Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
133 lines (90 sloc) 3.13 KB
-- My Code for Homotopy Type Theory
-- Favonia
-- Copyright (c) 2012 Favonia
-- A large portion of code was copied from Nils Anders Danielsson'
-- library released under BSD-like license
-- Copyright (c) 2011-2012 Nils Anders Danielsson
-- See LICENSE for detailed copyright notice.
{-# OPTIONS --without-K #-}
module README where
-- Common definitions
import Prelude
-- Maps, continuous functions between spaces
-- Homotopy equivalence
import Map.H-equivalence
-- Injections
import Map.Injection
-- Surjections
import Map.Surjection
-- Homotopy Fiber
import Map.H-fiber
-- Weak equivalent
import Map.WeakEquivalence
-- Paths (propositional equalities in type theories)
-- The definition of paths and trans, subst, cong
import Path
-- Some really basic lemmas for equivalence of paths
import Path.Lemmas
-- Fancy Unicode symbols for writing incomprehensible proofs
-- (Subjecting to changes.)
import Path.Symbol
-- Higher-order paths and loops
import Path.HigherOrder
-- A short proof that Ω₂(A) is abelian for any space A
import Path.Omega2-abelian
-- Tools to compose/decompose paths in Σ-type
import Path.Sum
-- Tools to manipulate paths in Π-type (extensionality)
--import Path.Prod
-- Definition of H-level and some basic lemmas
--import Path.H-level
-- Space
-- Kristina's theorem: hom is contractable iff we have a dependent
-- eliminator.
-- (Only the interesting direction.)
import Space.Bool.Initial
-- Basic facts about Fin
import Space.Fin.Lemmas
-- Definition of flowers
import Space.Flower
-- A proof that Ω₁(Flower) is FreeGroup (currently broken)
-- import Space.Flower.Omega1
-- Definition of free groups (currently broken)
-- import Space.FreeGroup
-- Definition of integers
import Space.Integer
-- Definition of intervals
import Space.Interval
-- Basic facts about Fin
import Space.List.Lemmas
-- Some basic facts about Nat
-- (Definition of Nat is in the Prelude)
import Space.Nat.Lemmas
-- Definition of spheres (base + loop)
import Space.Sphere
-- Alternative definition of spheres (two-point)
import Space.Sphere.TwoPoints
-- Definition of the Hopf junior (S₀ ↪ S₁ → S₁)
-- and a proof that the total space is indeed S₁
import Space.Sphere.HopfJunior
-- A proof that Ω₁(S₁) is ℤ
import Space.Sphere.Omega1
-- Definition of torus
import Space.Torus
-- The Univalence axiom
-- Definition of the Univalence axiom
import Univalence
-- A proof that the Univalence axiom implies extensionality for functions
-- Might be moved to Path.Prod later
--import Univalence.Extensionality
-- Some basic lemmas implied by the Univalence axiom
import Univalence.Lemmas