-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathtorch_core.py
433 lines (361 loc) · 18.9 KB
/
torch_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
"Utility functions to help deal with tensors"
from .imports.torch import *
from .core import *
from collections import OrderedDict
from torch.nn.parallel import DistributedDataParallel
AffineMatrix = Tensor
BoolOrTensor = Union[bool,Tensor]
FloatOrTensor = Union[float,Tensor]
IntOrTensor = Union[int,Tensor]
ItemsList = Collection[Union[Tensor,ItemBase,'ItemsList',float,int]]
LambdaFunc = Callable[[Tensor],Tensor]
LayerFunc = Callable[[nn.Module],None]
ModuleList = Collection[nn.Module]
NPArray = np.ndarray
OptOptimizer = Optional[optim.Optimizer]
ParamList = Collection[nn.Parameter]
Rank0Tensor = NewType('OneEltTensor', Tensor)
SplitFunc = Callable[[nn.Module], List[nn.Module]]
SplitFuncOrIdxList = Union[Callable, Collection[ModuleList]]
TensorOrNumber = Union[Tensor,Number]
TensorOrNumList = Collection[TensorOrNumber]
TensorImage = Tensor
TensorImageSize = Tuple[int,int,int]
Tensors = Union[Tensor, Collection['Tensors']]
Weights = Dict[str,Tensor]
AffineFunc = Callable[[KWArgs], AffineMatrix]
HookFunc = Callable[[nn.Module, Tensors, Tensors], Any]
LogitTensorImage = TensorImage
LossFunction = Callable[[Tensor, Tensor], Rank0Tensor]
MetricFunc = Callable[[Tensor,Tensor],TensorOrNumber]
MetricFuncList = Collection[MetricFunc]
MetricsList = Collection[TensorOrNumber]
OptLossFunc = Optional[LossFunction]
OptMetrics = Optional[MetricsList]
OptSplitFunc = Optional[SplitFunc]
PixelFunc = Callable[[TensorImage, ArgStar, KWArgs], TensorImage]
LightingFunc = Callable[[LogitTensorImage, ArgStar, KWArgs], LogitTensorImage]
fastai_types = {
AnnealFunc:'AnnealFunc', ArgStar:'ArgStar', BatchSamples:'BatchSamples',
FilePathList:'FilePathList', Floats:'Floats', ImgLabel:'ImgLabel', ImgLabels:'ImgLabels', KeyFunc:'KeyFunc',
KWArgs:'KWArgs', ListOrItem:'ListOrItem', ListRules:'ListRules', ListSizes:'ListSizes',
NPArrayableList:'NPArrayableList', NPArrayList:'NPArrayList', NPArrayMask:'NPArrayMask', NPImage:'NPImage',
OptDataFrame:'OptDataFrame', OptListOrItem:'OptListOrItem', OptRange:'OptRange', OptStrTuple:'OptStrTuple',
OptStats:'OptStats', PathOrStr:'PathOrStr', PBar:'PBar', Point:'Point', Points:'Points', Sizes:'Sizes',
SplitArrayList:'SplitArrayList', StartOptEnd:'StartOptEnd', StrList:'StrList', Tokens:'Tokens',
OptStrList:'OptStrList', AffineMatrix:'AffineMatrix', BoolOrTensor:'BoolOrTensor', FloatOrTensor:'FloatOrTensor',
IntOrTensor:'IntOrTensor', ItemsList:'ItemsList', LambdaFunc:'LambdaFunc',
LayerFunc:'LayerFunc', ModuleList:'ModuleList', OptOptimizer:'OptOptimizer', ParamList:'ParamList',
Rank0Tensor:'Rank0Tensor', SplitFunc:'SplitFunc', SplitFuncOrIdxList:'SplitFuncOrIdxList',
TensorOrNumber:'TensorOrNumber', TensorOrNumList:'TensorOrNumList', TensorImage:'TensorImage',
TensorImageSize:'TensorImageSize', Tensors:'Tensors', Weights:'Weights', AffineFunc:'AffineFunc',
HookFunc:'HookFunc', LogitTensorImage:'LogitTensorImage', LossFunction:'LossFunction', MetricFunc:'MetricFunc',
MetricFuncList:'MetricFuncList', MetricsList:'MetricsList', OptLossFunc:'OptLossFunc', OptMetrics:'OptMetrics',
OptSplitFunc:'OptSplitFunc', PixelFunc:'PixelFunc', LightingFunc:'LightingFunc', IntsOrStrs:'IntsOrStrs',
PathLikeOrBinaryStream:'PathLikeOrBinaryStream'
}
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)
bias_types = (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose1d, nn.ConvTranspose2d, nn.ConvTranspose3d)
def is_pool_type(l:Callable): return re.search(r'Pool[123]d$', l.__class__.__name__)
no_wd_types = bn_types + (nn.LayerNorm,)
defaults.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
AdamW = partial(optim.Adam, betas=(0.9,0.99))
#Monkey-patch `torch.cuda.set_device` so that it updates `defaults.device`
_old_torch_cuda_set_device = torch.cuda.set_device
def _new_torch_cuda_set_device(device):
_old_torch_cuda_set_device(device)
defaults.device = torch.device('cuda', device) if isinstance(device, int) else device
torch.cuda.set_device = _new_torch_cuda_set_device
def tensor(x:Any, *rest)->Tensor:
"Like `torch.as_tensor`, but handle lists too, and can pass multiple vector elements directly."
if len(rest): x = (x,)+rest
# XXX: Pytorch bug in dataloader using num_workers>0; TODO: create repro and report
if is_listy(x) and len(x)==0: return tensor(0)
res = torch.tensor(x) if is_listy(x) else as_tensor(x)
if res.dtype is torch.int32:
warn('Tensor is int32: upgrading to int64; for better performance use int64 input')
return res.long()
return res
class Module(nn.Module, metaclass=PrePostInitMeta):
"Same as `nn.Module`, but no need for subclasses to call `super().__init__`"
def __pre_init__(self): super().__init__()
def __init__(self): pass
def np_address(x:np.ndarray)->int:
"Address of `x` in memory."
return x.__array_interface__['data'][0]
def to_detach(b:Tensors, cpu:bool=True):
"Recursively detach lists of tensors in `b `; put them on the CPU if `cpu=True`."
def _inner(x, cpu=True):
if not isinstance(x,Tensor): return x
x = x.detach()
return x.cpu() if cpu else x
return recurse(_inner, b, cpu=cpu)
def to_data(b:ItemsList):
"Recursively map lists of items in `b ` to their wrapped data."
return recurse(lambda x: x.data if isinstance(x,ItemBase) else x, b)
def to_cpu(b:ItemsList):
"Recursively map lists of tensors in `b ` to the cpu."
return recurse(lambda x: x.cpu() if isinstance(x,Tensor) else x, b)
def to_half(b:Collection[Tensor])->Collection[Tensor]:
"Recursively map lists of tensors in `b ` to FP16."
return recurse(lambda x: x.half() if x.dtype not in [torch.int64, torch.int32, torch.int16] else x, b)
def to_float(b:Collection[Tensor])->Collection[Tensor]:
"Recursively map lists of tensors in `b ` to FP16."
return recurse(lambda x: x.float() if x.dtype not in [torch.int64, torch.int32, torch.int16] else x, b)
def to_device(b:Tensors, device:torch.device):
"Recursively put `b` on `device`."
device = ifnone(device, defaults.device)
return recurse(lambda x: x.to(device, non_blocking=True), b)
def data_collate(batch:ItemsList)->Tensor:
"Convert `batch` items to tensor data."
return torch.utils.data.dataloader.default_collate(to_data(batch))
def requires_grad(m:nn.Module, b:Optional[bool]=None)->Optional[bool]:
"If `b` is not set return `requires_grad` of first param, else set `requires_grad` on all params as `b`"
ps = list(m.parameters())
if not ps: return None
if b is None: return ps[0].requires_grad
for p in ps: p.requires_grad=b
def has_params(m:nn.Module)->bool:
"Check if `m` has at least one parameter"
return len(list(m.parameters())) > 0
def trainable_params(m:nn.Module)->ParamList:
"Return list of trainable params in `m`."
res = filter(lambda p: p.requires_grad, m.parameters())
return res
def children(m:nn.Module)->ModuleList:
"Get children of `m`."
return list(m.children())
def num_children(m:nn.Module)->int:
"Get number of children modules in `m`."
return len(children(m))
def range_children(m:nn.Module)->Iterator[int]:
"Return iterator of len of children of `m`."
return range(num_children(m))
class ParameterModule(Module):
"Register a lone parameter `p` in a module."
def __init__(self, p:nn.Parameter): self.val = p
def forward(self, x): return x
def children_and_parameters(m:nn.Module):
"Return the children of `m` and its direct parameters not registered in modules."
children = list(m.children())
children_p = sum([[id(p) for p in c.parameters()] for c in m.children()],[])
for p in m.parameters():
if id(p) not in children_p: children.append(ParameterModule(p))
return children
flatten_model = lambda m: sum(map(flatten_model,children_and_parameters(m)),[]) if num_children(m) else [m]
def first_layer(m:nn.Module)->nn.Module:
"Retrieve first layer in a module `m`."
return flatten_model(m)[0]
def last_layer(m:nn.Module)->nn.Module:
"Retrieve last layer in a module `m`."
return flatten_model(m)[-1]
def split_model_idx(model:nn.Module, idxs:Collection[int])->ModuleList:
"Split `model` according to the indexes in `idxs`."
layers = flatten_model(model)
if idxs[0] != 0: idxs = [0] + idxs
if idxs[-1] != len(layers): idxs.append(len(layers))
return [nn.Sequential(*layers[i:j]) for i,j in zip(idxs[:-1],idxs[1:])]
def split_model(model:nn.Module=None, splits:Collection[Union[nn.Module,ModuleList]]=None):
"Split `model` according to the layers in `splits`."
splits = listify(splits)
if isinstance(splits[0], nn.Module):
layers = flatten_model(model)
idxs = [layers.index(first_layer(s)) for s in splits]
return split_model_idx(model, idxs)
return [nn.Sequential(*s) for s in splits]
def get_param_groups(layer_groups:Collection[nn.Module])->List[List[nn.Parameter]]:
return [sum([list(trainable_params(c)) for c in l.children()], []) for l in layer_groups]
def split_no_wd_params(layer_groups:Collection[nn.Module])->List[List[nn.Parameter]]:
"Separate the parameters in `layer_groups` between `no_wd_types` and bias (`bias_types`) from the rest."
split_params = []
for l in layer_groups:
l1,l2 = [],[]
for c in l.children():
if isinstance(c, no_wd_types): l2 += list(trainable_params(c))
elif isinstance(c, bias_types):
bias = c.bias if hasattr(c, 'bias') else None
l1 += [p for p in trainable_params(c) if not (p is bias)]
if bias is not None: l2.append(bias)
else: l1 += list(trainable_params(c))
#Since we scan the children separately, we might get duplicates (tied weights). We need to preserve the order
#for the optimizer load of state_dict
l1,l2 = uniqueify(l1),uniqueify(l2)
split_params += [l1, l2]
return split_params
def set_bn_eval(m:nn.Module)->None:
"Set bn layers in eval mode for all recursive children of `m`."
for l in m.children():
if isinstance(l, bn_types) and not next(l.parameters()).requires_grad:
l.eval()
set_bn_eval(l)
def batch_to_half(b:Collection[Tensor])->Collection[Tensor]:
"Set the input of batch `b` to half precision."
return [to_half(b[0]), b[1]]
def bn2float(module:nn.Module)->nn.Module:
"If `module` is batchnorm don't use half precision."
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module.float()
for child in module.children(): bn2float(child)
return module
def model2half(model:nn.Module)->nn.Module:
"Convert `model` to half precision except the batchnorm layers."
return bn2float(model.half())
def init_default(m:nn.Module, func:LayerFunc=nn.init.kaiming_normal_)->nn.Module:
"Initialize `m` weights with `func` and set `bias` to 0."
if func:
if hasattr(m, 'weight'): func(m.weight)
if hasattr(m, 'bias') and hasattr(m.bias, 'data'): m.bias.data.fill_(0.)
return m
def cond_init(m:nn.Module, init_func:LayerFunc):
"Initialize the non-batchnorm layers of `m` with `init_func`."
if (not isinstance(m, bn_types)) and requires_grad(m): init_default(m, init_func)
def apply_leaf(m:nn.Module, f:LayerFunc):
"Apply `f` to children of `m`."
c = children(m)
if isinstance(m, nn.Module): f(m)
for l in c: apply_leaf(l,f)
def apply_init(m, init_func:LayerFunc):
"Initialize all non-batchnorm layers of `m` with `init_func`."
apply_leaf(m, partial(cond_init, init_func=init_func))
def in_channels(m:nn.Module) -> List[int]:
"Return the shape of the first weight layer in `m`."
for l in flatten_model(m):
if hasattr(l, 'weight'):
return l.weight.shape[1] * l.groups if hasattr(l, 'groups') else l.weight.shape[1]
raise Exception('No weight layer')
class ModelOnCPU():
"A context manager to evaluate `model` on the CPU inside."
def __init__(self, model:nn.Module): self.model = model
def __enter__(self):
self.device = one_param(self.model).device
return self.model.cpu()
def __exit__(self, type, value, traceback):
self.model = self.model.to(self.device)
class NoneReduceOnCPU():
"A context manager to evaluate `loss_func` with none reduce and weights on the CPU inside."
def __init__(self, loss_func:LossFunction):
self.loss_func,self.device,self.old_red = loss_func,None,None
def __enter__(self):
if hasattr(self.loss_func, 'weight') and self.loss_func.weight is not None:
self.device = self.loss_func.weight.device
self.loss_func.weight = self.loss_func.weight.cpu()
if hasattr(self.loss_func, 'reduction'):
self.old_red = getattr(self.loss_func, 'reduction')
setattr(self.loss_func, 'reduction', 'none')
return self.loss_func
else: return partial(self.loss_func, reduction='none')
def __exit__(self, type, value, traceback):
if self.device is not None: self.loss_func.weight = self.loss_func.weight.to(self.device)
if self.old_red is not None: setattr(self.loss_func, 'reduction', self.old_red)
def model_type(dtype):
"Return the torch type corresponding to `dtype`."
return (torch.float32 if np.issubdtype(dtype, np.floating) else
torch.int64 if np.issubdtype(dtype, np.integer)
else None)
def np2model_tensor(a):
"Tranform numpy array `a` to a tensor of the same type."
dtype = model_type(a.dtype)
res = as_tensor(a)
if not dtype: return res
return res.type(dtype)
def _pca(x, k=2, center=True):
"Compute PCA of `x` with `k` dimensions."
if center: x = x-torch.mean(x,0)
U,S,V = torch.svd(x.t())
return torch.mm(x,U[:,:k])
torch.Tensor.pca = _pca
def trange_of(x):
"Create a tensor from `range_of(x)`."
return torch.arange(len(x))
def to_np(x):
"Convert a tensor to a numpy array."
return x.data.cpu().numpy()
def grab_idx(x,i,batch_first:bool=True):
"Grab the `i`-th batch in `x`, `batch_first` stating the batch dimension."
if batch_first: return ([o[i].cpu() for o in x] if is_listy(x) else x[i].cpu())
else: return ([o[:,i].cpu() for o in x] if is_listy(x) else x[:,i].cpu())
def logit(x:Tensor)->Tensor:
"Logit of `x`, clamped to avoid inf."
x = x.clamp(1e-7, 1-1e-7)
return -(1/x-1).log()
def logit_(x:Tensor)->Tensor:
"Inplace logit of `x`, clamped to avoid inf"
x.clamp_(1e-7, 1-1e-7)
return (x.reciprocal_().sub_(1)).log_().neg_()
def set_all_seed(seed:int)->None:
"Sets the seeds for all pseudo random generators in fastai lib"
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
def uniform(low:Number, high:Number=None, size:Optional[List[int]]=None)->FloatOrTensor:
"Draw 1 or shape=`size` random floats from uniform dist: min=`low`, max=`high`."
if high is None: high=low
return random.uniform(low,high) if size is None else torch.FloatTensor(*listify(size)).uniform_(low,high)
def log_uniform(low, high, size:Optional[List[int]]=None)->FloatOrTensor:
"Draw 1 or shape=`size` random floats from uniform dist: min=log(`low`), max=log(`high`)."
res = uniform(log(low), log(high), size)
return exp(res) if size is None else res.exp_()
def rand_bool(p:float, size:Optional[List[int]]=None)->BoolOrTensor:
"Draw 1 or shape=`size` random booleans (`True` occuring with probability `p`)."
return uniform(0,1,size)<p
def uniform_int(low:int, high:int, size:Optional[List[int]]=None)->IntOrTensor:
"Generate int or tensor `size` of ints between `low` and `high` (included)."
return random.randint(low,high) if size is None else torch.randint(low,high+1,size)
def one_param(m: nn.Module)->Tensor:
"Return the first parameter of `m`."
return next(m.parameters())
def try_int(o:Any)->Any:
"Try to convert `o` to int, default to `o` if not possible."
# NB: single-item rank-1 array/tensor can be converted to int, but we don't want to do this
if isinstance(o, (np.ndarray,Tensor)): return o if o.ndim else int(o)
if isinstance(o, Sized) or getattr(o,'__array_interface__',False): return o
try: return int(o)
except: return o
def get_model(model:nn.Module):
"Return the model maybe wrapped inside `model`."
return model.module if isinstance(model, (DistributedDataParallel, nn.DataParallel)) else model
def flatten_check(out:Tensor, targ:Tensor) -> Tensor:
"Check that `out` and `targ` have the same number of elements and flatten them."
out,targ = out.contiguous().view(-1),targ.contiguous().view(-1)
assert len(out) == len(targ), f"Expected output and target to have the same number of elements but got {len(out)} and {len(targ)}."
return out,targ
#Monkey-patch nn.DataParallel.reset
def _data_parallel_reset(self):
if hasattr(self.module, 'reset'): self.module.reset()
nn.DataParallel.reset = _data_parallel_reset
def remove_module_load(state_dict):
"""create new OrderedDict that does not contain `module.`"""
new_state_dict = OrderedDict()
for k, v in state_dict.items(): new_state_dict[k[7:]] = v
return new_state_dict
def num_distrib():
"Return the number of processes in distributed training (if applicable)."
return int(os.environ.get('WORLD_SIZE', 0))
def rank_distrib():
"Return the distributed rank of this process (if applicable)."
return int(os.environ.get('RANK', 0))
def distrib_barrier():
"Barrier synchronization in distributed training (if applicable). Processes in the same process group must all arrive here before proceeding further. Example use case: avoid processes stepping on each other when saving and loading models in distributed training. See https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#save-and-load-checkpoints."
if num_distrib() > 1: torch.distributed.barrier()
def add_metrics(last_metrics:Collection[Rank0Tensor], mets:Union[Rank0Tensor, Collection[Rank0Tensor]]):
"Return a dictionary for updating `last_metrics` with `mets`."
last_metrics,mets = listify(last_metrics),listify(mets)
return {'last_metrics': last_metrics + mets}
def torch_save(*args, _use_new_zipfile_serialization=False, **kwargs):
if torch.__version__ > "1.6.0": kwargs['_use_new_zipfile_serialization']=_use_new_zipfile_serialization
torch.save(*args, **kwargs)
def try_save(state:Dict, path:Path=None, file:PathLikeOrBinaryStream=None):
target = open(path/file, 'wb') if is_pathlike(file) else file
try:
with warnings.catch_warnings():
#To avoid the warning that come from PyTorch about model not being checked
warnings.simplefilter("ignore")
torch_save(state, target)
except OSError as e:
raise Exception(f"{e}\n Can't write {path/file}. Pass an absolute writable pathlib obj `fname`.")
def np_func(f):
"Convert a function taking and returning numpy arrays to one taking and returning tensors"
def _inner(*args, **kwargs):
nargs = [to_np(arg) if isinstance(arg,Tensor) else arg for arg in args]
return tensor(f(*nargs, **kwargs))
functools.update_wrapper(_inner, f)
return _inner