Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 39 additions & 24 deletions tests/custom_op/test_floatquant.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,6 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


import pytest

import io
import mock
import numpy as np
Expand Down Expand Up @@ -112,7 +110,7 @@ def brevitas_float_quant(x, bit_width, exponent_bit_width, mantissa_bit_width, e
max_available_float=max_val,
saturating=True,
)
float_scaling_impl = mock.Mock(side_effect=lambda x, y, z: 1.0)
float_scaling_impl = mock.Mock(side_effect=lambda x, y, z: torch.Tensor([1.0]))
float_quant = BrevitasFloatQuant(
bit_width=bit_width,
float_scaling_impl=float_scaling_impl,
Expand All @@ -127,33 +125,50 @@ def brevitas_float_quant(x, bit_width, exponent_bit_width, mantissa_bit_width, e
return expected_out


@pytest.mark.xfail(reason="Possible Brevitas version issue, needs investigation")
@given(
x=arrays(
dtype=np.float64,
shape=100,
elements=st.floats(
allow_nan=False,
allow_infinity=False,
allow_subnormal=True,
width=64, # Use 64-bit floats
),
unique=True,
),
exponent_bit_width=st.integers(1, 8),
mantissa_bit_width=st.integers(1, 8),
sign=st.booleans(),
)
# @pytest.mark.xfail(reason="Possible Brevitas version issue, needs investigation")
@st.composite
def inputs(draw):
# pick the torch dtype first
float_type = draw(st.sampled_from([np.float32, np.float64]))

# build x with a matching numpy dtype + float width
x = draw(
arrays(
dtype=float_type,
shape=100,
elements=st.floats(
allow_nan=False,
allow_infinity=False,
allow_subnormal=True,
width=np.dtype(float_type).itemsize * 8,
),
unique=True,
)
)

exponent_bit_width = draw(st.integers(1, 8))
mantissa_bit_width = draw(st.integers(1, 8))
sign = draw(st.booleans())

return x, exponent_bit_width, mantissa_bit_width, sign, float_type


@given(data=inputs())
@settings(
max_examples=1000, verbosity=Verbosity.verbose, suppress_health_check=list(HealthCheck)
max_examples=1000,
verbosity=Verbosity.verbose,
suppress_health_check=list(HealthCheck),
) # Adjust the number of examples as needed
def test_brevitas_vs_qonnx(x, exponent_bit_width, mantissa_bit_width, sign):
def test_brevitas_vs_qonnx(data):
x, exponent_bit_width, mantissa_bit_width, sign, _ = data
x = torch.tensor(x)
bit_width = exponent_bit_width + mantissa_bit_width + int(sign)

assume(bit_width <= 8 and bit_width >= 4)
scale = 1.0
exponent_bias = compute_default_exponent_bias(exponent_bit_width)
max_val = compute_max_val(exponent_bit_width, mantissa_bit_width, exponent_bias)
xq_t = brevitas_float_quant(x, bit_width, exponent_bit_width, mantissa_bit_width, exponent_bias, sign, max_val).numpy()
xq = qonnx_float_quant(x, scale, exponent_bit_width, mantissa_bit_width, exponent_bias, sign, max_val)
xq_t = brevitas_float_quant(x, bit_width, exponent_bit_width, mantissa_bit_width,
exponent_bias, sign, max_val).numpy()
xq = qonnx_float_quant(x.numpy(), scale, exponent_bit_width, mantissa_bit_width, exponent_bias, sign, max_val)
np.testing.assert_array_equal(xq, xq_t)
Loading