance composed of a small
number of Bloch waves (BWs) bouncing back and forth inside
the slab. This approach has been first proposed to interpret
qualitatively the high reflectivity of PhC slabs [44,45]. It has
been made quantitative in 2006 thanks to the rigorous cal-
culation of the reflectivities of each BW [46]. Further works
have then used this multimode Fabry-Perot model to study the
optical properties of high-contrast gratings (HCGs) [47–49].

In this paper, we apply the model to the calculation of
the dispersion curve and the quality factor of leaky modes
supported by 1D PhC slabs. In contrast to previous works, we
show that a PhC slab with N = 2 or 3 propagative BWs can
be described by a monomode Fabry-Perot resonator with an
effective reflection coefficient that includes the interference
effects between the BWs. Introducing an effective reflection
allows us to introduce more analyticity in the calculation and
to provide closed-form expressions for the dispersion curve
and the quality factor of the leaky modes. We show that
the semianalytical model is able to quantitatively predict the
appearance of BICs and their position in the parameter space.
Note that a different two-wave Fabry-Perot model has recently
been used to study BICs in partially etched 1D PhC slabs [50].
This model focuses on the plane waves propagating back and
forth inside the unetched fraction of the slab whereas the
multimode Fabry-Perot model that we use here relies on the
BWs that propagate in the PhC.

Let us emphasize that the multimode Fabry-Perot model
is particularly well suited for the study of BICs. First,
it is derived from a rigorous theory simply by neglecting
evanescent waves. Therefore, the BWs used in the model
to build the transverse resonance are neither virtual inter-
mediary means for the calculation nor waves propagating in
an unperturbed reference structure. They are the waves that
propagate in the real structure, even in the case of structures
far from the perturbation regime. They exactly correspond
to the channels that destructively interfere to form a BIC.
Second, the BWs are bouncing back and forth vertically
inside the PhC slab. The slab thickness is thus a crucial
parameter to understand the formation of BICs by destruc-
tive interference. The model predictions are analytical with
respect to this geometrical parameter. Third, the BWs pos-
sess cutoff frequencies below which they cannot propagate.
Since the multimode Fabry-Perot model explicitly contains
these cutoff frequencies, the zones in the (ω, k) space where
BICs of different composition, judging by the number of
constituent BWs, can exist become apparent with very few
calculations. In particular, the model allows us to evidence
the existence of a cutoff frequency (related to the second-
order BW) below which no BIC can exist, regardless of the
slab thickness.

We apply the multimode Fabry-Perot model to 1D PhC
slabs that are either symmetric or asymmetric with respect to

(a) (b)

FIG. 1. Schematics of both systems under study: a symmetric
(a) and an asymmetric (b) 1D PhC slab. Main parameters are the
PhC period a, the filling factor F , defined as the fraction of dielectric
material inside one period, the refractive index nd , and the slab
thickness h. Throughout the paper, we consider nd = 3.5, which
is close to the refractive index of silicon at λ = 1.5 μm. For the
asymmetric PhC slab, a slit of width s is introduced as the asymmetry
parameter (no asymmetry for s = 0) with a constant filling factor F .

a vertical axis (z axis in this work) (see Fig. 1). The existence
of BICs in asymmetric structures is scarcely documented in
the literature [32,51]. Our model by its nature does not dis-
criminate between symmetric or asymmetric slabs; the phys-
ical interpretation and the computational cost remain the same
as symmetry is broken. Thus, we still benefit from the semi-
analytical character of the model and we can quickly explore
the parameter space. We evidence the existence of BICs in 1D
PhC slabs with a broken horizontal symmetry and we study
their evolution as the asymmetry parameter is tuned contin-
uously. We show that, as the horizontal mirror symmetry is
broken, the symmetry-protected BICs that exist in symmetric
structures at the � point of the dispersion diagram become
resonance-trapped BICs, but only for specific values of the
slab thickness.

We first calculate and describe in Sec. II the different types
of BICs that can exist in a symmetric 1D PhC slab [see
Fig. 1(a)]. These different BICs have already been discussed
separately in the literature. Here, we show that all of them
can exist together in a given geometry. Moreover, this detailed
description allows us to set the foundations for further discus-
sion. In Sec. III, we present the multimode Fabry-Perot model
and we show that it can accurately predict the existence of all
types of BICs. We also discuss some limitations of the model.
We finally apply the model in Secs. IV and V to study the
dynamics of BICs with the slab thickness and the existence
of BICs in PhC slabs with a broken horizontal symmetry [see
Fig. 1(b)]. Section V concludes the work.

II. SYMMETRIC ONE-DIMENSIONAL PHOTONIC
CRYSTAL SLABS

We consider a symmetric lamellar 1D PhC slab, that is a
periodic array of slits in a dielectric membrane with refractive
index nd = 3.5 embedded in air, as shown in Fig. 1(a). The
PhC period, the membrane thickness, and the filling factor in
dielectric material are, respectively, denoted with a, h, and
F . We study the leaky modes supported by this structure in
transverse electric (TE) polarization, i.e., with an electric field
polarized along the slits in the y direction.

The eigenmodes of the PhC slab are characterized by a
wave vector k = (kx, ky) and an eigenfrequency ω̃ = 2πc/λ̃.
Because of radiative leakage, for modes with a real wave
vector located above the light cone, the eigenfrequencies are
complex with a nonzero imaginary part. The latter is related
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FIG. 2. BICs in symmetric PhC slabs for two different values of the slab thickness, h = 0.71a (a)–(d) and h = 1.62a (e)–(h). (a), (e)
Schematics of the structure. The filling factor and the refractive index of the dielectric material are fixed, F = 0.6 and nd = 3.5. (b), (f)
Dispersion diagrams of the leaky modes above the light cone (gray line). The bands represented with colored curves exhibit BICs for some
particular values of the wave vector kx shown by colored dots. (c), (g) Quality factors Q of the leaky modes with the same colors as the
dispersion diagram. BICs correspond to Q factors that tend to infinity (numerically larger than 109). (d), (h) Real part of the electric field
Ey(x, z) for the BICs shown by colored dots in (b) and (f). A single period is represented; edges of the dielectric ridge are shown with white
lines.

to the mode quality factor Q = Re(λ̃)/[2 Im(λ̃)]. Numerical
calculations in this work are performed with the rigorous
coupled-wave analysis (RCWA) [52]. The leaky modes (or
quasinormal modes) of the PhC slab are calculated by search-
ing for the poles of the scattering matrix in the complex
frequency plane [53,54]. The number of Fourier harmonics
retained in the expansion of the electromagnetic field is 2M +
1 with M = 30.

Figure 2 shows the different types of BICs that can exist
in a symmetric 1D PhC slab. It also evidences the crucial role
of the slab thickness in the formation of BICs. Figure 2(b)
displays the dispersion curves of the four leaky modes with the
lowest frequency for h = 0.71a and F = 0.6. The normalized
frequency a/Re(λ̃) of the modes has been calculated as a
function of the normalized x component of the wave vector
kxa/(2π ), which is varied inside the first Brillouin zone, for
a fixed ky = 0 (nonconical mount). The quality factors of the
four modes are shown in Fig. 2(c). Two modes (green and blue
curves) exhibit a BIC along their dispersion curve while the
other two (black curves) do not. Indeed, the quality factor of
the green mode diverges for kx = 0 and that of the blue mode
diverges for kx = 0.046(2π/a). The locations of these two
BICs in the dispersion diagram are shown with dots labeled
(1) and (2) in Fig. 2(b). The corresponding electric fields (real
parts) are displayed in Fig. 2(d).

The existence of the BIC labeled (1) at kx = 0 (� point)
can be easily understood: radiative leakage is prohibited due
to symmetry incompatibility. The field profile of the mode is
antisymmetric with respect to x, Ey(−x, z) = −Ey(x, z), and
it cannot couple to the symmetric profile of a plane wave with
kx = 0. These nonleaky modes had been identified in earlier
works on PhC slabs without referring to them as BICs. In
recent literature they are often defined as symmetry-protected
BICs [16,18].

The existence of the BIC labeled (2) is more intriguing.
Since kx �= 0, its field does not present any symmetry, even if
it looks almost symmetric. It should, in principle, be coupled
to the radiation continuum. However, radiative leakage is
exactly suppressed at kx = 0.046(2π/a). This “accidental”
disappearance of leakage results from destructive interference
between several leakage channels [16]. In the literature, this
type of BIC is referred to as resonance-trapped BIC [18,26]
or Friedrich-Wintgen BIC [22].

As the slab thickness increases to h = 1.62a (same filling
factor F = 0.6), more modes appear in the spectral range
of interest and the number of BICs increases as well [see
Figs. 2(e)–2(h)]. Our calculations show five BICs whose loca-
tions in the dispersion diagram of Fig. 2(f) are marked with the
dots labeled from (1) to (5). The corresponding electric fields
are shown in Fig. 2(h). Figure 2(g) displays the quality factors
of the three leaky modes that exhibit one or two BICs along
their dispersion curve. The green mode has a diverging quality
factor at kx = 0 and another one at kx = 0.235(2π/a). The
first one is a symmetry-protected BIC with an antisymmetric
field profile (1) while the second one is a resonance-trapped
BIC with a field profile (2) that is almost antisymmetric but
not fully. Similarly, the red mode is a symmetry-protected BIC
at kx = 0 [antisymmetric field profile (3)] and a resonance-
trapped BIC at kx = 0.3587(2π/a) [field profile (4)]. Finally,
the blue mode exhibits a BIC at kx = 0. Since its field profile
(5) is symmetric, it cannot be a symmetry-protected BIC
but rather a resonance-trapped BIC resulting from destructive
interference.

So far, we can observe that the seven BICs in Fig. 2 belong
to four different families. BICs (1) in Figs. 2(d) and 2(h) and
BIC (3) in Fig. 2(h) are symmetry-protected BICs at kx = 0
with an antisymmetric field profile; BIC (5) in Fig. 2(h) is
a resonance-trapped BIC at kx = 0 with a symmetric field
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TABLE I. Classification of BICS in symmetric 1D PhC slabs
according to the number and symmetry of the Bloch waves that
interfere to form the BIC. The table also provides the resulting
symmetry properties along the horizontal x axis. The symmetry-
protected BICs that result from symmetry mismatch necessarily have
an antisymmetric field profile at kx = 0 and cannot exist at kx �= 0.
The resonance-trapped BICs formed by destructive interference can
exist equally at kx = 0 (with a symmetric field profile) or at kx �=
0. An antisymmetric (respectively, symmetric) field corresponds to
Ey(−x, z) = −Ey(x, z) [respectively Ey(−x, z) = Ey(x, z)]. By qua-
sisymmetric (respectively quasiantisymmetric), we mean that the
field profile is almost symmetric (respectively almost antisymmet-
ric), see BICs labeled 2 and 4 in Fig. 2(h) and BIC labeled 2 in
Fig. 2(d).

Symmetry-protected Resonance-trapped
BICs BICs

kx = 0 kx �= 0 kx = 0 kx �= 0

Antisym Sym Quasisym Quasiantisym

2nd BW 3rd BW 3rd BW 2nd BW
+1st BW +1st BW +1st BW

– +2nd BW –

profile; BIC (2) in Fig. 2(d) is a resonance-trapped BIC
at kx �= 0 with a field profile, which is almost symmetric;
BICs (2) and (4) in Fig. 2(h) are resonance-trapped BICs at
kx �= 0 with a field profile that is almost antisymmetric. The
usual classification with two categories (symmetry-protected
and resonance-trapped BICs) is clearly not sufficient to fully
characterize BICs in 1D PhC slabs. We summarize in Table I
the four different types of BICs that can be inferred from
Figs. 2(f)–2(h). We will see in Sec. III that the multimode
Fabry-Perot model provides a clear physical understanding of
the differences between the four types of BICs by considering
the number and the symmetry of the Bloch waves that com-
pose the BIC.

First, as already discussed in the literature, BICs can
be separated in two families: symmetry-protected BICs and
resonance-trapped BICs. For the first ones, leakage is forbid-
den because of symmetry incompatibility between the mode
of the PhC slab and the radiative plane wave. These BICs
can only exist at kx = 0; they have necessarily an antisym-
metric field profile. Their existence does not depend on the
geometrical parameters of the PhC slab, provided that the
horizontal symmetry is conserved. Second, leakage can also
be suppressed by destructive interference, resulting in the
appearance of so-called resonance-trapped BICs. Figure 2
evidences that this BIC family can be split in three different
sub-categories. Resonance-trapped BICs can exist at kx = 0
with a symmetric field profile or at kx �= 0. In the latter
case, the field profile presents no strict symmetry, but it is
either quasisymmetric or quasiantisymmetric. By the prefix
“quasi,” we mean that the symmetry or antisymmetry property
is almost fulfilled but not fully [see, for instance, BIC (2) in
Fig. 2(h) that is very close to be antisymmetric or BIC (2) in
Fig. 2(d) that is very close to be symmetric]. In contrast to the
symmetry-protected BICs, the existence of resonance-trapped
BICs formed by destructive interference strongly depends on

the geometrical parameters. It is thus difficult to predict their
precise position along the dispersion curve.

In the following section, we present a multimode Fabry-
Perot model that allows for a simple yet quantitative analysis
of the interference mechanism between a small number of
BWs composing a leaky mode. Thanks to its semianalytical
character, the model allows for easy calculations of the BIC
positions in the dispersion diagram and their variation as a
function of the slab thickness.

III. MULTIMODE FABRY-PEROT MODEL

We derive a semianalytical model that predicts the disper-
sion curve and the quality factor of leaky modes supported
by a PhC slab. We extend an approach proposed in Ref. [46]
for the calculation of the reflection and transmission of a PhC
slab. A leaky mode is nothing but a transverse Fabry-Perot
resonance composed of several Bloch waves (BWs) bouncing
back and forth vertically inside the slab. This description is
perfectly rigorous as long as a sufficiently large number M of
waves are taken into account. This is the mathematical ground
of RCWA, also known as the Fourier modal method [52]. In
the case of subwavelength periodic structures, only a small
number N of BWs are propagative, the other ones being
evanescent [46,55]. Neglecting the impact of the evanescent
waves provides approximate closed-form expressions that can
be very accurate, provided that the slab thickness is large
enough, typically larger than the decay length of the least
attenuated evanescent wave [46].

In the following, we first introduce some notations and
write the general equations that lead to an exact calculation of
the leaky modes dispersion. We then neglect the evanescent
BWs and derive closed-form expressions of the dispersion
curve and the quality factor for N = 1, 2, and 3 propagative
BWs. We evidence that BICs can only exist when at least two
BWs are propagative. It sets a cutoff frequency below which
no BIC can exist whatever the value of the slab thickness.
We finally validate the model by comparing its semianalytical
predictions to exact calculations.

A. Notations and general equations

Before building a multimode Fabry-Perot resonance in a
PhC slab of thickness h, we need to solve the problem of
a single interface between a semi-infinite PhC and a semi-
infinite homogeneous medium [see Fig. 3(a)]. We denote by
βi the propagation constant of the ith BW along the vertical
z direction. In a nonabsorbing PhC, βi is either purely real
(propagative wave) or purely imaginary (evanescent wave).
The number of propagative BWs depends on the geometry.
For example, for kx = 0, F = 0.6, and nd = 3.5, only up
to three BWs are propagative in the band a/λ < 0.6. Their
propagation constants are shown in Fig. 3(b), where we can
observe the second and third BW cutoffs at a/λ = 0.327 and
0.45, respectively. Note that the fundamental BW (largest
propagation constant, blue curve) has no cutoff and is prop-
agative regardless of the a/λ value. The corresponding field
profiles Ey(x) are shown in Fig. 3(c). The fundamental BW
is symmetric and the higher-order BWs have alternately an
antisymmetric or a symmetric field profile. For kx �= 0, the
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(a)

(d)

(b) (c)

FIG. 3. Multimode Fabry-Perot model. (a) Interface between a semi-infinite PhC and a homogeneous medium. The refractive index of the
homogeneous medium ns can be different from the index ngap inside the slits of the PhC. At the interface, the Bloch waves (characterized by
their propagation constants βi) propagating in the periodic medium are reflected with a reflection coefficient rii, cross reflected with a reflection
coefficient ri j , or transmitted with a transmission coefficient ti. (b) Normalized propagation constants of the BWs for F = 0.6 as a function of
the frequency at the � point (kx = 0) and at kx = 0.2a/(2π ). The cutoff frequencies of the second and third BWs are shown by vertical dashed
lines. (c) Electric-field profile |Ey(x)| of the three propagative BWs for a/λ = 0.526. (d) Principle of the multimode Fabry-Perot model. In
the spectral range of interest, up to three BWs can propagate back and forth inside the PhC slab, all other BWs being evanescent. Each BW
is transmitted in the surrounding medium with its own phase. The amplitude A of the plane wave propagating away (radiative leakage) results
from the interference between these three contributions.

cutoff frequencies vary with kx and the BWs are no longer
strictly symmetric nor antisymmetric.

As the ith BW is incident on an interface with a ho-
mogeneous medium, it is reflected with a reflection coef-
ficient rii. In addition, it is reflected into a different BW
with a cross-reflection coefficient ri j , and transmitted as a
propagative plane wave with a transmission coefficient ti.
The coefficients rii, ri j , and ti are the generalized Fresnel
coefficients for an interface between a homogeneous and a
periodic media. Note that we limit ourselves to the case
where a single plane wave is propagative in the homogeneous
medium, the zeroth diffraction order of the PhC slab. The en-
ergy contained in this plane wave corresponds to the radiative
leakage.

In a PhC slab of thickness h, the BWs are reflected at
the top and bottom interfaces. Thus, they propagate back and
forth inside the slab as illustrated in Fig. 3(d). We denote by
u+

i and u−
i the amplitudes of the up- and down-propagating

ith wave, respectively. The phase origin for the amplitude u+
i

(respectively u−
i ) is taken at the bottom interface (respectively

the top interface).
Leaky modes of a PhC slab are solutions of Maxwell’s

equations in the absence of an incident wave. If one considers
a finite number M of BWs (propagative and evanescent BWs),
the amplitudes u+

i and u−
i are related by

u+
i =

M∑

j=1

r jiu
−
j exp(iβ jh),

u−
i =

M∑

j=1

r jiu
+
j exp(iβ jh).

(1)

The number M of BWs is equal to the truncation rank of the
Fourier series in RCWA [52], M = 30 for the calculations
shown in Fig. 2. For the sake of simplicity, we consider a PhC
slab surrounded by the same homogeneous medium above and
below. The equations can be straightforwardly generalized to
the case of two different media (e.g., for a PhC slab lying
over a substrate [56]); two different families of reflection
coefficients rT

ji and rB
ji have to be considered [57].

Equations (1) can be rewritten in a matrix form

R(kx, λ)U = 0, (2)

where the vector U is built with the amplitudes u+
i and u−

i ,
U = [u+

1 , u−
1 , . . . , u+

M , u−
M]t , and the matrix R(kx, λ) contains

all reflections and cross-reflection coefficients. A leaky mode
is a nontrivial solution of this linear system of equations; it
corresponds to a pair (kx, λ̃) (with kx a real number and λ̃ a
complex number) that satisfies [33]

det[R(kx, λ̃)] = 0, (3)

with det being the determinant of a matrix. We calculate
rigorously with RCWA the parameters of a single interface
(βi, rii, ri j , ti), and thus the matrix R(kx, λ), as a function of
the wavelength for a fixed value of the wave vector kx. Then,
Eq. (3) can be solved, typically with an iterative procedure
such as the Newton algorithm or a different method using
a Padé approximation [53], to find the complex wavelength
λ̃ of the leaky mode. The dispersion curve and the quality
factor are then given, respectively, by a/Re(λ̃) = f (kx ) and
Q = Re(λ̃)/[2 Im(λ̃)].
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Regarding the radiative leakage, the amplitude of the out-
going propagative plane wave is given by

A =
M∑

j=1

t ju
+
j exp(iβ jh). (4)

The radiative leakage results from the interference of the BWs
amplitudes being transmitted by the interface. Therefore, the
leaky mode of the PhC slab is a BIC if, and only if, the
interference is perfectly destructive. One readily realizes the
crucial role of the slab thickness h in this mechanism since it
drives the value of the phase difference between the different
BWs.

Solving Eq. (3) for a large number M of BWs, hence
containing a bunch of evanescent waves, yields a rigorous and
exact result for the dispersion curve and quality factor. On the
other hand, since the period of the PhC slab is subwavelength,
neglecting all the evanescent BWs to keep only a small num-
ber N < M of propagative BWs drastically reduces the size of
the linear system in Eq. (1). Within this approximation, it is
possible to derive closed-form expressions for the dispersion
curve, the quality factor Q, and the radiative leakage A,
as shown hereafter. In particular, these expressions provide
analytical results with respect to the thickness h. Note that
each of the N propagative BWs is calculated rigorously with
2M + 1 Fourier terms.

B. Transverse resonance for N = 1 wave

Let us start with the simplest case N = 1 when a single
BW is propagative inside the PhC slab, all the other waves
being evanescent. Although self-evident, this case allows us to
introduce the main equations of the model. The single-mode
regime occurs when the period-to-wavelength ratio a/λ is
small, typically between the limit a/λ → 0 (quasistatic limit)
and the cutoff of the second BW. For the example in Fig. 3(b),
it corresponds to a/λ < 0.272 for all kx values from zero to
the light line.

For a single propagative BW, Eq. (3) simply reduces to the
usual resonance condition of a Fabry-Perot resonator

1 − r2
11 exp(2iβ1h) = 0 . (5)

With no further assumption, the complex wavelengths that
satisfy Eq. (5) have to be found numerically, typically with an
iterative algorithm. In order to derive closed-form expressions
of the dispersion curve and most of all of the quality factor, we
make two additional assumptions. We assume that (i) the qual-
ity factor of the resonance is large Q � 1, and (ii) the modulus
of r11 varies slowly with the wavelength over the resonance
bandwidth ∂|r11|/∂λ ≈ 0. The validity of these assumptions
will be discussed in Sec. III E. They are important to really
obtain closed-form expressions for the dispersion curve and
the quality factor. Without these assumptions, one has to solve
Eq. (5) iteratively for each value of the slab thickness and the
model is not analytic with respect to h.

With these two assumptions, an eigenmode of the PhC slab
corresponds to a BW that returns in phase after half a round
trip [58,59],

�T (λ0, kx ) = β1h + arg(r11) = pπ, (6)

where λ0 = Re(λ̃) and p is an integer. The phase �T is
the total phase accumulated by the BW after half a round
trip inside the slab. This phase-matching condition gives an
implicit definition of the dispersion curve. The quality factor
Q is given by [59,60]

Q = − λ0

1 − |r11|2
∂�T

∂λ
, (7)

where the derivative and the reflection r11 are taken at λ = λ0.
Within the Fabry-Perot model with N = 1 propagative

BW, the amplitude A of the radiated plane wave is simply
proportional to the BW amplitude inside the slab:

A = t1u+
1 exp(iβ1h). (8)

In this case, the leakage does not result from the interference
between several channels. It vanishes if, and only if, the
transmission t1 is strictly equal to zero. This, however, never
happens for symmetry reasons.1

The Fabry-Perot model allows us to draw an important
conclusion: no BIC can exist at a frequency where a single
BW is propagative. This result sets a spectral cutoff to this
existence of BICs [see Fig. 3(b)]. We emphasize that this
cutoff is independent of the slab thickness.

C. Transverse resonance for N = 2 waves

For larger period-to-wavelength ratios, the second BW,
which has an antisymmetric field profile, becomes propagative
[see Fig. 3(b)]. Let us start with the situation kx = 0. Since
the fundamental BW is symmetric whereas the second BW is
antisymmetric [see Fig. 3(c)], the cross reflections r12 and r21

are equal to zero and Eqs. (1) reduce to two uncoupled sets
of two equations each. As a consequence, leaky modes result
from a transverse resonance built either with the fundamental
BW alone or with the second BW alone. The dispersion curve
and the quality factor are given by Eqs. (6) and (7) with either
(β1, r11) or (β2, r22).

Because of the symmetry mismatch between the BW and
the propagative plane wave, |r22| = 1 and t2 = 0. Therefore,
the mode of the PhC slab that corresponds to a transverse
resonance built with the second BW alone is necessarily a BIC
whatever the geometrical parameters. In particular, varying
the slab thickness h shifts the dispersion curve according to
the phase-matching condition but the Q factor remains infinite
(since |r22| = 1) and this mode at kx = 0 is truly guided
with no radiative leakage. It is the aforementioned symmetry-
protected BIC, which results from symmetry incompatibility
(see Table I).

As we depart from the � point, the BWs are coupled since
r12 �= 0 and r21 �= 0. As a consequence, Eqs. (1) become a
set of four coupled equations and any transverse resonance
results from the interplay between both BWs. It is possible to
replace such two-wave resonator with the usual single-wave

1For Bloch-wave-to-plane-wave transmission ti to disappear due to
symmetry incompatibility, the Bloch wave must have an antisym-
metric field profile at kx = 0, in contrast to the symmetric profile
of the plane wave. Since the fundamental Bloch wave i = 1 has a
symmetric field profile at kx = 0, t1 has always a nonzero value.
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Fabry-Perot by introducing an effective reflection coefficient
reff [57]. The effective reflection fully includes the impact of
the second wave. For kx = 0, a leaky mode is a purely single-
wave transverse resonance built either with the fundamental
BW or with the second BW. When kx becomes nonzero, both
BWs are mixed but one keeps a larger contribution than the
other. For instance, for a band with a symmetry-protected BIC
at kx = 0 [green curves in Figs. 2(b) and 2(f)], |r11| < |r22| and
|r12| < |r22|. In that case, the second BW is dominant and we
incorporate the effect of the first BW in the effective reflection
coefficient. The resonance condition given by Eq. (3) becomes

1 − (
r (12)

eff

)2
exp(2iβ2h) = 0, (9)

where the effective reflection r (12)
eff is given by

r (12)
eff = r22 + αr11r21r12 exp(2iβ1h)

1 − αr21r12 exp [i(β1 + β2)h]
, (10)

with α = [1 − r2
11 exp(2iβ1h)]−1. The superscript (12) stands

for the fact that r (12)
eff includes the multiple cross reflections

between BWs 1 and 2. Note that for kx = 0, since r12 = r21 =
0, we recover r (12)

eff = r22. Details on the derivation of Eq. (9)
can be found in the Supplemental Material [56].

We can thus apply the usual equations of a Fabry-Perot
resonator provided that |r (12)

eff | varies smoothly with the wave-
length. The dispersion curve and the quality factor of a leaky
mode composed of two BWs are given by Eqs. (6) and (7)
by replacing β1 and r11 by β2 and r (12)

eff . The amplitude of the
radiated plane wave is now given by the superposition of both
BWs, A = t1u+

1 exp(iβ1h) + t2u+
2 exp(iβ2h). Similarly to the

resonance condition, an effective transmission coefficient can
be introduced,

A = t (12)
eff u+

2 exp(iβ2h), (11)

with

t (12)
eff = t2 + t1αr21eiβ1h

[
r (12)

eff eiβ2h + r11eiβ1h
]
. (12)

Again, for kx = 0, t (12)
eff = t2 since r21 = 0. One readily

realizes that the effective transmission can be canceled if
the second term in Eq. (12) is equal to −t2. In that case,
both BWs interfere destructively to cancel the overall leakage,
leading to the formation of a BIC. Figure 4 illustrates the
interference mechanism as a function of kx for different values
of the slab thickness. For kx = 0, t (12)

eff = t2 = 0 for symmetry
reasons. For kx �= 0, t (12)

eff is largely different from t2 due to
the impact of the first BW. The second cancellation of t (12)

eff is
due to destructive interferences between both BWs. The slab
thickness drives the phase difference between both BWs and
the wave vector that corresponds to destructive interference
increases with h.

The multimode Fabry-Perot model allows us to understand
that the resonance-trapped BIC labeled (2) in Figs. 2(f)–2(h)
is formed by the interference between the first and the second
BW, with a dominant contribution from the second BW. It is
because the latter has an antisymmetric field profile for kx = 0
and an almost antisymmetric profile for kx �= 0 that the BIC
labeled (2) in Figs. 2(f)–2(h) has a quasiantisymmetric field
profile [see Fig. 2(h) and Table I].

FIG. 4. Effective transmission t (12)
eff (solid lines) for N = 2 prop-

agative BWs in a 1D symmetric PhC slab with F = 0.6. The first
cancellation of teff for kx = 0 results from symmetry arguments. The
second cancellation for kx �= 0 results from destructive interferences
between both BWs and varies with the slab thickness. The frequency
follows the dispersion curve of the leaky mode shown by the green
curve in Fig. 2(f). Dashed lines show the transmission coefficent
t2 alone and evidence the impact of the first BW on the radiative
leakage.

Note that Eqs (9)–(12) have been written in the case where
the second BW is dominant over the first one. In the case
where the first BW is dominant over the second one, we
have 1 − r2

11 exp(2iβ1h) ≈ 0 and the coefficient α becomes
extremely large. Calculations are thus more stable if we keep
the first BW and incorporate the second BW into the effective
reflection. In that case, the subscripts 1 and 2 have simply to
be inverted in Eqs. (9) and (10).

D. Transverse resonance for N = 3 waves

As the period-to-wavelength ratio is further increased, the
third BW becomes propagative [see Fig. 3(b)]. For kx = 0 and
F = 0.6, this corresponds to a/λ > 0.45. In that case, Eqs. (1)
become a 6 × 6 system. Although more tedious, it is still
possible to replace the complex interplay between the three
BWs by effective reflection and transmission coefficients.

As for N = 2, let us start the discussion with the case kx =
0. At the � point, the first and third BWs have a symmetric
field profile while the second BW is antisymmetric. The latter
is thus decoupled from BWs 1 and 3. Even if three BWs
are propagative, the leaky modes of the PhC slab are either
formed by the second BW alone (symmetry-protected BIC)
or by the interplay between first and third BWs. In that case,
we can apply the results from previous section by introducing
an effective reflection coefficient r (13)

eff instead of r (12)
eff . Such a

leaky mode formed by BWs 1 and 3 is a BIC if the interference
leads to |r (13)

eff | = 1 and t (13)
eff = 0. This is the case of the blue

mode labeled (5) in Figs. 2(f)–2(h).
For kx �= 0, the three BWs are coupled and we introduce

an effective reflection coefficient r (123)
eff , whose closed-form
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expression can be found in the Appendix. Similarly to the
N = 2 case, we keep the BW that has the most important
contribution and incorporate the impact of the two other BWs
inside the effective reflection. For a band with a symmetry-
protected BIC at kx = 0, the dominant BW is the second one;
for a band without symmetry-protected BIC at kx = 0, the
dominant BW is usually the third one. In the latter case, the
resonance condition given by Eq. (3) simply becomes

1 − (
r (123)

eff

)2
exp(2iβ3h) = 0, (13)

where r (123)
eff is an effective reflection coefficient whose expres-

sion is given in the Appendix. Details on the derivation of
Eq. (13) can be found in the Supplemental Material [56]. We
can thus apply the usual equations of a Fabry-Perot resonator,
provided that |r (123)

eff | varies smoothly with the wavelength.
The dispersion curve and quality factor of a leaky mode
composed of three BWs are given by Eqs. (6) and (7) by
replacing β1 and r11 by β3 and r (123)

eff .
The multimode Fabry-Perot model with N = 3 propaga-

tive BWs allows for the understanding of the formation of
the symmetric resonance-trapped BICs at kx = 0 and of the
quasisymmetric resonance-trapped BICs at kx �= 0 identified
in Table I and Figs. 2. The first ones arise from the interference
between two symmetric BWs, the first and third ones, which
are not coupled to antisymmetric BWs at kx = 0. The second
ones are formed by the interference between three BWs (first,
second, and third) with a dominant contribution from the third
BW, whose field profile is almost symmetric for kx �= 0.

Finally, the multimode Fabry-Perot model used either with
N = 2 or 3 propagative BWs allows for the understanding of
all four types of BICs observed in Fig. 2 and summarized in
Table I.

E. Model validation and discussion

To validate the multimode Fabry-Perot model, we con-
sider the symmetric 1D PhC slab of Fig. 2(e). We apply
the model, either with N = 2 or 3 BWs, and calculate the
dispersion curves and quality factors of the different leaky
modes supported by the PhC slab. The model prediction
for the dispersion curves (not shown here) and for the Q
factors (see Fig. 5) are in quantitative agreement with the
rigorous RCWA calculations, which takes into account a large
number of evanescent BWs (M = 30). It is noteworthy that
the semianalytical model accurately predicts all four types of
BICs supported by a 1D symmetric PhC slab and summarized
in Table I.

From a numerical point of view, the analyticity of the
multimode Fabry-Perot model relies on Eqs. (6) and (7). In
practice, one simply needs to calculate numerically with the
RCWA the single-interface quantities defined in Fig. 3 (βi,
rii, and ri j) over the spectral range of interest. Then, one can
apply Eq. (6) for any value of the slab thickness h to find
analytically the eigenfrequencies λ0 for a given value of the
integer p. Finally, Eq. (7) gives the corresponding quality
factor with no further calculations. The model is therefore
extremely efficient to investigate the dynamics of BICs with
the slab thickness.

The model also provides some physical insight into the
nature of the BICs, which before we could only qualitatively

0 0.09 0.18 0.27 0.36 0.45
kxa/(2 )

101

103

105

107

109

Q

FIG. 5. Quality factors of three leaky modes supported by a 1D
symmetric PhC slab with nd = 3.5, F = 0.6, and h = 1.62a [see
Fig. 2(e)]. The predictions of the multimode Fabry-Perot model
(solid lines) are in excellent agreement with the exact calculations
(markers). The model accurately reproduces the existence and po-
sitions of all four types of BICs. The discrepancies between the
red curve and the yellow circles for kx ≈ 0.215(2π )/a and kx ≈
0.3(2π )/a are explained in the text.

infer from the field profiles. The green mode in Fig. 2(f) is
mostly given by the second antisymmetric BW, with a small
contribution of the fundamental BW for kx �= 0. To calculate
it we used the phase-matching condition (9) with r (12)

eff from
Eq. (10). The blue mode in Fig. 2(f) is dominated by the third
BW with a small impact of the first and second BWs. For this
mode, r (123)

eff with the phase factor exp(iβ3h) was used [see
Eq. (13)].

We can also assert that the BIC labeled (5) in Fig. 2(f)
is fundamentally different from the ones labeled (1) and (3),
which are also lying at the � point. Indeed, it is a resonance-
trapped BIC resulting from the destructive interference be-
tween the first and third BWs whereas BICs (1) and (3) are
symmetry-protected BICs. Similarly, the red leaky mode is
also formed by three BWs. However, it couples with a differ-
ent leaky mode around kx ≈ 0.3(2π )/a [see the anticrossing
between the red and black dispersion curves in Fig. 2(f)].
Because of this coupling, the red leaky mode changes its sym-
metry from the quasiantisymmetric one [for kx < 0.3(2π )/a]
to the quasisymmetric one [for kx > 0.3(2π )/a], which is
reflected in the BIC field profiles labeled (3) and (4) in
Fig. 2(h). In this case, different phase-matching equations
have to be used for the left and right parts of the dispersion
curve. Basically, indices 2 and 3 have to be interchanged in
the expression of r (123)

eff and in the phase-matching condition
to reflect the fact that on one side of the coupling region
the second BW is dominant while on the other side the third
BW is dominant. Then, r (123)

eff becomes equal to r22 at kx = 0
and gives rise to the symmetry-protected BIC labeled (3). In
contrast, the other BIC at kx ≈ 0.36(2π )/a stems from the
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interference of three BWs, the third (symmetric) being the
dominant one.

This aspect of the model can be a source of erroneous
results. The algebraic manipulations that lead to the definition
of an effective reflection assume that some quantities [such as
α−1 in Eq. (10)] are different from zero. As a consequence,
some roots of the two- or three-wave resonance condition are
not contained in the single-wave resonance condition given by
Eqs. (9) and (13). The phase-matching condition gives thus a
crossing of the dispersion curves instead of an anticrossing.
This is the reason why the model fails in Fig. 5 for the red
curve around kx ≈ 0.3(2π )/a. This point is further illustrated
in the Supplemental Material [56].

Finally, we would like to clarify the obviously erroneous
feature of the red curve around kx ≈ 0.215(2π )/a. As men-
tioned in previous sections, the resonance condition and qual-
ity factor can be written in the form of Eqs. (6) and (7)
only under the assumption that the modulus of the reflection
coefficient varies smoothly with the wavelength. However,
this assumption is not always valid when we deal with effec-
tive reflection coefficients. The appearance of an erroneous
resonance in the dispersion curve predicted with the Fabry-
Perot model (see the red solid curve in Fig. 5) is due to this
situation: |r (123)

eff | experiences a sudden resonancelike variation
as a function of the wavelength [56] and Eqs. (6) and (7) lose
their accuracy.

IV. DYNAMICS OF BICS WITH THE SLAB THICKNESS

Thanks to the analyticity of the model with respect to the
slab thickness, we can apply it for a large number of h values
to observe the dynamics of BICs with no additional RCWA
calculations. Figure 6 shows the variation of the quality factor
of a leaky mode of the PhC slab, in the spectral range between
the second and third BW cutoffs, as a function of the thickness
h/a and the wave vector kxa/(2π ). We have chosen to follow
the dynamics of the mode represented with the green curve in
Figs. 2(f) and 2(g).

We can see three branches (shown by white arrows) where
r (12)

eff equals exactly 1, leading to an infinite-Q factor. The first
branch is vertical at kx = 0 and corresponds to the symmetry-
protected BIC, which exists regardless of the value of h.
The two other branches show the (h, kx ) values for which
the interference between the first and second BWs is per-
fectly destructive and results in the formation of a resonance-
trapped BIC. The dashed lines show the positions of similar
resonance-trapped BICs for p = 0 in Eq. (6). They belong to
the dispersion curve of a different leaky mode. For similar
results in the spectral band where three BWs are propagative,
we refer the reader to the Supplemental Material [56].

V. ASYMMETRIC ONE-DIMENSIONAL PHOTONIC
CRYSTAL SLABS

We finally use the multimode Fabry-Perot model to study
the behavior of the BICs under broken mirror symmetry. We
consider a 1D PhC slab with a vertical mirror symmetry but
no horizontal mirror symmetry as depicted in Fig. 1(b). The
asymmetry parameter s is the size of the air gap that divides
the dielectric ridge into a bigger and a smaller parts of sizes

FIG. 6. Quality factor (logarithmic scale) of the green leaky
mode in Fig. 2(f) as a function of h/a and kxa/(2π ). The wavelength
range specified during the calculations is such that only the first two
BWs are propagating. The integer p from Eq. (6) is set to 1, which
corresponds to the green line in Figs. 2(f) and 2(g). Three branches
(yellow-white color) showing an infinite Q factor, and thus a BIC,
are visible and shown by white arrows. Dashed white lines indicate
the positions of infinite-Q branches for p = 0, which correspond to a
different leaky mode also formed by the first and second BWs.

5/6Fa and 1/6Fa, respectively. Note that the total filling
factor in dielectric material is preserved, F = 0.6. Recently,
a study of a PhC slab with a slot in different positions,
with a fixed thickness and normal incidence angle, has been
published [32]. We evidence that the symmetry-protected
BICs that exist in symmetric structures at the � point of the
dispersion diagram becomes a resonance-trapped BIC when
the horizontal mirror symmetry is broken, but only for specific
values of the slab thickness.

Figure 7 shows the variation of the Q factor of a leaky mode
in different situations. In Fig. 7(a) we plot Q as a function
of the slab thickness h and the asymmetry parameter s for
a fixed kx = 0 in a spectral range where only two BWs are
propagative. We readily observe two branches that correspond
to a diverging Q, and thus a BIC. The vertical branch for s = 0
corresponds to the symmetry-protected BIC. As the horizontal
symmetry is broken (s �= 0), the symmetry-protected BIC
cannot exist anymore. Nevertheless, for specific values of the
pair (h, s), it becomes a resonance-trapped BIC, as evidenced
by the second white branch in Fig. 7. Under the broken
symmetry, r12 no longer vanishes for kx = 0, which allows us
to observe this trajectory of a resonance-trapped BIC.

Figure 7(b) displays the Q factor as a function of h and s
for kx �= 0. In that case, a BIC can only exist in symmetric
structures for s = 0; it is the resonance-trapped BIC labeled
(2) in Fig. 2(f). This BIC disappears (Q < 109) when the
symmetry is broken. Lastly, Fig. 7(c) displays the Q factor
of the same leaky mode as a function of h and kx with a
fixed asymmetry parameter s = 0.05a. A resonance-trapped
BIC exists for kx = 0 [the one shown in Fig. 7(a)] and
disappears for kx �= 0. These leaky modes with a finite but
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FIG. 7. Quality factor (logarithmic scale) for an asymmetric PhC
slabs with two propagative BWs. (a) Q factor as a function of the
slab thickness h/a and the asymmetry parameter s/a for kx = 0. The
leaky mode is calculated with p = 1 in Eq. (6). A BIC (diverging
quality factor) is clearly visible whatever the value of the asymmetry
parameter. It is a symmetry-protected BIC for s = 0 (r12 = 0 and
|r22| = 1) but a resonance-trapped BIC for s �= 0 (r12 �= 0, |r22| < 1,
and |r (12)

eff | = 1). The dashed white line indicates the position of
a similar BIC for p = 0 and the dashed purple line indicates the
position of a BIC formed by three BWs with p = 0. (b) Same as
(a), but for kx ≈ 0.235(2π/a). (c) Q factor as a function of h/a
and kxa/(2π ) for s = 0.05a. Color scale and other optogeometric
parameters are the same for all three subfigures.

very high-Q factor are sometimes referred to as quasi-BICs
in the literature [50,51].

In summary, resonance-trapped BICs can exist in asym-
metric 1D PhC slabs with a broken horizontal symmetry, but
only for kx = 0.

VI. CONCLUSION

We have used a multimode Fabry-Perot model to calculate
the dispersion curves and the quality factors of leaky modes
supported by 1D symmetric and asymmetric PhC slabs. Leaky
modes are transverse Fabry-Perot resonances composed of
a few propagative Bloch waves bouncing back and forth
vertically inside the slab. This multimode Fabry-Perot model,
which does not rely on a perturbative approach, accurately
predicts the existence of BICs and their positions in the pa-
rameter space regardless of the refractive index contrast. The
model equally applies to symmetry-protected BICs (absence
of leakage is due to symmetry incompatibility between a sin-

gle BW composing the mode and the radiative plane waves)
and resonance-trapped BICs (radiative leakage accidentally
disappears because the contributions of several BWs interfere
destructively).

The multimode Fabry-Perot model allows us to show that,
regardless of the slab thickness, BICs cannot exist below
a cutoff frequency, which is related to the existence of the
second-order Bloch wave in the photonic crystal. In other
words, BICs cannot exist in the homogenization regime.
Thanks to the semianalyticity of the model, we investigate
the dynamics of BICs with the slab thickness in symmetric
and asymmetric photonic crystal slabs. Our calculations show
that resonance-trapped BICs can exist in asymmetric 1D PhC
slabs with a broken horizontal symmetry, but only for kx = 0.
We evidence that the symmetry-protected BICs that exist in
symmetric structures at the � point of the dispersion diagram
can still exist when the horizontal mirror symmetry is broken,
but only for specific values of the slab thickness.

We have considered throughout the paper a filling factor
F = 0.6. The predictions of the multimode Fabry-Perot model
remain as accurate for different values of F . The model can
also be applied to 1D PhC slabs in TM polarization and to
2D PhC slabs without additional derivations. All equations
presented in the paper are independent of the geometry, pro-
vided that the refractive index modulation presents vertical
side walls. The only step that depends on the geometry is
the numerical calculation of the propagation constants βi and
the reflection coefficients ri j [see Fig. 3(a)]. This calculation
can be done with a RCWA code [46]. Since the multimode
Fabry-Perot model yields fast yet accurate predictions of the
BIC location in the parameter space and provides a better
understanding of the physical mechanisms that lead to the BIC
formation, we think that it can become an important tool for
designing PhC devices relying on the existence of a BIC.

APPENDIX A: EXPRESSION OF r(123)
eff

The effective reflection coefficient for N = 3 propagative
Bloch waves used in Eq. (13) has the following expression:

r (123)
eff exp(iβ3h) = r (13)

eff exp(iβ3h) + R(23)
 + δ13γ

1 − R(23)γ − δ13

, (A1)

with


 = α
(12)
eff R(32)r (12)

eff exp(iβ2h) + α
(12)
eff δ12, (A2)

γ = α
(12)
eff δ12r (12)

eff exp(iβ2h) + α
(12)
eff R(32), (A3)

R(23) = r23 + αr11r13r21 exp(2iβ1h)

1 − αr13r31 exp [i(β1 + β3)h]
exp(iβ2h), (A4)

δ12 = αr12r31 exp [i(β1 + β3)h]

1 − αr12r21 exp [i(β1 + β2)h]
, (A5)

α
(12)
eff = [

1 − (
r (12)

eff

)2
exp(2iβ2h)

]−1
, (A6)

α = [
1 − r2

11 exp(2iβ1h)
]−1

. (A7)
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In these expressions, the coefficient R(32) has the same expression as R(23) but with indices 2 and 3 swapped. The coefficient δ13

can be deduced from δ12 by replacing the index 2 by 3. The effective reflection coefficients r (1 j)
eff have the same expression as in

Eq. (10) with j = 2, 3:

r (1 j)
eff = r j j + αr11r j1r1 j exp(2iβ1h)

1 − αr j1r1 j exp[i(β1 + β j )h]
. (A8)

More details on the derivation of Eq. (A1) can be found in the Supplemental Material [56].
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