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Modeling the Impact of Plant Toxicity
on Plant–Herbivore Dynamics
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Numerous empirical studies over the past two decades have documented
substantial effects of plant toxins on diet choice and feeding behavior
of herbivores, but analytical models have failed thus far to incorporate
toxin-mediated effects of browsing on plant population dynamics. We study
a mathematical model that incorporates plant toxicity in the functional
response of plant–herbivore interactions. The model also includes a Lotka–
Volterra type competition between plants. The model exhibits a rich variety
of complex dynamics including Hopf bifurcation and period-doubling bifur-
cations. Differences in dynamical behavior stem from interspecific differences
in plant biology and strategies for growth and defense as well as variation in
responses of herbivores to toxins. Analyses suggest that for realistic param-
eter values, herbivores are capable of promoting coexistence of plant species
by ameliorating competitive effects and hence enhancing biodiversity.

KEY WORDS: Mathematical model; bifurcation; plant-herbivore dynamics;
functional response; plant toxicity.

1. INTRODUCTION

Three groups of chemicals interact to control mammalian herbivory. They
are nutrients (nitrogen, phosphorous, carbohydrates, etc.), digestion inhib-
itors (fiber, tannins), and toxins [30,31]. Nutrients increase forage intake
because they are required by herbivores and often are limiting in the
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food supply [33]. Digestion inhibitors reduce herbivory by slowing the rate
of digestion [26,30]. Toxins reduce herbivory by satiating the herbivore’s
detoxification system, i.e., the herbivore either stops eating a poisonous
food or dies. Poisoning is uncommon because consumption of a toxic food
usually stops before lethal poisoning occurs.

Over the past two decades, chemically mediated interactions between
plants and herbivores have been the focus of intensive research in
ecology, evolutionary biology and resource management (for reviews, see
[21,25,27,31]. Although most of this research has emphasized insect–plant
interactions [16], studies of plant–mammal interactions have been the most
cited (1995 Science Citation Index (ISI) Most Cited Papers—[6,13]) and pro-
vided much of the foundation of current plant defense theory, for example,
the growth rate hypothesis [5,6,13] and the carbon/nutrient balance hypoth-
esis [5]. Unfortunately, prior models have not explicitly incorporated toxic-
ity effects on the dynamics of mammalian herbivores and plants. Here, we
use results from research on plant–mammal interactions as the empirical
basis for developing a model that extends the scope of plant defense the-
ory by incorporating chemically mediated effects of browsing on vegetation
dynamics.

Holling [19,20] proposed the concept of a functional response of a
predator to prey abundance. In brief, a functional response is the instan-
taneous change in the rate of intake of prey by a predator in response
to prey abundance. The functional response is characterized by a mono-
tonic increase in prey consumption as prey biomass increases up to the
biomass at which the predator’s ability to eat more prey becomes satiated.
Thereafter, prey consumption is constant irrespective of further increase
in prey abundance. In most cases the cause of satiation is believed to be
the amount of time it takes the herbivore to mechanically handle plant
biomass (bite, chew, ruminate) [1,2,22,23,28]. Alternatively, satiation could
be induced by toxins with amelioration by dietary nutrients [31]. In this
paper, we model a toxin-dependent functional response to explore how
chemically mediated mammalian herbivory can affect vegetation dynamics.

This article is concerned with ecosystem consequences of chemi-
cally mediated mammalian herbivory. A functional response model [19,20]
of plant–herbivore interactions is built. Unlike all previous functional
response models of plant-mammal interactions (e.g., [2,22,23,28], this
model explicitly incorporates satiation by toxins.

2. THE MODEL

In the case of plant–herbivore interactions, mechanical handling is
not the only plant trait constraining the rate of biomass consumption.
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The diversity and concentrations of toxic plant defenses [18] and the
mix of nutrients [32,33] in plant tissue are often more important deter-
minants of consumption rate than mechanical handling (see reviews by
[5,7,8,10,25,31]). This is because the rate of intake of plant biomass no
longer increases after satiation by a specific toxin, irrespective of the abun-
dance of plant biomass containing the satiating toxin. Thus, a functional
response in a plant–herbivore system also can be caused by the mix of
toxins and nutrients in plant tissue [7,8,10,31].

2.1. Model Formulation

We first derive a functional response which incorporates toxin sati-
ation when there is a single plant. Consider the case when there is no
toxin. Let N denote the number of units (or briefly, number) of plant
twigs available, Ts denote the searching time, and e denote the encoun-
ter rate per unit of twigs. Then the total number of twigs encountered in
time Ts is TseN . If h denotes the time a herbivore spends handling (time
taken to bite, chew, and process) one unit of twigs, then the total handling
time is Th = hTseN . Then, traditionally, the consumption rate has been
defined as

E = TseN

Ts +Th

= eN

1+heN
=:f (N). (1)

To investigate the impact of plant toxicity on the herbivore–plant inter-
actions, in this paper, we call E the effective encounter rate. The actual
(or effective) consumption rate should be lower than E due to the
toxicity.

From the meaning of h we see that 1/h represents the maximum number
of twigs a herbivore may consume per unit of time in the absence of toxic-
ity (1/h is in fact the asymptote of the function f (N) as N →∞). However,
when toxin is present the actual consumption slows as the number of twigs
encountered (and consumed) increases. Consequently, the maximum amount
of toxin-containing twigs a herbivore can consume per unit time, denoted
by G, is smaller than 1/h. This suggests that the toxin-adjusted consumption
rate, denoted by C(N), should have a lower asymptote or a smaller maxi-
mum value than that of E(N) (or f (N)). To derive a such function, notice
that the ratio C/E should be a decreasing function of E with its value close
to 1 for small E and close to zero when E approaches some threshold value.
One simple function that can be used to reflect this relationship between C
and E is shown in Figure 1 and can be described as:
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(a) (b)

Figure 1. (a) The ratio
C
E

vs. the effective encounter rate; (b) the consumption rate vs. the

effective encounter rate.

C
E

=1− αE

G
, (2)

where α is a scaling parameter which is chosen such that the consumption
rate C is bounded by G. Rewriting (2) to express C as a function of E we
have

C(E)=E

(
1− αE

G

)
. (3)

To determine the value for α, we notice that the function C(E) has a max-
imum G/(4α), which occurs at E =G/(2α) (see Figure. 1(b)). Thus, α =1/4.
This value is used in the rest of this paper. We only are concerned about
the case in which C(E) is nonnegative, i.e., E/(4G) � 1, which is always
true if G>1/(4h) as E <1/h. Combining this with the fact that G<1/h we
assume in the rest of the paper that

1
4h

<G<
1
h

. (4)

The consumption rate as a function of the plant abundance is
obtained by substituting (1) into (3):

C(N) = f (N)

(
1− 1

4G
f (N)

)

= eN

1+ eN

(
1− 1

4G

eN

1+ eN

)
. (5)
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(a) (b)

Figure 2. C vs. the plant abundance N . (a) G� 1
2h

; (b) G< 1
2h

.

The curve of the function is either monotonically increasing with
the asymptote below G if G � 1

2h
(see Figure 2(a)) or has a shape

similar to the type IV functional response [14] with a maximum value
below G and an asymptote less than its maximum value if G < 1

2h
(see Fig. 2(b)).

Consider a landscape of n plant species and one herbivore popula-
tion, in which each plant species may have a different level of toxicity and
competitive ability for resources, and the herbivore’s functional responses
to plant abundance are dependent on plant toxicity. The toxin-dependent
intake rate of plant i per herbivore can be derived in a similar way as for
a single plant species. Let Ni denote the plant abundance of plant spe-
cies i at time t ; N = (N1,N2, . . . ,Nn), with the subscript i denoting the
plant species; ei the encounter rate; hi the handling time; Gi the maximal
amount of toxin of plant species i that can be eaten before an herbivore
dies; Ei =fi(N) the effective encounter rate of species i. Then from (1) and
(3) we get

Ei =fi(N)= eiNi

1+
n∑

i=1

hieiNi

(6)

and

Ci (N)=fi(N)

(
1− aifi(N)

Gi

)
, i =1,2, . . . , n, (7)

where ai = 1/4. Using the functional response given in (7), our model for
the plant–herbivore interaction is given by the following system of differ-
ential equations:
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dP

dt
=

n∑
j=1

BjCj (N)P −DP,

dNi

dt
= riNi

(
1− Ni +

∑n
j=1,j �=iβijNj

Ki

)
−Ci (N)P, i =1,2, . . . , n,

(8)

where P = P(t) denotes the number of herbivores at time t ; Bi the con-
version of consumed plant species i biomass into new herbivores, D the
per capita rate of herbivore death due to causes unrelated to plant toxic-
ity, ri the plant growth rate under the best circumstances in the focal envi-
ronment, i.e., no competition for resources by plants, βij the competition
parameter which measures the competition intensity of species j against
species i, and Ki is the carrying capacity. All parameters and their units
are defined in Table 1. A more detailed discussion on the parameter values
is given in Section 3 when the simulation results are presented. This model
combines the approaches of Holling [19,20], Lundberg [22], Lundberg and
Astrom [23].

2.2. Equilibria and their Stability

We now consider the case of two plant species for which Gi =1/(2hi),
i.e., the function Ci (N) is a monotonically increasing function with an
asymptote Gi (Fig. 2a).

Table I. Parameters, units, and values used in the paper.

Parameter Unit Value

G1 Max units of type 1 toxin-containing twigs a
herbivore can consume/day

8 (Figs. 5–7)

G2 Max units of type 2 toxin-containing twigs a
herbivore can consume/day

80 (Figs. 5–7)

hi (i =1,2) Time for handling one unit of type i twigs
in the absence of toxin

1/hi � 2Gi e.g.,
1/32–1/400

ei (i =1,2) Rate of encounter/per unit of twigs 0.0001–0.0005
Bi (i =1,2) Conversion constant (herbivore/unit of twigs) 0.00003–0.00006
ri (i =1,2) Max units of new twigs/twig/day 0.01–0.003
Ki (i =1,2) Carrying capacity of type i plant 104–105

βij (i, j =1,2) Competition coefficient 10−1–10
ai Scaling constant 1/4
D Per capita death rate of herbivore 0.00003–0.0002
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2.2.1. Boundary Equilibria

The system (8) has six possible boundary equilibria (i.e., at least one
component is zero):

E0 = (0,0,0), E1 = (0,K1,0), E2 = (0,0,K2),

Ē = (0, N̄1, N̄2), Ẽ = (P̃ , Ñ1,0), Ê = (P̂ ,0, N̂2),
(9)

where

N̄1 = K1 −β12K2

1−β12β21
, N̄2 = K2 −β21K1

1−β12β21
,

P̃ = r1Ñ1

(
1− Ñ1

K1

)
B1

D
, Ñ1 = 2G1

e1


 1√

1− D
B1G1

−1


 , (10)

P̂ = r2N̂2

(
1− N̂2

K2

)
B2

D
, N̂2 = 2G2

e2


 1√

1− D
B2G2

−1


 .

The first four boundary equilibria have exactly the same properties as
those present in the classical two-species Lotka–Volterra competition sys-
tem. The existence and uniqueness of the equilibria Ẽ and Ê are given in
the following result.

Theorem 1. Assume that Gi � 1
2hi

and that D < BiGi , i = 1,2. The

boundary equilibria Ẽ and Ê given in (9) and (10) exist and are unique.

Proof. From the mathematical symmetry of N1 and N2 it suffices to
prove the result only for Ẽ. To solve for Ẽ we set the right-hand side of
Eq. (8) equal to zero and let N2 =0. Notice that Ñ1 can be solved by first
solving for x =x(N) where

x =:f1(Ñ1,0)= e1Ñ1

1+h1e1Ñ1
(11)

and x satisfies (from the P equation) the equation

B1x

(
1− x

4G1

)
=D, (12)

which has two roots

x± =2G1

(
1±

√
1− D

B1G1

)
.
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Notice that e1N1/(1 + h1e1N1) < 1/h1 � 2G1. Hence, x < 2G1, and conse-
quently, x+ cannot be a root of Eq. (12). Denote x− by x̃, i.e.,

x̃ =2G1

(
1−

√
1− D

B1G1

)
. (13)

Obviously 0<x̃ <1 as D<B1G1. Substituting (13) for x in (11) (and notic-
ing that 2G1 =1/h1) we can solve for Ñ and get

Ñ1 = 2G1

e1


 1√

1− D
B1G1

−1


 . (14)

Using the N1 equation in Eq. (8) and substituting D
B1

for x̃(1 − x̃
4G1

) we
can solve for P̃ and get

P̃ = r1Ñ1

(
1− Ñ1

K1

)
B1

D
.

Clearly P̃ >0 as Ñ <K1. This finishes the proof. �

We remark that the condition D <B1G1 has a clear biological inter-
pretation. B1G1 and D are the per capita growth and death rates of the
herbivore, respectively. Hence, for the herbivore population to survive the
growth rate must exceed the death rate.

2.2.2. Stability of the Equilibria

The first four equilibria in (9) represent the steady states at which the
herbivore is absent. The stability conditions for these equilibria are simi-
lar to those given in the standard Lotka–Volterra competition model pro-
vided that the death rate of the herbivore, D, exceeds the critical value,
min{D1,D2,D3}, where

D1 =B1c10, D2 =B2c20, D3 =B1c̄1 +B2c̄2 (15)

and

c10 = C1(K1,0)= e1K1

1+h1e1K1

(
1− e1K1

4G(1+h1e1K1)

)
,

c20 = C2(0,K2)= e2K2

1+h2e2K2

(
1− e2K2

4G(1+h2e2K2)

)
, (16)

c̄i = Ci (N̄1, N̄2), i =1,2.

More specifically, we have the following result.
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Theorem 2. Let Di , i =1,2,3 be defined as in (15). Then

(a) E0 is always unstable (a saddle);

(b) E1 is locally asymptotically stable (l.a.s.) if and only if
β21K1

K2
>1

and D >D1;
(c) E2 is l.a.s. if and only if

β12K2

K1
>1 and D >D2; and

(d) Ē is l.a.s. if and only if
β21K1

K2
<1,

β12K2

K1
<1 and D >D3.

The proof of Theorem 2 is straightforward. We observe form the above
results that, if the death rate of herbivores is high (i.e., D >Di , i =1,2,3),
then the herbivore population will not persist due to the stability of the
steady states at which the herbivore is absent.

We now consider the stability of Ẽ and Ê, both of which have a pos-
itive component of P . Depending on the focus of a study, one can choose
different parameters to vary for the bifurcation analysis. For example, the
following result uses the growth rates r1 and r2 as bifurcation parameters.
Recall that the existence of Ẽ and Ê requires the conditions D<B1G1 and
D <B2G2 to be satisfied, respectively. �

Theorem 3. Let D<B1G1 and K1 >1/(e1h1). There exist positive con-
stants R21 and D∗

1 <B1G1 such that

(i) Ẽ is l.a.s. if and only if r2/r1 <R21 and D>D∗
1 , and unstable oth-

erwise;
(ii) A supercritical Hopf bifurcation occurs at D =D∗

1 .

Proof. (i) The Jacobian matrix at Ẽ is

J̃ =

 0 a12 ∗

a21 a22 ∗
0 0 a33


 , (17)

where “∗” represents a number that does not affect the eigenvalues of the
matrix and

a12 = P̃ B1e1

(1+h1e1Ñ1)
2

(
1− x̃

2G1

)
,

a21 = −x̃

(
1− x̃

4G1

)
,



1030 Li et al.

a22 = r1Ñ1

(1+h1e1Ñ1)(2+h1e1Ñ1)[
− 2

K1
+
(

3h1e1

1+h1e1Ñ1
+ h2

1e
2
1Ñ1

(1+h1e1Ñ1)
2

)(
1− 2Ñ1

K1

)]
, (18)

a33 = r2

(
1− β21Ñ1

K2

)
− P̃ e2

1+h1e1Ñ1

and x̃ is given in (13). Here, we have used the following equivalent expres-
sion:

1

1+h1e1Ñ1
=1− x̃

2G1
=
√

1− D

G1B1
.

Ẽ is locally asymptotically stable if all eigenvalues of J̃ have negative
real parts. Clearly, a33 is an eigenvalue, and two other eigenvalues are the
roots λ of the equation

λ2 −a22λ−a12a21 =0. (19)

Thus, Ẽ is l.a.s. iff the following conditions hold:

a12a21 <0, a22 <0, a33 <0.

Clearly a12 >0 and a21 <0 as x̃ <2G1. Thus, a12a21 <0. Substituting P̃ (see
(10)) into the inequality we see that a33 <0 is equivalent to the condition

r2

r1
<R21 =:

B1e2Ñ1(1− Ñ1/K1)

D(1−β21Ñ1/K2)

√
1− D

G1B1
, (20)

where Ñ1 is given in (10). Notice that the condition (20) is possible only
if β21Ñ1/K2 <1.

To determine the sign of a22, we consider a22 = a22(Ñ1) as a func-
tion of Ñ1. Notice that, for any Ñ1 > 0, a22 < (or >) 0 if and only if
F(Ñ1)<(or>) 0 where

F(Ñ1)=− 2
K1

+
(

3h1e1

1+h1e1Ñ1
+ h2

1e
2
1Ñ1

(1+h1e1Ñ1)
2

)(
1− 2Ñ1

K1

)
(21)

is a continuous function of Ñ1 for Ñ1 ∈ [0,K1]. Setting F(Ñ1)= 0 we get
the quadratic equation for Ñ1:

AÑ2
1 +BÑ1 +C =0
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with

A=10h2
1e

2
1 >0, C =2−3h1e1K1 <0.

Hence, the equation F(Ñ1)=0 has a unique solution Ñ∗
1 . From

F(0)=− 2
K1

+3h1e1 >0

and

F(K1)=− 2
K1

− 3h1e1

1+h1e1K1
− h2

1e
2
1K1

(1+h1e1K1)
2

<0,

we know that Ñ∗
1 ∈ (0,K1). This shows that a22(Ñ1)=0 has a unique solu-

tion Ñ∗
1 ∈ (0,K1). Note that Ñ1 = Ñ1(D) is a continuous increasing func-

tion of D with

Ñ1(0)=0, Ñ1(D̃)=K1, where D̃ =B1G1

(
1− 1

(1+ e1K1
2G1

)2

)
<B1G1.

Thus, there exists a unique D∗
1 ∈ (0, D̃) such that Ñ1(D

∗
1)=N∗

1 . It follows
that a22 >0 for D<D∗

1 and a22 <0 for D>D∗
1 , and D∗

1 <B1G1. Therefore,
Ẽ is l.a.s. if D >D∗

1 and unstable if D <D∗
1 .

For the proof of part (ii), we notice from the part (i) that a22 = 0 at
D∗

1 . Hence, Eq. (19) has a pair of pure imaginary roots for D =D∗
1 , and

complex roots for D near D∗
1 with the real part �λ=a22. Notice also that

∂�λ

∂D

∣∣∣∣
D=D∗

1

= r1Ñ
∗
1

(1+h1e1Ñ
∗
1 )(2+h1e1Ñ

∗
1 )

∂F

∂Ñ1

∣∣∣∣
Ñ1=Ñ∗

1

∂Ñ1

∂D

∣∣∣∣
D=D∗

1

= −r1Ñ
∗
1

(1+h1e1Ñ
∗
1 )(2+h1e1Ñ

∗
1 )

×
(

2
K1

(
3h1e1

1+h1e1Ñ
∗
1

+ h2
1e

2
1Ñ

∗
1

(1+h1e1Ñ
∗
1 )2

)

+
(

2h2
1e

2
1

(1+h1e1Ñ
∗
1 )2

+ 2h3
1e

3
1Ñ

∗
1

(1+h1e1Ñ
∗
1 )3

)(
1− 2Ñ∗

1

K1

))
∂Ñ1

∂D

∣∣
D=D∗

1
<0

since ∂Ñ1
∂D

> 0, 0 < Ñ∗
1 < K1 and 1 − 2Ñ∗

1/K1 > 0 (see (21) and notice that
F(Ñ∗

1 )=0). From the part (i) we also know that Ẽ is l.a.s. for D>D∗
1 and

unstable for D <D∗
1 . Therefore, a supercritical Hopf bifurcation occurs at

D =D∗
1 . This finishes the proof of Theorem 3. �

From the mathematical symmetry of the N1 and N2 equations the fol-
lowing result can be proved in the similar way as for Theorem 3.
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Theorem 4. Let D < B2G2 and K2 > 1/(e2h2). There exist positive
constants R12 and D∗

2 <B2G2 such that (i) Ê is l.a.s. if and only if r1/r2 <R12
and D >D∗

2 , and unstable otherwise; and (ii) a supercritical Hopf bifurcation
occurs at D =D∗

2 .

The proof of Theorem 4 is very similar to that of Theorem 3. The
constant R12 is

R12 = B2e1N̂2(1− N̂2/K2)

D(1−β12N̂2/K1)

√
1− D

G2B2
,

where N̂2 is given in (10). Notice that the condition r1/r2 <R12 is possible
only if β12N̂2/K1 <1.

Let D4 =B1G1 and D5 =B2G2. If D < min
1�i�5

{Di}, then all six bound-

ary equilibria exist, and E0, E1, E2, and Ē are unstable. If the condition
R12 <

r1
r2

< 1
R21

holds as well, then Ẽ and Ê are also unstable. In this case,
coexistence of the two plants may be expected.

2.2.3. The Interior Equilibrium

It is very difficult to obtain an analytic expression for the interior
equilibrium E∗ due to the high nonlinearity of the equations. Nevertheless,
we have derived equations whose positive root(s) can be used to determine
E∗. Setting the right hand side of (8) equal to zero and eliminating the
variable P ∗ we obtain the following equations for N∗

1 and N∗
2 :

F1(N
∗
1 ,N∗

2 ) =:
2∑

i,j=1,i �=j

BieiN
∗
i (2+hieiN

∗
i +2hj ejN

∗
j )

2(1+h1e1N
∗
1 +h2e2N

∗
2 )2

−D =0,

F2(N
∗
1 ,N∗

2 ) =:
2∑

i,j=1,i �=j

(−1)j riej

(
1−

N∗
i +βijN

∗
j

Ki

)
(22)

(2+2hieiN
∗
i +hj ejN

∗
j )=0.

Each of Eq. (22) defines a curve in the (N1,N2) plane, and an intersec-
tion of the two curves is an interior equilibrium, as shown in the two fig-
ures on the left of Fig. 3 (the circle and triangle indicate the stability and
instability, respectively). The figures on the right are produced by AUTO
[15] showing that the solutions either converge to the interior equilibrium
(top right) or diverge (bottom right).
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Figure 3. The figures on the left show the interior equilibrium E∗ as an intersection of the
two curves of equations (22). The figures on the right illustrate the stability of E∗ (top) and
instability of E∗ (bottom) under different conditions.

3. BIFURCATION ANALYSIS

A bifurcation occurs when the stability of an equilibrium or a peri-
odic solution switches as the bifurcation parameter passes through a crit-
ical point. We have found several bifurcations in the last section. In this
section, more complex bifurcations are demonstrated thorough numeri-
cal simulations. In our first example, we choose r1 to be the bifurcation
parameter and examine how the stability of the equilibria may change
when r1 is varied.

Assume that D<B2G2. Rewrite the condition
r1

r2
<R12 in terms of r1:

r1 <
r2B2e1N̂2(1− N̂2/K2)

D(1−β12N̂2/K1)

√
1− D

G2B2
, (23)
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Figure 4. Time plots showing the bifurcations as r1 increases.

where

N̂2 = 2G2

e2


 1√

1− D
B2G2

−1


 .

If all parameters are fixed except r1, then the right-hand side of (23)
defines a critical value, rc1 (c for critical), such that Ê is stable if r1 <

rc1, and unstable if r1 > rc1. This is confirmed by our numerical simula-
tions which are shown in Fig. 4. This figure illustrates one scenario in
which the species 1 is assumed to be more toxic (i.e., G1 = 80 > G2 =
8), but may have a slower growth rate (e.g., r2 = 0.015 and r1 < r2). A
more detailed discription on parameter values and units is given in the
discussion of Fig. 5. It shows three critical points rci , i = 1,2,3. When
r1 = 0.0011 < rc1 ≈ 0.0012, species 1 goes extinct due to the stability of
Ê (Fig. 4(a)). For r1 = 0.0013 > rc1, Ẽ is unstable and the two species
coexist in the form of a stable interior equilibrium E∗ as long as r1
is not too large (Fig. 4(b)). If we continue to increase r1, the interior
equilibrium loses its stability and a stable periodic solution emerges. For
example, when r1 = 0.00135 a stable periodic solution occurs (Fig. 4(c)),
indicating that there exists another critical point rc2 ∈ (0.0013,0.00135) at
which a Hopf bifurcation occurs. When r1 is further increased a period
doubling bifurcation occurs at rc3 ≈ 0.0015, i.e., when r1 passes through
rc3 the periodic solution becomes unstable and a stable period-2 solution
appears (Fig. 4(d)).
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Note that the coexistence of the two plant species exhibited in Fig. 4
will not be possible for the selected parameter values if the herbivore pop-
ulation is absent. To see this more clearly, we remove the P equation
by assuming that P = 0 in the system (8). Then we obtain the standard
Lotka–Volterra competition model. One of the outcomes predicted by the
Lotka–Volterra model is competitive exclusion, which will occur if one of
the two conditions holds:

β21K1

K2
>1,

β12K2

K1
>1. (24)

The second condition is indeed satisfied by the parameter values used in
Fig. 4. Plant species 1 will be excluded in the absence of herbivores, i.e.,
N1(t) → 0 as t → ∞. However, from Fig. 4, we see that this competi-
tive exclusion occurs only when the growth rate of species 1 is small, i.e.,
r1 < 0.0011 (Fig. 4(a)). Species 1 is able to coexist with species 2 when
r1 >0.0011 either at a steady state (Fig. 4(b)) or in an oscillatory fashion
(Fig. 4(c) and (d)).

Of course bifurcations also can be studied for parameters other than
the growth rate ri . For example, let the competition parameter β12 be the
bifurcation parameter. Figure 5 shows several bifurcations. For demonstra-
tion purposes, we have chosen the parameter values that capture some of
the characteristics of two plant species, black spruce (Picea mariana, here-
after Pima), and resin birch (Betula resinifera, hereafter Bere), referred to
as species 1 and 2, respectively. These plants are browsed by snowshoe
hares Lepus americanus which may ingest a different amount of toxin-con-
taining twigs of species i.

The parameter values are either estimated by using experimental/field
data or are selected for the purpose of demonstration. For example, In
the empirical paper by Bryant et al. (in press), Gi was estimated by using
Ti (the toxin content of plant) and Mi (toxin satiation), and Gi = Mi/Ti

(i = 1,2). Ti was calculated using OG resin content (T1 = 20% for spruce
and T2 = 6% for birch), and Mi was calculated using the mass of resin
consumed/day in the resin-chow trials (M1 =1.0 g resin/hare/day for spruce
and M2 = 2.7 g resin/hare/day for birch). Converting to the appropriate
units we obtain G1 = 8 and G2 = 80 (see Table 1 for the unit). For ri we
adopted the data from Chapin et al. [12] in which the unit is grams dry
mass/seedling. The seedlings were about 3 months old and grown in pots.
These data give us an index of growth rate for the whole plants, which
will be in the range 0.001 < ri < 0.003. We have considered two scenar-
ios: (i) G1 < G2 and r1 < r2 and (ii) G1 < G2 and r1 > r2. The first sce-
nario assumes that the more toxic plant (type 1) has a lower growth rate
while the second scenario assumes that the more toxic plant has a higher
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Figure 5. Bifurcation diagram calculated using AUTO for the case when G1 <G2 and r1 <

r2. It shows two bifurcation points (HB). There are also period doubling bifurcations (PD)
and limit points (LP).

growth rate. For illustration purposes we have chosen r1 = 0.00167 and
r2 = 0.0028 for the first case and r1 = 0.00167 and r2 = 0.0028 for the sec-
ond case. hi is chosen to be equal to 1/(2Gi), K1 =104 and K2 =105 (these
values may vary from one environment to another). We do not have data
for other parameters which have been chosen to be in reasonable ranges.
D = 0.00003 for Fig. 5 and 0.00014 for Fig. 7. B1 = 0.000034 and B2 =
0.000056 for both Figs. 5 and 7. e1 =0.0001, e2 =0.0005 and β21 =0.3 for
Fig. 5, and e1 = e2 =0.0005 and β21 =0.75 for Fig. 7. β12 is chosen to be
the bifurcation parameter.

Figure 5 is a bifurcation diagram generated using AUTO [15]. For
β12 < 0.38 or β12 > 1.1 there is a stable interior equilibrium. This interior
equilibrium becomes unstable when β12 passes through the Hopf bifurca-
tion (HB) points, βc1 ≈ 0.38 and βc2 ≈ 1.1, and stable periodic solutions
appear. As β12 continues to change (increasing from the left branch of
periodic solutions and decreasing from the right branch of periodic solu-
tions) other bifurcations occur including period doubling (PD) bifurca-
tions and limit point (LP) bifurcations. Figure 6 presents four time plots
to illustrate some of these bifurcations. The top two plots are for the cases
in which β12 is slightly greater than 0.38 and slightly less than 1.1, respec-
tively. The bottom two plots are for the case in which β12 is between 0.38
and 1.1 but near the PD bifurcation points.

Figures 5 and 6 are for the case in which species 1 is more toxic (i.e.,
G1 <G2) but has a slower growth rate (i.e., r1 <r2). Other bifurcations are
also possible if we consider different scenarios. Figures 7 and 8 are for the
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Figure 6. Time plots for various values of β12 chosen according to the diagram in Figure 5.

Figure 7. Bifurcation diagram for the case G1 < G2 and r1 > r2. The labels have the same
meanings as in Figure 5.
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Figure 8. Time plots corresponding to Figure 7.

case in which the plant species 1 is still more toxic but has a higher growth
rate, i.e., G1 <G2 and r1 >r2. Although most of the dynamics of the two
scenarios are similar, Fig. 7 and 8 exhibit some differences in the dynamics
compared to those shown in Figs. 5 and 6.

4. DISCUSSION

We have modified the standard Holling type II functional response to
incorporate reduced consumption by herbivores due to plant toxins. The
dependence of an herbivore’s functional response on plant toxicity has not
been considered in previous models for plant–vertebrate herbivore inter-
actions, despite the acknowledged role of plant toxins in diet choice by
herbivores from a variety of taxa and ecological contexts [4,5,17,18,24].
Thus, the addition of toxicity within the analytical framework of a func-
tional response provides an opportunity for enhanced realism with which
to predict population-level behavior.

Our analysis of the modified system described by the toxin-mediated
functional response revealed a rich array of possible behaviors spanning
the spectrum from damped oscillations to complicated cyclical dynamics
through Hopf bifurcations and period-doubling bifurcations. Differences
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in dynamical behavior stem from two sources. First, interspecific differ-
ences in plant growth rates, competitive ability, and carrying capacity
interact to influence dynamics irrespective of herbivory. Evidence from the
tropical rain forest and northern taiga forest suggests that slow-growing
plants invest relatively more in toxic defenses than do fast growing plants
[5,6,12]: a “fast” life history places a premium on rapid growth and early
reproduction, versus a “slow” life history emphasizing tolerance to stress-
ful conditions. In the former strategy, investment in growth provides plants
an enhanced capacity to replace tissues eaten by herbivores (compensatory
growth), whereas in the slow-growth strategy, enhanced chemical defense
against herbivory is emphasized.

A second source of dynamical complexity stems from variation in her-
bivore responses to plant toxins. Changes by herbivores in the handling
time, threshold capacity, or conversion into offspring of toxin-containing
plant material can alter equilibrial relationships of 2-species plant com-
munities by magnifying or diminishing the costs of herbivory for plants
that vary in toxin content. Feeding trials with snowshoe hares suggested
that considerable intra-specific variation exists in sensitivity to plant tox-
ins; hares from northern latitudes were capable of consuming more toxin-
containing twigs than hares from southern latitudes [29]. The implications
for plant communities of such geographic variation in herbivore tolerance
warrant closer inspection.

Our analysis also demonstrates the possible influence of herbivores
on the diversity of plant communities. For example, we compared the
outcomes of two models of plant competition, one of which included
herbivores. For the same set of parameters, the model without herbi-
vores predicted competitive exclusion, whereas the model with herbivores
predicted coexistence of the plant species. Thus, herbivores may be able
to ameliorate the consequences of interspecific competition by virtue of
their responses to plant toxins. Note that our discussion has focused on
comparisons of two plant species, but the level of biological organiza-
tion is somewhat arbitrary. With modifications to allow for interbreeding,
our model could be applied to genotypes within a single species, raising
the interesting possibility that herbivores may be capable of maintaining
distinctive “defense” genotypes in a plant population.

One of the major results of a quarter century of research on chem-
ically mediated interactions between woody plants and vertebrate her-
bivores has been the empirical verification of the Freeland and Janzen
hypothesis [18]: Lipophilic plant toxins determine the intake of many
woody plants by vertebrate herbivores (e.g., [4,17,24]). The verification
of the Freeland and Jazen hypothesis has provided a sound foundation
for starting the mathematical analysis of toxin-regulated plant–herbivore
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interactions (Bryant et al., in press) using the functional response approach
of [19,20,22]. The preliminary analysis of Bryant et al. (in press) predicts
that toxicity differences among plants cause differences in the plant bio-
diversity of ecosystems, and these predictions have been experimentally
verified.

Competition among plants is a major driver of plant biodiversity,
both at the level of plant species and at the level of plant chemical geno-
types. Our model has for the first time coupled the Lotka–Volterra com-
petition equations to a toxin-regulated functional response, thereby greatly
extending the theoretical scope and application of chemical ecology. This
model has led to the testable prediction that the dynamical behavior of
ecosystems can be controlled by the interaction between toxin-regulated
herbivory and plant competition. We are now in the process of mathe-
matically analyzing how the ability of slowly growing [3,11] and chem-
ically defended [5,6,13] plants to persist at very low-resource availabili-
ties affects the defense-competition dynamics. The model presented in the
current paper will for the first time allow the mathematical analysis of
herbivory’s effects on ecosystems where Lotka–Volterra competition may
be expected (e.g., some agroecosystems), and the mathematical variants
we are now exploring will allow similar analysis of the effects of herbiv-
ory in natural ecosystems where the ability of some plants to persist in
low resource environments may override Lotka–Volterra competition. Such
analyses will be of importance to ecologists and resource managers faced
with understanding plant–herbivore interactions in a world where invasive
plants and herbivores are a significant and growing problem, where chang-
ing atmospheric chemistry is expected to alter the biochemistry and palat-
ability of many plant species, and where climate warming is expected to
cause unparalleled migrations of both plants and herbivores.
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