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Abstract An SIR-type (Susceptible-Infected-Recovered) model for the study of the spread of

Ebola Virus Disease (EVD) is developed, by using conformable derivatives. Every possible way

of transmission of the disease is incorporated (direct or indirect), such as funeral practices, con-

sumption of contaminated bush meat and the environmental contamination etc. We have added

an extremely important term to the model which have very high physical significance i.e., the pos-

sibility of the birth of an infected individual and the migration of an infected individual to the exist-

ing population. Well-posedness of the proposed problem has been shown by using a well-known

theorem. The situations for the disease to be died out or sustain, have been discussed in the details.

We found that the only disease-free situation is, the absence of flow of Ebola virus disease from the

environment. We also have observed that by adopting a few strategies, such as isolation of infected

individuals and careful burial of deceased bodies, the spread of EVD can be controlled. Memory

effects for each case (disease-free and endemic states) are discovered (by using Khalil’s conformable

transform) and plotted to make future predictions more accurately. Graphs are clearly elaborating

that the problem is stable for both the equilibria states i.e., endemic state and disease-free state.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The more deadly outbreak of Ebola Virus Disease (EVD) since
1976, took place in West Africa in 2014, that destroyed a large
proportion of the population. The statistics of clinical cases
and death cases was about more than 16,000 people and

70% of the population respectively. In almost all the cases,
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the main source to initiate the disease was ‘‘animal”, in such a
way that when a man hunted for food, his contact took place
with infected animals (such as monkey, ape, chimpanzees and

fruit bats etc.). The observation as mentioned above enabled
us to state that indirect contact could be one of the reasons
for the spread of the disease [1]. Poor hygiene and sanitary

conditions are also one of the reasons for the spread of the
Ebola virus in Africa. It was observed in 2015 [2], when a
non-negligible amount of Ebola Virus was found active for

up to 50 days on different surfaces like glass and plastic etc.
In Africa (particularly the region effected by EVD outbreaks),
the majority of the population harvest forest fruits for food,
hunts bats and monkeys and live close to the rain-forests

[3,4]. Their traditional values are very high that even in the
presence of a contagious disease, they do not avoid to shake
hand and kissing. Moreover, in their death ceremonies, they

wash and properly dressed up their deceased without the fear
of germ/disease transfer. They also share the dresses of their
deceased relatives. Huge gatherings on funerals from all close

villages are also the cause of the quick spread of Ebola Virus.
On studying the paragraph as mentioned earlier, we reach

the following points;

Persistence and recurrence of EVD in Africa is due to

� Consumption of contaminated bush meat
� The funeral ceremonies

� Environmental pollutant

in the presence of both transmissions

� Human-human by body fluid like blood, sweat, saliva,
vomit, breast milk and urine etc (direct transmission)

� Environment-human-environment by objects like contami-
nated clothes etc (indirect transmission)

By keeping all the points mentioned above, about African
practices, we propose a Conformable SIRDP model where P
is denoting the compartment of the environment.

In the existing literature, we found models related to the

spread of EVD in the human population through only direct
contact in [5–14]. We can find classical types of models in
almost all studies such as SI [15], SIR [8,10], SEIR [5,7],

SEIRD [11] and SEIRHD [6,13].
In this century, fractional calculus emerged as one of the

most important parts of many research fields like neural net-

works, biomathematics, physics etc. [16–39]. In [40], Kumar
et al., presented his studies of fractional calculus on modified
kahwara equation, with a non-singular kernel. Caputo et al.,
resolved many difficulties regarding singular kernel by propos-

ing a non-singular operator with exponential kernel function
[41]. Furthermore, the properties for the exponential kernel
were defined and presented by Losada et al., in [42]. In [43],

Atangana et al., used Mittag Leffler function and gave a new
definition for fractional-order derivative. To see different types
of operators for fractional derivatives and their importance for

real-life occurring, one can search [44–48].
Jumarie presented few basic derivative formulae for frac-

tional calculus in [49]. He proposed Modified R-L fractional

derivative in [50]. After that, few conflicts were raised regard-
ing Jumarie formulae in [51–53]. So, in response to those con-
flicts, Khalil et al. in [54], provided a new definition of
fractional derivatives that is users friendly. So, We have opted
the above definition, to study the current model related to the
spread of the Ebola Virus.

Throughout the literature review, we did not find the factor

a2. But it has a lot of importance in the regard that it can affect
the total number of population and obviously the change in
the statistics affect the final results. We have dig out the hidden

phenomena that there might be a possibility that a fetal can
catch the infection from his mother in the uterus and it can
directly be added to the infected population, by birth. Simi-

larly, there is a chance of migration of infected person/persons
to the particular population. So, it is also a source of addition
to the population of infected individuals. In addition, we are
the first to propose a conformable model for Ebola Virus Dis-

ease that provides memory effects which have a lot of impor-
tance in understanding any physical phenomena. We have
also proposed a few control strategies for the spread of the

Ebola virus.
The organization of the rest of the article is as follows. The

development of the model is given in Section 2. Well-posedness

of the problem is proved in Section 3 along with the findings of
equilibria points and basic reproduction number. Discussion
on the main findings are given in Sections 4, and Section 5 con-

tains concluding remarks.

2. Formulation of the model

To investigate the spread, persistence and recurrence of Ebola
Virus Disease (EVD) outbreaks in Africa, few following
assumptions could be made;

� One of the causes of the spread of EVD infection is
deceased human individuals. As the deceased bodies can
transmit the infection during their burial ceremonies.

� The infection can be added to the environment through
urine and stool of infected/ deceased individuals.

� Infection can be cached not only through direct contact but

also by indirect contacts, such as through contaminated
environment and surfaces.

� Provision of EVD in the environment due to the consump-

tion of contaminated bush meat.
� Existence of permanent disease-induced immunity.
� EVD outbreaks lasted for two or more years in Africa, so
during this long time-period, the new addition in the popu-

lation in the form of new births and migration, as well as
the deaths (natural or due to disease) takes place. So, we
can call it a demographic process.

A mathematical model can be developed based on the
above, mentioned assumptions.

dFðtÞ
dt

¼ a1 � b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞF tð Þ � rF tð Þ; ð1Þ

dLðtÞ
dt

¼ a2 þ b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞFðtÞ
� ðrþ gþ cÞLðtÞ; ð2Þ

dQðtÞ
dt

¼ cLðtÞ � rQðtÞ; ð3Þ

dWðtÞ
dt

¼ rþ gð ÞL tð Þ � bW tð Þ; ð4Þ
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dGðtÞ
dt

¼ lþ nLðtÞ þ aWðtÞ � dGðtÞ: ð5Þ

In the model, Eqs. (1)–(5), F;L;Q;W;G are the variables
used to represent the susceptible population, infected individu-

als, recovered humans, deceased population and environment
respectively. The population of susceptible individuals is
increasing at a constant rate a1; by migrant people and new
births. The contact rate of a susceptible individual with an

infectious one (b1Þ, with a deceased individual ðb2Þ and with
the contaminated environment ðkÞ might acquire infection. r
is the natural death rate whereas the infectious human have

an additional death rate due to the disease (g). They get rto
ecover at rate c: Birth of an infected neonatal or migration
of an infected person may increase the infected population,

shown by a constant rate a2: Rate of deceased human burial
is b: l is the constant rate at which the EVD is contaminating
the environment by all means such as wildlife, fruit bats etc.

Moreover, n and a are the rates at which the infectious and
deceased individuals shed the environment respectively.

The details, about the above-used parameters (for time t),
are in the following in Table 1.

Khalil et al. in [54], proposed a new definition of fractional
derivatives as following;

Definition. Let

g : 0;1ð Þ ! R;

then the conformable derivative of g (with order f) is defined as
following,

Bf gð Þ tð Þ ¼ lim
�!0

g tþ �t1�fð Þ � g tð Þ
�

; 8t > 0; f 2 ð0; 1�: ð6Þ
Table 1 Details and description of variables and parameters.:

Parameters Values Description

F – Susceptible (human)

L – Infectious (human)

Q – Infected deceased (human)

W – Recovered (human)

G – Ebola virus pathogens in the

environment

a1 Variable

[assumed]

The rate of recruitment of susceptible

(human)

a2 Variable

[assumed]

The rate of recruitment of infected

(human)

b (0,1) [14] Burial rate of deceased (human)

b1 Variable

[7,13,14]

Rate of contact (effective) of

infectious human

b2 Variable

[8,14]

Rate of contact (effective) of deceased

(human)

k Variable

[assumed]

Rate of contact (effective) of Ebola

virus

r (0,1) [11] Rate of natural deaths of human

g [0.4–0.9]

[5,7,8]

Rate of deaths of human individuals

due to infection

l (0,1)

[assumed]

Rate of recruitment of EVD in the

environment

n (0,1)

[assumed]

Rate of shedding of infectious human

a (0,1)

[assumed]

Rate of shedding of deceased human
The above definition, also satisfy few properties (mentioned
in [54]). One of those properties is given below,

If g is differentiable then,

Bf gð Þ tð Þ ¼ t1�f dg

dt
: ð7Þ

Let’s re-develop the model (1)-(5), by using the above-
mentioned Khalilzadeh’s conformable derivative [54], as

follows

BfðFÞðtÞ ¼ a1 � b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞF tð Þ � rF tð Þ; ð8Þ

BfðLÞðtÞ ¼ a2 þ b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞFðtÞ
� ðrþ gþ cÞLðtÞ; ð9Þ

Bf Qð Þ tð Þ ¼ cLðtÞ � rQðtÞ; ð10Þ

BfðWÞðtÞ ¼ rþ gð ÞL tð Þ � bW tð Þ; ð11Þ

BfðGÞðtÞ ¼ lþ nLðtÞ þ aWðtÞ � dGðtÞ: ð12Þ
In the above model, Eqs. (8)-(12), Bv is the operator, sym-

bolizing the conformable derivative of the function, with f
f 2 0; 1ð �ð Þ as the order of the derivative.
Now, using Eq. (7), Eqs. (8)-(12) can be transformed as

follows,

t1�fðFÞ0ðtÞ ¼ a1 � b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞF tð Þ � rF tð Þ;
ð13Þ

t1�fðLÞ0ðtÞ ¼ a2 þ b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞFðtÞ
� ðrþ gþ cÞLðtÞ; ð14Þ

t1�f Qð Þ0 tð Þ ¼ cLðtÞ � rQðtÞ; ð15Þ

t1�fðWÞ0ðtÞ ¼ rþ gð ÞL tð Þ � bW tð Þ; ð16Þ

t1�fðGÞ0ðtÞ ¼ lþ nLðtÞ þ aWðtÞ � dGðtÞ: ð17Þ
On simplifying the above, we get the final form of the sys-

tem as follows;

ðFÞ0ðtÞ ¼ tf�1 a1 � b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞF tð Þ � rF tð Þð Þ;
ð18Þ

ðLÞ0ðtÞ ¼ tf�1 a2 þ b1L tð Þ þ b2W tð Þð þ kG tð Þð ÞF tð Þ
� rþ gþ cð ÞL tð ÞÞ; ð19Þ

Qð Þ0 tð Þ ¼ tf�1 cL tð Þ � rQ tð Þð Þ; ð20Þ

ðWÞ0ðtÞ ¼ tf�1 rþ gð ÞL tð Þ � bW tð Þð Þ; ð21Þ

ðGÞ0ðtÞ ¼ tf�1 lþ nL tð Þ þ aW tð Þ � dG tð Þð Þ: ð22Þ
Initial conditions attached to the above system (18)-(22),

are

F 0ð Þ ¼ F0;

L 0ð Þ ¼ L0;

Q 0ð Þ ¼ Q0;

W 0ð Þ ¼ W0;
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G 0ð Þ ¼ G0:

The conservation law is obtained by adding the first three
equations of the above system (18)-(22),

dZðtÞ
dt

¼ t1�f a1 þ a2 � rZ� gLð Þ; ð23Þ

where, Z ¼ Fþ LþQ, is the sum of total alive/active popula-
tion. Moreover, the burial rate should always less than or
equal to the total death rate to cope up with real-world
phenomena.

For the structural view of the model see Fig. 1.

3. Well-posedness and equilibria

Firstly, we will prove the well-posedness of the model and then
equilibria points will be found in this section.

3.1. Well-posedness

We will prove it in three steps below.

Proposition 3.1.1. Suppose that model (18)-(22), has a global
solution corresponding to non-negative initial conditions,

then the solution is non-negative for all time.

Proof. Let’s assume that

0 � F 0ð Þ; 0 � L 0ð Þ; 0 � Q 0ð Þ; 0 � W 0ð Þ; 0 � G 0ð Þ:
We can write the first equation of the model (18)-(22), as

follows;

dF tð Þ
dt

¼ tf�1 a1 � C tð ÞF tð Þð Þ; ð24Þ

where,

C tð Þ ¼ b1L tð Þ þ b2W tð Þ þ kG tð Þ � r:

Eq. (24) is a first-order linear equation in F. So, its solution
has the following form;

F tð Þ ¼ F 0ð Þe
R t

0
�sf�1CðsÞds

þ e

R t

0
�sf�1C sð Þds

Z t

0

a1u
f�1 e

R u

0
wf�1A wð Þdw

� �
du

� �
� 0:
Fig. 1 Flow diagram.
Which implies F tð Þ � 0; 8t � 0:
As the remaining variables are non-negative so, we can

write the subsystem as follows

dL tð Þ
dt

¼ tf�1 a2 þ b1L tð Þ þ b2W tð Þ þ kG tð Þð ÞF tð Þð
� rþ gþ cð ÞL tð ÞÞ; ð25Þ

dQ tð Þ
dt

¼ tf�1 cL tð Þ � rQ tð Þð Þ; ð26Þ

dW tð Þ
dt

¼ tf�1 rþ gð ÞL tð Þ � bW tð Þð Þ; ð27Þ

dG tð Þ
dt

¼ tf�1 lþ nL tð Þ þ aW tð Þ � dG tð Þð Þ: ð28Þ

Which can be written in the matrix form as follows;

dE tð Þ
dt

¼ tf�1MY tð Þ þHðtÞ; ð29Þ

where,

M ¼

b1F tð Þ � rþ gþ cð Þ 0 b2F tð Þ kF tð Þ
c �r 0 0

rþ g

n

0

0

�b

a

0

�d

2
66664

3
77775;

Y tð Þ ¼

LðtÞ
QðtÞ
WðtÞ
GðtÞ

2
66664

3
77775; H tð Þ ¼

a2

0

0

l

2
66664

3
77775;

The above matrix M; is a Metzler matrix (a matrix with
non-negative off-diagonal entries) where non-negativity of F
has already been established. So, Eq. (29) is a monotone sys-

tem. Thus, R4
þ is invariant under the flow of system (29).

Hence the proposition is proved.
To guarantee the boundedness of the solution of system

(18)-(22), the following proposition can be stated along with
its proof.

Proposition 3.1.2. Suppose that the initial conditions for the
model (18)-(22), satisfy the following

Z 0ð Þ � Zm;W 0ð Þ � Wm;G 0ð Þ � Gm;

where,

Zm ¼ a1 þ a2
r

;Wm ¼ ðrþ gÞða1 þ a2Þ
br

;

Gm ¼ rblþ bn a1 þ a2ð Þ þ aðrþ gÞða1 þ a2Þ
bdr

:

Furthermore, whenever the solution exists on an interval I1;
it satisfies the following bounds;

Z tð Þ � Zm;W tð Þ � Wm;G tð Þ � Gm:

Proof. Since, L tð Þ � 0; we can write Eq. (23) as follows

dZðtÞ
dt

� t1�f a1 þ a2 � rZð Þ ð30Þ
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Gronwall’s inequality yields following

dZðtÞ
dt

� a1 þ a2
r

þ Z 0ð Þ � a1 þ a2
r

� �
e�

tfr
f : ð31Þ

Implies
Z tð Þ � Zm; if Z 0ð Þ � Zm:
Consequently, L tð Þ � Zm: Using it in Eq. (21) implies the

following

dWðtÞ
dt

� tf�1 rþ gð ÞZm � bW tð Þð Þ;

Now, Gronwall’s inequality yields the following

W tð Þ � Wm; whenever W 0ð Þ � Wm:
Following the same process for GðtÞ we get,
G tð Þ � Gm; whenever G 0ð Þ � Gm:
Hence, boundedness is proved.
To ensure the well-posedness of the problem, let’s combine

the propositions 3.1.1 and 3.1.2 together (with the trivial exis-
tence and uniqueness of a solution for the system (18)-(22)),

and state the following theorem.

Theorem 3.1.3. Model (18)-(22), is a dynamical system on the
following compact set

K ¼ F tð Þ;L tð Þ;Q tð Þ;W tð Þ;G tð Þð Þ 2 R4
þ;Z tð Þ � a1 þ a2

r
;

n

W tð Þ � rþ gð Þ a1 þ a2ð Þ
br

;

G tð Þ � rblþ bn a1 þ a2ð Þ þ a rþ gð Þ a1 þ a2ð Þ
bdr
3.2. Equilibria

This subsection is dedicated to the investigation of the exis-

tence of equilibria points of the model (18)-(22). The induction
of the parameter l as a constant flow of EVD from ethe nvi-
ronment has a significant part. So, we can state that there

would be only chance of disease-free equilibrium point in the
absence of l; i.e.,

w0 ¼ F; 0; 0; 0; 0ð Þ ¼ a1
r
; 0; 0; 0; 0

� �
: ð32Þ

And there will be no disease-free condition if l is positive.
In this case, we can find the endemic equilibrium point as
follows.

Let us take E ¼ F;L;Q;W;Gð Þ; be an equilibrium point
i.e.

a1 � b1Lþ b2Wþ kGð ÞF� rF ¼ 0; ð33Þ

a2 þ b1Lþ b2Wþ kGð ÞF� rþ gþ cð ÞL ¼ 0; ð34Þ

cL� rQ ¼ 0; ð35Þ

rþ gð ÞL� bW ¼ 0; ð36Þ

lþ nLþ aW� dG ¼ 0: ð37Þ
On solving the above system (33)-(37), we get the following

endemic equilibria points,

F ¼ a1 þ a2ð Þ � ðrþ gþ cÞL
r

; ð38Þ
Q ¼ cL
r

; ð39Þ

W ¼ ðrþ gÞL
b

; ð40Þ

G ¼ blþ ðbnþ agþ arÞL
bd

: ð41Þ
3.3. Basic reproduction number

To obtain basic reproduction number R0; we follow the work-

ing steps of [55], and get the following;

X ¼

� b1a1
r 0 � b2a1

r � ka1
r

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; ð42Þ

and

Y ¼

rþ gþ c 0 0 0

�c r 0 0

�r� g 0 b 0

�n 0 �a d

2
6664

3
7775; ð43Þ

where X and Y are transmissions and transition matrices

respectively. Now, the matrix XY�1; can be found as follows;

XY�1 ¼

b1a1
rþgþcð Þr þ b2a1 rþgð Þ

rþgþcð Þrb þ ka1 agþarþbnð Þ
rþgþcð Þrbd 0 b2a1

rb þ ka1a
rbd

ka1
rd

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775

ð44Þ
Finally, we have basic reproduction number as follows;

R0 ¼ b1a1
rþ gþ cð Þrþ b2a1 rþ gð Þ

rþ gþ cð Þrbþ
ka1 agþ arþ bnð Þ

rþ gþ cð Þrbd :

ð45Þ
4. Results and discussion on the solution of the model

The system of differential equations (18)-(22), has been solved
numerically to get approximate solutions. The solution is
painted with the help of graphs that are presented below.
These figures are drawn to show the memory effects for differ-

ent values of f. Indeed, the use of fractional order discovers the
hidden phenomena because of the memory effects, that can’t
be seen in the mathematical models with f ¼ 1. The beauty

of the fractional order is that the solution of the fractional
model (18)-(22), tends to the solution of the classical model
(1)-(5) [1], as the value of f tends to 1.

Figs. 2-6 are drawn to show the results for disease-free equi-
librium points when l ¼ 0. Other values of parameters are
a1 ¼ 10; a2 ¼ 3; r ¼ 0:5; g ¼ 0:05; c ¼ 0:06; b ¼ 0:8; n ¼ 0:04;
a ¼ 0:04; d ¼ 0:03; k ¼ 0:01; b1 ¼ 0:006; b2 ¼ 0:012:

Figs. 7-11 are presenting the results for endemic equilibrium
points in the absence of a contaminated environment i.e.,
l ¼ 0 and with values of others parameters as a1 ¼ 10;



Fig. 2 Plotting of different values of f, (for susceptible

individuals).

Fig. 3 Plotting of different values of f, (for infected individuals).

Fig. 4 Plotting of different values of f, (for recovered

individuals).

Fig. 5 Plotting of different values of f, (for deceased

individuals).

Fig. 6 Plotting of different values of f, (for virus pathogens in

the environment).
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a2 ¼ 3; r ¼ 0:02; g ¼ 0:9; c ¼ 0:06; b ¼ 0:8; n ¼ 0:04; a ¼ 0:04;
d ¼ 0:03; k ¼ 0:01; b1 ¼ 0:006; b2 ¼ 0:012:

We can observe in Fig. 12, that the recruitment of EVD in
the environment has a significant impact on the contamination
of the environment.

There are few control strategies which could be adopted to

minimize the virus and its effects on a community, like;

� Isolation of infected individuals (i:e:b1 ¼ 0).

� Careful burial of deceased bodies (i.e. b2 ¼ 0)

The effect of above-mentioned strategies (on all compart-

ments) has been shown in the following Figs. 13-17.
5. Conclusion

A conformable mathematical model for the spread of Ebola
Virus Disease has been proposed and presented. A system of
conformable differential equations is developed to govern the
problem and a well-known theorem has been used to ensure

the well-posedness of it. We have concluded that to minimize
the spread of EVD, isolation of infected individuals and care-
ful burial of deceased bodies should be adopted. In addition,

the absence of flow of EVD from environment can play a
major part to make the population a disease-free one. Graphs
have been plotted, to show the behaviors of the solutions of all

subclasses, for fractional values of derivatives between 0 and 1.
These variation memories for the solutions have not been
revealed yet. So, the use of conformable derivatives is more
important in order to understand any physical phenomena in

depth.
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