

Secure Command Line Solution for Token-
based Authentication
Dave Dykstra1,1 , Mine Altunay2, Jeny Teheran2

1Scientific Computing Division, Fermilab, Batavia, IL, USA
2Core Computing Division, Fermilab, Batavia, IL, USA

Abstract. The WLCG is modernizing its security infrastructure, replacing
X.509 client authentication with the newer industry standard of JSON Web
Tokens (JWTs) obtained through the Open ID Connect (OIDC) protocol.
There is a wide variety of software available using the standards, but most
of it is for Web browser-based applications and doesn’t adapt well to the
command line-based software used heavily in High Throughput Computing
(HTC). OIDC command line client software did exist, but it did not meet
our requirements for security and convenience. This paper discusses a
command line solution we have made based on the popular existing secrets
management software from Hashicorp called vault. We made a package
called htvault-config to easily configure a vault service and another called
htgettoken to be the vault client. In addition, we have integrated use of the
tools into the HTCondor workload management system, although they also
work well independent of HTCondor. All of the software is open source,
under active development, and ready for use.

1 Introduction

When the Worldwide LHC Computing Grid (WLCG) was built, X.509 client authentication
was chosen as the basic method of distributing authorization around the world, in particular
X.509 proxy certificates. Although X.509 is ubiquitous for authenticating servers to clients,
it was never very much used by the industry to authenticate clients to servers. As a result,
much of the software used for authentication and authorization had to be maintained by the
grid High Throughput Computing (HTC) community. This limited the amount of effort that
could be put into improvements and made much of the software less convenient to use than
it could be.

Since that time, the industry has converged on new standards for authentication and
authorization, in particular OAuth 2.0 [1] for obtaining authorization tokens, its Open ID
Connect (OIDC) [2] specialization for HTTP, and JSON Web Tokens (JWTs) [3]. Much off-
the-shelf software is available that supports these standards. JWTs are very attractive because
they are much more flexible in what they authorize than X.509 proxy certificates were, so
they can be made to be very limited and therefore less of a risk if they are ever stolen. JWTs
also have the scalability needed by HTC in that, like X.509 proxy certificates, they can be
fully verified by the end clients. That enables them to be replicated to many independent
jobs without requiring all of them to contact a server to verify authenticity.

The primary disadvantage of applying the use of these new standards to HTC is that they
are designed for web browser-based applications, and many of our applications are based on
the command line. That means that on the client side there is very little software available

1 Corresponding author: dwd@fnal.gov

for the command line, and that it inconveniently requires the use of a web browser for at least
the initial authentication and authorization by the user.

In cooperation with the WLCG Authorization Working Group, we evaluated [4] the best
existing command line OIDC client tool oidc-agent [5] and found that it didn’t meet our
security requirements and especially our convenience requirements. Our current system for
obtaining and storing X.509 proxy certificates [6] is completely hidden from most of the
users, authenticating with Kerberos, and it stores relatively long-lived credentials in a
separate secured server called MyProxy [7]. Those longer-lived credentials are used by the
HTCondor [8] workload management system to send updated short-lived credentials with
computing jobs. We didn’t want a new system that was vastly less convenient or any less
secure than our existing system. The equivalent long-lived credential in OAuth is called a
refresh token, and oidc-agent stores that encrypted on disk and unencrypted in memory. That
means that in addition to the web browser interaction always required by OIDC to obtain a
refresh token, with oidc-agent each user has to keep the encrypted refresh token secure and
enter in a passphrase whenever a background process needs to be restarted. The users also
have to go through an additional one time step to register the oidc-agent command as a client
of the OIDC token issuer.

Instead, we found that we could use an existing, popular general purpose and open source
secrets management software package called vault [9] from Hashicorp to store the refresh
tokens of all the users from multiple Virtual Organizations (VOs). Vault already supported
OIDC and Kerberos and has a very flexible plugin architecture and REST API. The rest of
this paper describes the solution based on vault that we came up with. The solution has very
similar security as our existing system, and its convenience is also very similar to our existing
system except that users are required to authenticate with their web browsers once.

2 Architecture and design

The components of our solution are (1) vault, (2) a vault configurator package we made called
htvault-config [10], and (3) a vault client we made called htgettoken [11]. Vault is
registered as an OIDC client (or multiple clients) of a token issuer (or multiple token issuers)
and holds the OIDC client id and secret as part of its configuration. Vault in this solution
takes on the role that web applications or portals play in a typical OIDC flow, shared by many
users with web browsers. Once a refresh token is stored in vault, htgettoken can continue to
obtain new OAuth access tokens (that is, JWTs) completely from the command line.

The htvault-config package (described more fully in section 3) does all the configuration
of vault, in particular defining the OIDC token issuers and roles within each issuer. There is
expected to be a token issuer defined for each VO, although they may be mapped to a
common issuer. Different roles within an issuer map to a different list of scopes requested
from an issuer. The package additionally configures storage paths in vault (similar to paths
on a filesystem) to store a refresh token for each issuer +role+user combination. Users are
granted access to all their refresh tokens when they authenticate with either OIDC or
Kerberos, by use of a vault token generated by vault. (Vault supports many other ways of
getting new vault tokens as well, and we will probably support more in the future.) If a client
reads from a vault path where a refresh token is stored, vault contacts the token issuer for a
new access token.

The htgettoken tool (described more fully in section 4) controls the flows for obtaining
tokens. It does whatever is necessary to obtain a new access token. When a working vault
token is not already stored on the local machine, htgettoken obtains a vault token and stores
it unencrypted. In order to follow the spirit of security guidelines established for X.509 user
credentials, stored vault tokens are only allowed to last less than 1 million seconds (~11.5
days), default 1 week. When no refresh token has yet been stored in vault, htgettoken requests

vault to use the OIDC flow, which includes using a web browser. For the rest of the week
on that machine, htgettoken uses that vault token to obtain access tokens. When the vault
token expires, or if the user logs in to a different machine, htgettoken uses Kerberos to obtain
a new 1 week vault token.

Figure 1. OIDC flow with vault and htgettoken

Figure 1 shows the flow that happens when obtaining an initial refresh token. The

example includes a token issuer that authenticates through federated identity, with a separate
identity provider. The steps are as follows:

1. Since no vault token exists, htgettoken contacts vault to do the OIDC flow.
2. Vault contacts the token issuer to start a transaction. Vault replies to htgettoken with

a URL for the user’s web browser that includes enough information to continue the
flow.

3. The user’s web browser contacts the token issuer and the user chooses the institution
they want to authenticate with.

4. The token issuer redirects the web browser to the identity provider, where the user
logs in.

5. The identity provider redirects the web browser back to the token issuer for final
approval and granting of permission

6. The token issuer redirects the browser back to vault along with the access token and
refresh token.

7. Vault returns the access token and a vault token to htgettoken.

3 htvault-config

The htvault-config package makes it convenient for anyone to install and configure vault for
use with htgettoken. In addition to configuration, it includes two compiled golang vault
plugins. One of the plugins, vault-plugin-auth-jwt [12], comes standard from Hashicorp with
vault, but we have added a few pull request patches that have not yet been accepted by the
plugin maintainers although they have indicated approval. Someday we should be able to
remove this plugin from our package. The other plugin, vault-plugin-secrets-oauthapp [13],
comes from Puppet Labs. We use the latter plugin to store refresh tokens and convert them
into access tokens.

Web
browser

OIDC
Token
Issuer

Identity
Provider

Vault
htvault-
config

Access JWT &
refresh token

1

3,5

4

6

2
htgettoken

Access JWT &
vault token

7

Configuring vault with the htvault-config rpm is quite simple. The configuration is
implemented with a bash shell script so the parameters are defined via shell variables, as
detailed in the documentation. We have plans to replace those variables with yaml files in
the future.

The package installs a configuring systemd service so starting or restarting only the vault
automatically configures it. Reconfiguration without restarting vault can be done by
restarting the htvault-config service separately.

Vault has a standard builtin high-availability feature, and htvault-config makes it easy to
use that by running 3 machines as a single high availability service. Configuration is done
by simply defining the name of the cluster, the name of the master machine of the cluster,
and the names of the two peer machines. The full configuration is only applied on the master
machine. Service continues if one or two of the machines are down, although reconfiguring
can only be done when the master machine is up.

4 htgettoken
The htgettoken command is implemented in python3. Some of the libraries it uses were not
readily available as rpm packages, so the rpm package bundles all needed python code into
a standalone binary using PyInstaller [14]. As a result, there are no python dependencies on
the package itself.

The htgettoken command has many options as detailed in the command’s own usage help
and in its man page. The only required option is the one that specifies the address of the vault
server, although an issuer is also usually specified and often a role is as well. There are also
options to specify the audience and a list of scopes. Those options can only be used to reduce
the privileges of an access token; maximal privileges are defined in the vault configuration
and the token issuer makes sure to only issue privileges allowed to that user.

Vault tokens are opaque hashes, so they do not contain discoverable information in them
such as an expiration time. The only way to find out if they are valid is to try using them.
For that reason, the default behavior of htgettoken is to obtain an access token using the
following algorithm:

1. If a vault token exists, try to use it to retrieve an access token.
2. If no access token has been successfully retrieved, try to use Kerberos to obtain a

vault token, and if that works write out the vault token and try to use it to read an
access token.

3. If no access token has been successfully retrieved, try to use OIDC authentication
to obtain a vault token and to store a refresh token in vault, and if that works write
out the vault token and try to use it to retrieve an access token.

4. If an access token has been successfully retrieved, write it out, otherwise return an
error.

5 HTCondor integration

We also integrated our solution with HTCondor. This was based on the existing HTCondor
solution for SciTokens [15] which has its own custom OIDC client implementation. Users
specify the issuers and roles of tokens they want to be sent along with their jobs and optionally
may also specify reduced audiences and scopes they want in tokens. Vault tokens
corresponding to all the tokens a user requests are automatically obtained by a condor_submit
command, stored by condor, and used to obtain short-lived (default 1 hour) access tokens
that are sent to jobs and automatically renewed.

All the components of the integration are installed with a condor-credmon-vault rpm
that is part of the condor package. The two main components are condor_vault_storer and
condor_credmon_vault.

condor_submit invokes the condor_vault_storer bash script which runs htgettoken to
obtain the corresponding vault tokens. If possible, htgettoken will get them silently, but if
the refresh token is not yet available htgettoken prompts the user to authenticate through a
web browser. Those vault tokens last for 4 weeks and are sent to the condor_credd process
to manage. htgettoken is then called again to exchange the 4 week vault token for a 1 week
vault token and that is stored unencrypted on the local disk. The longer vault token is needed
because jobs can be queued and run for a long time.

condor_credmon_vault is a python daemon that runs alongside condor_credd and
exchanges the vault tokens for access tokens periodically, by default every 20 minutes. It
directly invokes a simple vault API, without using htgettoken. Other HTCondor components
then push those access tokens to the jobs.

Figure 2. Vault integration components in a full HTCondor deployment

Figure 2 shows the new components in the context of a full HTCondor deployment and

shows the places that tokens are exchanged.

6 Conclusions
This solution for command line-based use of use of JSON Web Tokens has been designed to
be convenient for users and to be secure while taking advantage of existing industry standard
software where possible. It has not yet been put into production use, but it is fully functional.
It is expected to evolve as production experience is gained while keeping the basic
components the same. All the components are available as open source and rpms currently
being distributed by the Open Science Grid.

Acknowledgements
This document was prepared using the resources of the Fermi National Accelerator
Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility.
Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No.
DE-AC02-07CH11359.

Job Submission

Job Execution

Data Access

condor_submit
condor_vault_storer

condor_schedd

condor_credd
condor_credmon_vault

condor_shadow

condor_startd

condor_starter

User’s job

Token Issuer

Data Server

= refresh tokensR A = access tokens

Identity Provider

A
A

A

Vault RA

V = vault tokens

A

V

V

References
1. OAuth 2.0, https://oauth.net/2/, accessed: 2021-02-23
2. OpenID Connect, https://openid.net/connect/, accessed: 2021-02-23
3. JSON Web Token, https://jwt.io/, accessed: 2021-02-23
4. WLCG Authorization Working Group client tools technical investigation,

https://github.com/WLCG-AuthZ-WG/client-tools, accessed: 2021-02-03
5. oidc-agent, https://indigo-dc.gitbook.io/oidc-agent/, accessed: 2021-02-23
6. D. Dykstra, et. al., CISRC ‘16 Proceedings of the 11th Annual Cyber and Security

Research Conference, 10 (2016), https://dl.acm.org/doi/10.1145/2897795.2897807,
accessed: 2021-02-23

7. MyProxy, http://grid.ncsa.illinois.edu/myproxy/, accessed: 2021-02-23
8. HTCondor, https://research.cs.wisc.edu/htcondor/, accessed: 2021-02-23
9. vault, https://www.vaultproject.io/, accessed: 2021-02-23
10. htvault-config, https://github.com/fermitools/htvault-config/, accessed: 2021-02-23
11. htgettoken, https://github.com/fermitools/htgettoken/, accessed: 2021-02-24
12. vault-plugin-auth-jwt, https://github.com/hashicorp/vault-plugin-auth-jwt, accessed:

2021-02-25
13. vault-plugin-secrets-oauthapp, https://github.com/puppetlabs/vault-plugin-secrets-

oauthapp, accessed: 2021-02-25
14. PyInstaller, https://www.pyinstaller.org/, accessed: 2021-02-25
15. SciTokens, https://scitokens.org/, accessed: 2021-02-25

