Latest commit 82ca6d4 Jan 15, 2017 @Mohanson Mohanson committed with Fix a warning on Python3 (#5042)
* Fix a warning on python3

In Python3, 50000 / 10 = 5000.0. This will result in a warning from numpy:
VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future.

* Use // instead
Permalink
..
Failed to load latest commit information.
README.md Adding mnist_acgan.py example link in README (#4876) Dec 30, 2016
addition_rnn.py Fix a warning on Python3 (#5042) Jan 15, 2017
antirectifier.py PEP8 fixes in examples. Jan 11, 2017
babi_memnn.py Add missing Softmax activation memnn. (#3706) Sep 6, 2016
babi_rnn.py Update download path for babi dataset Aug 29, 2016
cifar10_cnn.py PEP8 fixes in examples. Jan 11, 2017
conv_filter_visualization.py PEP8 fixes in examples. Jan 11, 2017
conv_lstm.py Style fixes Nov 5, 2016
deep_dream.py PEP8 fixes in examples. Jan 11, 2017
image_ocr.py Remove unused imports and unused variables (#4930) Jan 6, 2017
imdb_bidirectional_lstm.py Remove unused imports and unused variables (#4930) Jan 6, 2017
imdb_cnn.py Remove unused imports and unused variables (#4930) Jan 6, 2017
imdb_cnn_lstm.py Remove unused imports. (#4083) Oct 17, 2016
imdb_fasttext.py PEP8 fixes in examples. Jan 11, 2017
imdb_lstm.py Remove unused imports and unused variables (#4930) Jan 6, 2017
lstm_benchmark.py Style fixes May 5, 2016
lstm_text_generation.py Remove unused imports and unused variables (#4930) Jan 6, 2017
mnist_acgan.py Add python3 support for some examples (#4715) Dec 15, 2016
mnist_cnn.py Make examples agnostic to image_dim_ordering Sep 6, 2016
mnist_hierarchical_rnn.py Reference Style Fix (#4972) Jan 10, 2017
mnist_irnn.py Fixed typo (#2770) May 21, 2016
mnist_mlp.py Remove unused imports and unused variables (#4930) Jan 6, 2017
mnist_net2net.py Add python3 support for some examples (#4715) Dec 15, 2016
mnist_siamese_graph.py PEP8 fixes in examples. Jan 11, 2017
mnist_sklearn_wrapper.py PEP8 fixes in examples. Jan 11, 2017
mnist_swwae.py Style Fix (#4912) Jan 4, 2017
mnist_transfer_cnn.py Make examples agnostic to image_dim_ordering Sep 6, 2016
neural_doodle.py Style Fix (#4923) Jan 8, 2017
neural_style_transfer.py PEP8 fixes in examples. Jan 11, 2017
pretrained_word_embeddings.py Word embdedding example updated (#3417) Aug 8, 2016
reuters_mlp.py PEP8 fixes in examples. Jan 11, 2017
stateful_lstm.py Remove extraneous batch_input_shape (#4393) Nov 17, 2016
variational_autoencoder.py fixed variational autoencoder visualization for Gaussian latent space ( Nov 23, 2016
variational_autoencoder_deconv.py PEP8 fixes in examples. Jan 11, 2017

README.md

Keras examples directory

addition_rnn.py Implementation of sequence to sequence learning for performing addition of two numbers (as strings).

antirectifier.py Demonstrates how to write custom layers for Keras.

babi_memnn.py Trains a memory network on the bAbI dataset for reading comprehension.

babi_rnn.py Trains a two-branch recurrent network on the bAbI dataset for reading comprehension.

cifar10_cnn.py Trains a simple deep CNN on the CIFAR10 small images dataset.

conv_filter_visualization.py Visualization of the filters of VGG16, via gradient ascent in input space.

conv_lstm.py Demonstrates the use of a convolutional LSTM network.

deep_dream.py Deep Dreams in Keras.

image_ocr.py Trains a convolutional stack followed by a recurrent stack and a CTC logloss function to perform optical character recognition (OCR).

imdb_bidirectional_lstm.py Trains a Bidirectional LSTM on the IMDB sentiment classification task.

imdb_cnn.py Demonstrates the use of Convolution1D for text classification.

imdb_cnn_lstm.py Trains a convolutional stack followed by a recurrent stack network on the IMDB sentiment classification task.

imdb_fasttext.py Trains a FastText model on the IMDB sentiment classification task.

imdb_lstm.py Trains a LSTM on the IMDB sentiment classification task.

lstm_benchmark.py Compares different LSTM implementations on the IMDB sentiment classification task.

lstm_text_generation.py Generates text from Nietzsche's writings.

mnist_acgan.py Implementation of AC-GAN ( Auxiliary Classifier GAN ) on the MNIST dataset

mnist_cnn.py Trains a simple convnet on the MNIST dataset.

mnist_hierarchical_rnn.py Trains a Hierarchical RNN (HRNN) to classify MNIST digits.

mnist_irnn.py Reproduction of the IRNN experiment with pixel-by-pixel sequential MNIST in "A Simple Way to Initialize Recurrent Networks of Rectified Linear Units" by Le et al.

mnist_mlp.py Trains a simple deep multi-layer perceptron on the MNIST dataset.

mnist_net2net.py Reproduction of the Net2Net experiment with MNIST in "Net2Net: Accelerating Learning via Knowledge Transfer".

mnist_siamese_graph.py Trains a Siamese multi-layer perceptron on pairs of digits from the MNIST dataset.

mnist_sklearn_wrapper.py Demonstrates how to use the sklearn wrapper.

mnist_swwae.py Trains a Stacked What-Where AutoEncoder built on residual blocks on the MNIST dataset.

mnist_transfer_cnn.py Transfer learning toy example.

neural_doodle.py Neural doodle.

neural_style_transfer.py Neural style transfer.

pretrained_word_embeddings.py Loads pre-trained word embeddings (GloVe embeddings) into a frozen Keras Embedding layer, and uses it to train a text classification model on the 20 Newsgroup dataset.

reuters_mlp.py Trains and evaluate a simple MLP on the Reuters newswire topic classification task.

stateful_lstm.py Demonstrates how to use stateful RNNs to model long sequences efficiently.

variational_autoencoder.py Demonstrates how to build a variational autoencoder.

variational_autoencoder_deconv.py Demonstrates how to build a variational autoencoder with Keras using deconvolution layers.