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Summary 
A number of experimental studies on the dynamic behavior of the chemostat 

have shown that the specific growth rate does not instantaneously adjust to 
changes in the concentration of limiting substrate in the chemostat following 
disturbances in the steady state input limiting substrate concentration or in the 
steady state dilution rate. Instead of an instantaneous response, as would be 
predicted by the Monod equation, experimental studies have shown that the 
specific growth rate experiences a dynamic lag in responding to the changes in 
the concentration of limiting substrate in the culture vessel. The observed 
dynamic lag has been recognized by researchers in such terms as an inertial 
phenomenon and as a hysteresis effect, but as yet a systems engineering approach 
has not been applied to the observed data. The present paper criticizes the use 
of the hfonod equation as a dynamic relationship and offers as an alternative a 
dynamic equation relating specific growth rate to the limiting substrate concen- 
tration in the chemostat. Following the development of equations, experi- 
mental methods of evaluating parameters are discussed. Dynamic responses of 
analog simulations (incorporating the newly derived equations) are compared 
with the dynamic responses predicted by the Monod equation and with the 
dynamic responses of experimental chemostats. 

INTRODUCTION 

The dynamic behavior of microorganisms is of both engineering 
and fundamental scientific interest. Bioengineers are primarily 
concerned with microbial dynamics from the standpoint of process 
control. An understanding of the unsteady state behavior of mi- 
crobial processes is essential if engineers are to design effective control 
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systems. On the other hand, bioscientists are interested in microbial 
dynamics because research in this area promises to render valuable 
information on the mechanisms involved in microbial growth and 
reproduction. In  the present paper interest is restricted to the 
dynamic behavior of the chemostat continuous culture although the 
approach taken is equally applicable to other microbial processes. 

Dynamic Behavior of the Chemostat 
In attempting to predict the dynamic behavior of the chemostat 

most workers have used variations on the well-known Alonod model. 
The basic Monod model consists of the equations 

(1) 

(2) 

(3) 

(dX/dt)  = pX - D X  

(dS/dt)  = DS,  - DS - ( p X / Y )  

p = r?(S/K, + S )  
where : X = cell mass concentration, mass/volume 

S = output limiting substrate concentration, mass/volume 

S o  = input limiting substrate concentration, mass/volume 

D = dilution rate, time-' 

p = specific growth rate, time-' 

= maximum specific growth rate, time-' 

Y = yield coefficient, mass cells/mass limiting substrate 

K ,  = saturation constant, mass/volume 

Variations on the basic Nonod model have accounted for varying 
yield coefficients by use of the equation 

(4) (l/YO) = (1/Y) + ( K / d  

where : Y ,, = observed yield coefficient 

K = factor for maintenance energy 

Other variations have algebraically modified equation (3) to account 
for substrate inhibition.' The dynamic behavior of the chemostat a t  
predicted by equations (I), (2 ) ,  and (3) and by equations (l), (2), (3), 
and (4) has been summarized by Koga and Humphrey.* The 
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blonod model has not been successful in predicting the dynamic 
behavior of experimental chemostats. Contrary to the instantaneous 
relationship implied by equation (3) the experimental studies of 
Mateles et al.,3 Aiba et al.,4.5.6 Storer and Gaudy,' Gilley and Bun- 
g & ~ ~ ~ , ~  and Young and Bruley,lo have all demonstrated that the 
specific growth rate of microbial cells growing in a chemostat does 
not instantaneously adjust to changes in the limiting substrate con- 
centration, s, following disturbances in the steady state values of 
dilution rate, D, or in the steady state values of the input limiting 
substrate concentration, So .  Yasuda and Mateles" were first to 
show that the specific growth rate does not instantaneously adjust 
to twofold positive step changes in dilution rate. In a chemostat 
consisting of E. coli B (wild type) growing on synthetic nitrogen- 
limited and glucose-limited media it was concluded that the specific 
growth rate of the cells could increase immediately by a small amount, 
but that further increases to the new higher steady state value took 
several hours. 

Similarly, in a comprehensive study on a chemostatic culture of 
Azobacter vinelandi, Aiba et al.4,5,6 has shown that specific growth 
rate responses lag the responses of S following both positive and 
negative step changes in D. One of the more significant observations 
reported in this work is that of an inertial phenomenon in which cell 
concentrations rose to values higher than those predicted by the 
Monod model. This inertial effect is in fact well explained by a 
lag in the specific growth rate response to a decreasing value of S. 
Storer and Gaudy7 have reported data on the transient responses of a 
mixed culture chemostat growing on synthetic glucose minimal 
medium that again demonstrates the presence of a dynamic lag in 
the response of specific growth rate to changes in the glucose con- 
centration in the chemostat. Following threefold increases in S o  a 
hysteresis effect was noted in the specific growth rate response. 
Growth rate hysteresis is a concept originally developed by Perret.I2 
The hysteresis can be explained by a lag in specific growth rate 
adjustment to rapid increases or decreases in S. Dynamic studies 
on a glucose-limited chemostatic culture of S. cerevisiae have also 
confirmed the presence of a lag in specific growth rate response to 
glucose concentration changes resulting from square wave changes in 
So and from step changes in D.8,9J0 In conclusion, a number of 
studies on different chemostats have indicated that while specific 
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growth rate can initially respond instantaneously by a relatively 
small amount to changes in S, further adjustments occur relatively 
slowly and tend to lag the changes in S. 

Evaluation of the Dynamic Aspects of the Monod Equation 

Having concluded that experimental dynamic data do not agree 
with the instantaneous algebraic relationship of equation (3), the 
question arises “Should the Monod equation be expected to predict 
dynamic behavior in a chemostat.?” This question can be answered 
by considering the origin of the Monod equation and giving a little 
thought to its true meaning. The development of the llonod equa- 
tion and the experimental determination of ii and K ,  have been dis- 
cussed by a number of workers, most notably Herbert et aZ.I3 Re- 
gardless of whether ii and K ,  are determined from batch culture or 
steady state continuous culture data, the Rlonod equation as it 
applied to a continuous culture defines a series of steady states or 
equilibrium conditions at  which a given culture can operate. At each 
point on the JIonod curve all of the mechanisms involved in growth 
and reproduction, such as mass transfer across the cytoplasmic mem- 
brane, formation of biochemical monomers, and the subsequent 
macromolecular synthesis, have established constant rates which are 
in turn manifested in a steady specific growth rate. In  this sense the 
Nonod equation, as applied to continuous cultures, is analogous to a 
thermodynamic equation of state that defines a space of equilibrium 
states. It logically follows then that the rate of transition between 
states in a chemostat can no more be accurately predicted by the 
Monod equation than a thermodynamic equation of state can predict 
the rate of attaining thermodynamic equilibrium. Another way of 
stating this idea is that transition between two steady states does 
not necessarily follow a pathway drawn through a series of equilibrium 
points. In  fact, in the chemostat the only way such a transition 
could occur would be if all the mechanisms involved responded in a 
uniform transient manner to changes in S. This possibility seems 
unlikely if not impossible. More likely what does occur upon a 
disturbance in S is that each mechanism involved in cell growth and 
reproduction responds a t  its own rate and in a sequence determined 
by its relative kinetic position. In  view of these considerations the 
Monod equation n;ould not be expected to apply during transient 
conditions in a chemostat. In  addition, models incorporating 
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algebraic modifications of the Monod equation for cases such as 
substrate inhibition would not be expected to be valid during un- 
steady state operation.’ Even models that incorporate hysteresis 
loops in growth rate response are limited to describing transient 
behavior to a particular disturbance at  a particular steady state.’ 
It is evident from the above discussion that a dynamic relationship 
exists between p and S during transients in a chemostat, that is 

P = f(S,t) (5) 
This idea has been appreciated in only a few past ~ tud ie s . ’~J~  Per- 
haps this results from the fact that most studies have failed to ap- 
proach the problem of developing a dynamic mathematical model 
of the chemostat from a systems engineering point of view. This is 
the approach that will be taken in the present paper. 

A DYNAMIC MODEL OF THE CHEMOSTAT 

A Systems Engineering Approach 
The systems engineering approach to developing a dynamic 

mathematical model of a physical process begins by the formulation 
of a block diagram. The block diagram is a convenient way of 
expressing how system variables are related or “how the system 
works.” A linear block diagram for the chemostat in Figure 1 can 
be developed as follows: 

Mass balances on limiting substrate and cell masses entering and 
leaving the chemostat give the equations 

V(dS/dt) = FS,  - FS - ( p X T / / Y )  (6) 

(7) V(dX/dt) = pXV - FX 
where: V = volume of chemostat 

F = volumetric flow rate. 
F 50 

Fig. 1. Schematic diagram of chemostat. 
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The assumption is made that the spkcific growth rate is dynamically 
related to limiting substrate as expressed by the general equation 

P = f(S1t).  ( 5 )  

(8) 

(9) 

Equations (6) and (7) can be rearranged to the forms 

e ( d s / d t )  + s = so - (pex /y )  

( d X / d t )  = IP - ( l /e ) lx  
where: e = ( l /D).  

The deviation variables Slxl and p are defined by the equations 

a = x - x ,  (10) 

S = s - s ,  (11) 

F = c1 - Pa = P - O/@) (12) 

where : s subscript denotes steady state values. 
Substitution of equations (lo), ( l l ) ,  and (12) into equations (8) and 
(9) gives the deviation equations 

e(dS/dt) + S = 8, - ( e /Y )  + p x 8  + p x )  (13) 

(14) 

(15) 

( d X / d t )  = px,. (16) 

(17) 

xcs> = p(s>(X,/s) .  (18) 

( d X / d t )  = px, + pa. 

e(&/dt) + S = S o  - (e/Y)(P.X + px,) 
Seglecting the products of deviation variables gives 

Taking the Laplace transform of equations (15) and (16) gives 

S ( S )  = (S&) - (e/Y)rp.X(s) + p(s)x81)(1/eS + 1) 

From equation ( 5 )  a general Laplace domain equation might be 
written 

p ( s )  = G(s)S(s ) .  (19) 

From equations (17), (18) and (19) it can be seen that the chemostat 
can be represented by a closed loop block diagram as shown in Figure 
2 .  The block diagram is made up of five blocks or transfer functions: 
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GI, GS, G3, Gs, and G5. GI is a transfer function for a first order 
mixing process where 9 is the residence time of the chemostat. Gz 
represents the dynamic relationship between s and p. Gf relates the 
growth rate term to the output variables. Gq and G5 represent 
transfer functions for the negative feed back loops and are analogous 
to the transfer functions representing sensor dynamics in conventional 
control systems. The signal emerging from the algebraic addition 
junction, a, is a substrate consumption term. The negative feed- 
back loops are responsible for the observed self-adjusting or stability 
properties of the chemostat. The output signal emerging from the 
algebraic subtraction junction is analogous to an error term from a 
controller in a conventional closed looped control system. 

Several limiting assumptions were made in arriving at the block 
diagram of Figure 2. First, equations (13) and (14) were linearized. 
Also e and Y were assumed to be constants. Thus, when perturba- 
tions are large or when e or Y vary in time, the linear block diagram 
would not apply. In spite of these limitations the block diagram is 
valuable in that it enables one to visualize the relationships between 
system variables and it reveals the closed loop nature of the chemo- 
stat. 

Determination of the Dynamic Relationship Between p and s 
From the previous discussion it should now be evident that the 

core of the problem of developing an accurate dynamic model of the 
chemostat lies in the determination of the dynamic relationship 

S - G 5 = -  
Y 

Fig. 2. Block diagram of chemostat. 
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between p andg, that is, in terms of Figure 2, the determination of G2.  
Before discussing experimental methods of evaluating Gz, a theoretical 
consideration of the phenomenon responsible for establishing growth 
rate of cells in a chemostat should give some insight into the func- 
tional nature of G2. The two phenomena that determine the specific 
gromyth rate of cells in a chemostat are mass transport of limiting 
substrate across the cytoplasmic membrane of the cell and the subse- 
quent biochemical reactions within the cell. If one considers the 
behavior of an average cell in a chemostat population, it is possible to 
derive equations that suggest mathematical characteristics for G2. 
Consider first the active transport of limiting nutrient across the 
cytoplasmic membrane of the average cell. During a transient 
period a dynamic relationship exists between S and internal limiting 
nutrient concentration, S,. A mass balance on S ,  in the average cell 
gives the equation 

Accumulation = Input - Output - Reacted 

V,(dS,/dt) = J,n(S/Ki + S>V, - Jmt(St/K2 + S,>V, 

- v(SJK3 + SJV, (20) 

where: V ,  = cell volume 

J,, = maximum inward volumetric flux 

J , ,  = maximum outward volumetric flux 

v = maximum reaction rate 

Kl,K2,K3 = saturation constants 

Membrane transport studies have shown that active transport net 
flux is the sum of inward and outward fluxes which follow Michaelis- 
Menten kinetics.16 

(1/JWt + v)(dS,/dt) + (SJK2 + St) = (Jw'Jmrt + v>(S/Ki + 8) 

(21) 

If it can be assumed that for small perturbations in the chemostat 
S << K ,  and S,  << K P ,  equation (21) can be linearized to the deviation 
equation 

Rearranging equation (17) gives (if K2 'V K3) 

~ T ( d & / d t )  + 8, = K& (22) 
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where: TT = (Kz/J,t + v )  

K ,  = ( J i n / J m t  + V>(Kz/Kl) 
Equation (22) suggests that the membrane transport step might be 
approximated by a first order system. Similar theoretical con- 
siderations assuming transport could be approximated by simple 
diffusion have led to first and second order transfer functions for 
the membrane transport process.'O Membrane transport studies on 
S. cerevisiae have indicated that the dynamics of membrane transport 
could be significant in contributing to G2.17+' 

Considering the reactions within the cell, the specific growth rate 
can be expressed by the equation 

/.I = v(S; /KB + 8;) (23) 
wThich by previous assumptions concerning K ,  and Si becomes the 
deviation equation 

p = K$;  (24) 
where: K 5  = (v/KZ) 

Taking the Laplace transform of equations (22) and (24) gives 
respectively 

(TTS + l)S;(S) = K&s) (25) 

P ( S )  = K$;(S)  (26) 

(27) 

Combining equations (25) and (26) gives the transfer function 

Gz = [p(s)/8(s)l = (K /Ts  + 1) 
where: K = ( K 4 / K 5 )  

Equation (27) suggests that Gz can be approximated by a first order 
transfer function. Similar results were obtained assuming transport 
by simple diffusion followed by a first order reaction.lo The re- 
actions within the average cell could further contribute to the func- 
tional nature of G2. For example, when the average cell in the 
chemostat experiences an increase in Si it may not have the extra 
enzymes available to react S;  at  a higher rate. Induction of ad- 
ditional enzymes or activation of enzyme pools may require time. 
This time delay might be approximated by a transfer function of 
pure transport delay. Thus, equation (26) could be written as 

/ . I (s )  = K s - ~ ~ S ; ( S )  (28) 
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From the above considerations a general transfer function for GS 
might be represented by the equation 

GS = [Ke-liT/(Ts + l)] (29) 
It is not intended to imply that equation (29) can be rigidly derived 
from theory, but rather that theoretical considerations do give a 
rationale to the use of equation (29) in a dynamic mathematical model 
of the chemostat. 

A General Dynamic Model of the Chemostat 

A general dynamic model of the chemostat consists of the equations 

( d X / d t )  = pX - DX 

(dS /d t )  = D S ,  - DS - ( p X / Y )  

[ii(s)/S(s>I = [Ke-aT/(Ts + 111 

(1) 

( 2 )  

(29) 

P = c r - p s  (12) 

s = s - s ,  (11) 
It should be noted that the model as expressed in the above equations 
has not been linearized and that equations (1) and (2) are in terms of 
total variables. The only linearity assumed is found in equation (29) 
which is written in terms of deviation variables. (An analog simula- 
tion of the above equations shown in Figure 7 should illustrate this 
point.) If equations (1) and (2) are written in deviation variables 
and linearized to the form of equations (15) and (16) it is then possible 
to express the model in block diagram form. The block diagram is 
the same as that of Figure 2 where Gz is expressed by equation (29). 
From the block diagram it is possible to calculate the overall transfer 
functions. Assuming no transport delay (7' = 0) 

[X(S) /~~(S) I  = (i/s[(e, + ~ ) ( T s  + 1) + K,I + K,)  (30) 

[s (s) /so(S>]  = (s (Ts + l)/S[(eS + l)(Ts f 1) f KI] + K2) (31) 

Experimental Determination of G2 Transfer Function 

The determination of the transfer function relating p and 8 in a 
chemostat can be determined from direct frequency forcing or pulse 
testing the system. Direct forcing is difficult because sinusoidal 
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variations in input variables are hard to generate and because the 
time required for transients to die out is lengthy. Pulse testing the 
chemostat, on the other hand, is simple and requires much less time 
than direct forcing while yielding an equivalent amount of frequency 
response data. A pulse test consists of disturbing an input variable 
in a predetermined way such that the input variable deviates from 
steady state for a period of time and then returns to steady state. 
The response of the output variable or variables is then measured. 
Hougen25 has discussed pulse testing in detail. The input-output 
transient data can be reduced to frequency response data by using 
a digital program to evaluate Fourier integrals. Clements and 
SnelleZ6 have presented a numerical method which makes use of 
Filon's quadrature to evaluate the Fourier integrals. At present 
there are not sufficient experimental data for accurate determination 
of Gz. A pulse in s can be made by a step or square wave change in 
so. The response of ji can be calculated from the response of X by 
the equation 

ii = [(dX/dO/XI (32) 

which can be evaluated most accurately by digital computer. Storer 
and Gaudy7 have recorded responses of p to following step changes 
in so. Reduction of their data to frequency response indicated that 
GP was a first or second order transfer function with a time constant in 
the range of 40 minutes to one hour and a gain of 0.91 hr-'/gm/l. 
The accuracy of the frequency response data was limited because the 
frequency content fell off rapidly at frequencies above the corner 
frequency. Young and Bruley'O have measured population responses 
in a chemostat following square wave changes in So.  In these pulses 
the normalized frequency content remained high for two decades 
beyond the break frequency. However, Gz could not be determined 
from experimental data because it was found that cell number is not 
an accurate parameter for cell mass during transient periods. There- 
fore 8(t, and p ( t )  could not be accurately determined from experi- 
mental data. Despite the fact that GS was not experimentally 
determined the results obtained do demonstrate the feasibility of 
pulse testing the chemostat to obtain frequency response. In 
Figure 3 a Bode diagram obtained from direct sine forcing; is com- 
pared with a Bode diagram obtained by pulse testing. In both cmes 
the chemostat tested was a glucose limited culture of S. cerevisiae 
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Fig. 3. Comparison of direct sinusoidal forcing' and pulse testing10 fre- 
quency response curves for a glucose-limited chemostat of S.  cerevisiue with a 
steady state specific growth rate of 0.22 hr-l. 

with a steady state specific growth rate of 0.22 hr-l. From Figure 3 
it can be seen that agreement is very close, both Bode diagrams 
indicating a second to third order transfer function with a time con- 
stant in the range of 40 minutes. The transfer function plotted from 
direct forcing is N(s) /D(s)  (where N was cell number). The transfer 
function from pulse testing is fl(s)/fl,(s). It is to be expected that 
the timing and order of the closed loop response to perturbations 
in So  and D should be similar. The direct forcing data also compare 
favorably with pulse testing frequency responses data shown in 
Figure 4. Here the transfer function N(s)/ f l , (s)  is shown to be 
approximately third order with a time constant in the range of 40 
minutes to one hour. The linearity of the chemostat over the range 
tested is also confirmed by Figure 4 which represents the frequency 
response to pulses in So with amplitudes varying from 2 gm/l to 20 
gm/l. It can be seen that the response was independent of pulse 
amplitude as would be expected for a linear system. Finally, it is of 
interest to compare the responses in Figures 3 and 4 with the transfer 
functions obtained in equations (30) and (31) by assuming that Gz was 
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FREQUENCY. radians/ minute 

Fig. 4. Pulse testing10 frequency response determined from 40 minute 
square wave pulses in So from an initial steady state value of 1.0 gm/l to 2.0, 
5.0, and 10.0 gm/l. 

a first order transfer function. It can be seen from the above equa- 
tions t h a t ~ ( s ) / ~ ' , ( s )  and s(s)/S,(s) are third order, a fact that 
agrees well with the observed Bode plots. 

SIMULATION OF DYNAMIC MODELS 

In the discussion that follows, the dynamic responses of analog 
simulations of the newly developed chemostat model are compared 
with those of the Monod model and with those of experimental 
chemostats. In attempting to simulate experimental dynamic 
responses of various chemostats, variations can be made on the 
above model. The transfer function expressed in equation (29) can 
be first order, pure transport delay, or a combination of these de- 
pending on the values assigned to T and T .  In addition it may be 
found that in order to get quantitative fits to experimental data the 
yield coefficient must be made a function of S, dS/d t ,  or p .  

Dynamic Responses of First Order Model 
If T is made to equal zero equation (29) becomes 
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An analog simulation of a hypothetical chemostat operating under 
the conditions given in Table 1 gave transient responses to step 
changes in D and So as shown in Figures 5 and 6. Here the effect of 
T and K on transient response can be seen. An analog simulation of 
the general dynamic model of the chemostat is given in Figure 7. 
Monod model responses are given in Figure 8. 

TABLE I 
Conditions for Growth in a Hypothetical Chemostat 

Parameter Symbol Value 

S. S. dilution rate 
Step change dilution rate 
S. S. specific growth rate 
S. S. input limiting substrate conc. 
Step input limiting nutrient conc. 
S. S. output limiting nutrient conc. 
S. S. output cell mass conc. 
Yield coefficient 

0.20 hr-1 
0.40 hr-1 
0.20 hr-1 
1 . o  gm/l 
2 .0  gm/l 
0.025 gm/l 
0.4875 gm/l 
0.50 

Dynamic kesponse of Transport Delay Model 

If T = 0, equation (29) becomes 

[ p ( s ) / s ( s ) ]  = Ke--T8 (29”) 
Simulated responses using equation (29”) are shown in Figures 9 and 
10. 

Comparison of General Model and Monod Model with 
Experimental Data 

Responses predicted by the newly developed model and those 
predicted by the Monod model are compared with responses of ex- 
perimental chemostats in Figures 11 and 12. In Figure 11 the 
response to a step change in S o  is shown. The experimental data 
was presented by Storer and Gaudy.’ The Rlonod equation was 
not accurate in predicting the X response because it did not include a 
dynamic lag. The general model fitted the X response relatively 
accurately with parameter values predicted from the experimental 
data: 

T = 50 min 
T = O  
K = 0.90 hr l /gm/ l  
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Fig. 5a, 5b. Effect of 7 and K on response of a hypothetical chemostat to 
a step change in D .  

Storer and Gaudy15 found that the yield coeficient varied during 
the transient period. In the present work, it was found that the 
variation in yield coeficient during the transient state could be 
approximated by the equation 

Y = Yi  - K, (dS /d t )  (33) 



762 YOUNG, BRULEY, AND BUNGAY, I11 
500 Ian, 

- 8 0 0  

- - m  - 
F 

- 4 0 0 x  

- 2 0 0  

3 6 9 12 15 18 21 24 

TIM. HOUR 
(01 

500 lan, 

400 800 

- m m 

c B 
m X '  

- - - 
vi 

210 

i m  200 

TIM, HOUR 
(bl  

Fig. 6a, 6b. Effect of T and K on response of a hypothetical chemostat to 
a step change in SO. 

This improved the accuracy of the predicted S response. In Figure 
12 the response to a step change in D is shown. The Monod equation 
predicts a smooth transition in both X and S from the initial to the 
new steady state. This is in contrast to the maximum in S and 
minimum in X observed experimentally by Mateles, Ryu, and 
Yasuda.3 The general model was found to approximate the X 
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Fig. 8. Chemostat response to step changes in S, and D as predicted 
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response and to fit the p response, but the S response predicted a 
higher value a t  steady state than was observed experimentally. 
The parameter values used were as follows: 

T = 20 min 
T = O  
K = 3.0 hr-'/gm/l 

DISCUSSION 

In review of the ideas presented here a few points merit further 
discussion. It has been argued on the basis of theoretical considera- 
tions and experimental data that the Rlonod equation is not valid 
during transient states in a chemostat resulting from perturbations 
in steady state. Furthermore, it has been suggested that in such 
transient situations the Xlonod equation should be replaced by a 
time dependent equation; i.e., equation (29). It is not unlikely that 
the linearity assumed between p and 8 in equation (29) will be 
questioned. Also, the use of frequency response techniques to 
determine the parameters in equation (29) will likely be criticized 
for the same reason. However, the fallacy in such criticisim is that 
it assumes the chemostat to be dynamically nonlinear on the basis of 
nonlinear steady state data. Such thinking views the transient 
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Fig. 9a, 9b. Effect of T and K on response of a hypothetical chemostat 
to a step change in D. 

response of p as following along a nonlinear Monod curve when in 
fact the transient growth rate response does not necessarily follow 
the Monod curve at  all. The only way to answer the question of 
linearity in the dynamic case is by perturbing the limiting substrate 
concentration over a range of amplitudes and observing the growth 
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rate responses. Then and only then can any valid statements be 
made concerning linearity in the dynamic case. Without such 
information it is assumed that within a range of perturbations the 
growth rate responds linearly. This assumption can be justified if 

TINY,  HWR 
la) 

TINY. HOUR 
lb) 

Fig. IOa, lob. Effect of T and K on response of a hypothetical cbemostat 
to a step change in So. 
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Fig. 11. Comparision of responses predicted by Monod model and by first order 
model (equation (29")) with expenmental data of Storer and Gaudy.l6 

simulated responses compare well quantitatively with experimental 
transient data. 

CONCLUSIONS 
In summary of the present work the following conclusions are made : 

1. 

2. 

3. 

The Monod model is not accurate in predicting the transient 
behavior of experimental chemostats. This is not surprising 
since the Monod equation is not a time dependent dynamic equa- 
tion. 
A systems engineering approach can be useful in developing 
dynamic mathematical models of the chemostat. The dynamic 
relationship between p and S can be determined from experi- 
mentally pulse testing the chemostat to get frequency response 
data. 
A general model of the chemostat consists of the equations 

(dX/dt) = X - DX 
(dS/dt) = DS.  - DS - (pX/Y) 
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,< 1 3  ---_ Monod model 

TIME. HOUR 

Fig. 12. Comparison of responses predicted by Monod model and by first order 
model (equation (29')) with experimental data of Mateles et aE.11 

The parameters T ,  r,  and K can be varied to predict the transient 
response of chemostats to perturbations in D and So .  An ad- 
ditional equation to account for variations in Y during transients 
may be formulated with Y as a function of S and t or p and t .  

4. At present there are not sufficient experimental data available 
to clearly define or to generalize on the dynamic behavior of the 
chemostat. Consequently, it is not yet possible to generalize on 
the relationship developed here between p' and S. However, the 
results of simulations presented here would indicate that a model 
incorporating a first order transfer function relating p and 8 is 
accurate in predicting the dynamic behavior of experimental 
chemostats. 
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