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ABSTRACT
WebAssembly, the open standard for binary code, is quickly gaining
adoption on the web and beyond. As the binaries are often written
in low-level languages, like C and C++, they are riddled with the
same bugs as their traditional counterparts. Minimal tooling to
uncover these bugs on WebAssembly binaries exists. In this paper
we present WAFL, a fuzzer for WebAssembly binaries. WAFL adds
a set of patches to the WAVMWebAssembly runtime to generate
coverage data for the popular AFL++ fuzzer. Thanks to the underly-
ing ahead-of-time (AOT) compiling WAVM, WAFL is already very
performant. WAFL adds lightweight VM snapshots. By replacing
forks, traditionally used in AFL++ harnesses, with WAFL’s snap-
shots, WAFL harnesses can even outperform native harnesses with
compile-time instrumentation in raw fuzzing performance. To the
best of our knowledge, WAFL is the first coverage-guided fuzzer
for binary-only WebAssembly, without the need for source.
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1 INTRODUCTION
The web has evolved from a passive hypertext-reader to a plat-
form for highly interactive client-side applications. Even though
JavaScript performance has improved drastically in modern just-in-
time (JIT) engines, most high-performance frameworks for imaging
and gaming are written in native programming languages. To bring
these to the web and to get speeds of complex tasks closer to native,
WebAssembly was introduced [3]. WebAssembly is an open binary
standard adopted by modern browsers, used in various other use-
cases, and is supported as a compilation target for many compiled
programming languages. New browser frameworks like Yew [8]
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and Blazor [13] even side-step JavaScript for web development com-
pletely. Developers can write web applications in languages like
Rust and C# directly, the frameworks then target WebAssembly to
execute the respective language.

Taking the idea of portability one step further, the open WASI
standard [4] allows standalone WebAssembly programs that even
run outside the browser. The goal is to create a truly universal binary
platform. The infrastructure aroundWASI is still young but starting
to grow, for example, through the WebAssembly Package Man-
ager (wapm) [23]. Using wapm, users can download WebAssem-
bly binaries that run on WebAssembly System Interface (WASI)-
enabled VMs. The programs, distributed as WebAssembly binaries,
run on every platform for which a runtime is available.

As it is a compilation target like any other, memory vulnerabili-
ties in unsafe source languages, like C, are translated to WebAssem-
bly, and remain potentially vulnerable. While the platform was
developed with security in mind and supports modern mitigations,
bugs may still be exploitable and lead to code execution, as Lehman
et al. have shown [9]. Until now, the tooling to uncover memory
corruptions in WebAssembly binaries is limited.

In this paper, we present WAFL, a fuzzer for WebAssembly bina-
ries with good throughput. WAFL uses the well-known AFL++
fuzzer for input generation and lightweight VM snapshots for
performance. Building on top of WebAssembly Virtual Machine
(WAVM), we can fuzz WebAssembly binaries without source code
access. We evaluate the resulting fuzzing speed and show that,
thanks to its snapshotting mechanism, WAFL even outperforms
naive harnesses compiled from source for x86-64.

Contributions
• We develop WAFL, an open-source, binary-only WebAssem-
bly fuzzer.

• We implement and benchmark multiple improvements on
top of an initial wasm3-based implementation.

• In its final form, the AOT compiling, WAVM-based snapshot
fuzzer even outperforms traditional compiled, native code
AFL harnesses that use the slow fork syscall.

2 BACKGROUND
Fuzzing, or fuzz testing, is a dynamic analysis technique that feeds
random input to programs and observes their behavior. American
Fuzzy Lop (AFL) is an open-source coverage-guided fuzzing engine.
Created in 2014, it became a standard tool. After development
stalled in 2017, the community-based fork AFL++ [2] continued to
integrate improvements from scientific research, based on AFL.

2.1 Coverage Measurement
AFL aims to increase the test surface covered by fuzzing inputs. The
coverage is measured by the number of visited edges in a program’s
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Figure 1: Schematic overview of WAFL. WebAssembly is lifted to LLVM intermediate representation (IR) by WAVM. WAFL
then instruments the IR with one of the available passes and compiles it to object code. This code runs in a loop, leaving
hit counts in the shared map. The fuzzer evaluates the map and writes new input into shared memory, which is read by the
runtime and returned to native code through the WASI syscall interface.

control-flow graph (CFG). An input is considered interesting if it
generates new coverage in the target during execution. For feedback
gathering, AFL’s instrumentation injects a shared memory map
into the program under test. During execution, the instrumentation
assigns a hash or unique ID to each basic block, and increases
a counter in AFL’s map at the respective location. After a run
finishes, the fuzzer checks for new entries in the map. If new entries
were found during execution, AFL keeps the input for subsequent
mutations [29].

Programs with available source code get instrumented using a
wrapper around existing compilers, afl-cc. The tool injects the
needed compiler passes to gcc or clang.

The InsTrim pass [6] included in AFL++1 improves instrumen-
tation speed by analyzing the Control Flow Graph. It only marks
a subset of blocks necessary to distinguish paths (around 20%, ac-
cording to the authors). As a downside of the block ID hashing
technique used in InsTrim and the traditional afl-clang pass, the
algorithms are likely to produce index collisions when the number
of instrumented blocks grows.

An even more sophisticated approach is taken by the LLVM San-
itizerCoverage [21] pass. It assigns a guard variable to each edge
and inserts a callback function using the variable as a parameter.
Initialization of the guards is performed in a second callback func-
tion, so each can be set to a unique number, making the hashing
obsolete. AFL++ uses this pass as default.

2.2 WebAssembly
Web-based applications are becoming more popular and complex,
the main programming language of which is JavaScript. With the
release of Emscripten in 2011, a solution to compile high-level
languages like C to JavaScript for use on the web existed [28]. With
it, native code could be ported to the web.

However, JavaScript is not an ideal compilation target. It lacks
a compact representation. Also, by being a high-level scripting
language, all code has to get interpreted or JIT compiled at run-
time, leading to poor performance and increased startup times.
1Up to version ++3.12c

WebAssembly got introduced to provide a proper compile target
for native applications on the web [3].

It is a low-level bytecode for a stack machine, typically JIT or
AOT compiled to machine code in the web browser and became
Emscripten’s new default target. Besides web applications calling
into WebAssembly from JavaScript to off-load performance-critical
tasks, Emscripten can also create standalone binaries. To this end,
it defines an Application Binary Interface (ABI) that can be im-
plemented by WebAssembly runtimes and includes a standard C
library compiled against it.

As an attempt to standardize this ABI, WASI was created [4].
Although similar in their approach, these ABIs are not fully com-
patible. A WebAssembly backend has been included in Low-Level
Virtual Machine (LLVM) and can be used in conjunction with
wasi-libc [26] to compile C (and to some extent, C++) to WASI.
Rust also supports WASI as a Tier 2 target.

2.3 WebAssembly Runtimes
In mid-2021, most WebAssembly runtimes are still in an early stage
of development or don’t support the full specification of WASI [1].
This work focuses on two of the more fully-featured WebAssembly
runtimes: WAVM and wasm3. The latter is a lightweight runtime
written in C that provides fast startup and small memory foot-
print. It is based on an optimized tail-call interpreter design dubbed
M3 [10]. WAVM is written in C++ and uses LLVM’s JIT engine to
compile the WebAssembly binary into native code AOT. While
translating the WebAssembly code to a native binary ahead of time,
it links the code to the WAVM runtime library, providing built-in
WebAssembly and WASI functions. Thereby, it trades a notably
higher startup latency for higher performance after initialization.

A benchmark by Denis [1] evaluates the execution speed of eight
popular standaloneWebAssembly runtimes using the cryptography
library libsodium. LLVM-based (AOT) runtimes achieve the best
results, with WAVM running 15% faster than the next best, was-
mer [24], and only 2x slower than native code. Restricting the test
field to interpreters, wasm3 scores best, albeit with a 30x slowdown
compared to native code.

Figure 1: Schematic overview of WAFL. WebAssembly is lifted to LLVM intermediate representation (IR) by WAVM. WAFL
then instruments the IR with one of the available passes and compiles it to object code. This code runs in a loop, leaving
hit counts in the shared map. The fuzzer evaluates the map and writes new input into shared memory, which is read by the
runtime and returned to native code through the WASI syscall interface.
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3 RELATEDWORK
While WebAssembly is still niche, we will highlight some research
in the field in this section. In the second part of this section, we will
go on to discuss VM snapshots further.

3.1 WebAssembly Analysis
Metzman [11] demonstrated source-code based in-browser fuzzing
based on libFuzzer, compiled with Emscripten. After building an in-
strumented WebAssembly binary from source, the resulting fuzzer
can run and fuzz on any WebAssembly platform. The target har-
nesses (brotli, lzma and sqlite) were adapted fromOSS-Fuzz. Notably,
Metzman et al. also created a framework for fuzzer evaluation, with
similar samples to those of OSS-Fuzz, Fuzzbench [12].

Fuzzcoin [7], a crowd computing network for fuzzing, expands
the same idea of an in-browser fuzzer for WebAssembly to 30 OSS-
Fuzz projects. A user-friendly web interface invites visitors to do-
nate their CPU time for virtual coins.

As opposed to fuzzing theWebAssembly binaries,Watt, as well as
Perényi and Midtgaard, propose methods to verify the WebAssem-
bly VMs using fuzzing. For it, binaries are randomly generated as
input to the runtime under test, either by translating from C [25]
or by directly generating WebAssembly [15]. Runtimes are fuzzed
regularly: wasm3 is an OSS-Fuzz project itself, WAVM provides
multiple targets for libFuzzer.

Lehmann et al. [9] find that WebAssembly binaries lack many
mitigations common in traditional binaries. They show vulnera-
bilities in memory-unsafe code can translate into WebAssembly
and, combined into exploit chains, can compromise the host system.
Building on their work, Hilbig et al. [5] collect a real-world dataset
of WebAssembly binaries and scan it for vulnerabilities. They find
that many binaries use the unmanaged stack, custom allocators or
dangerous APIs (65%, 38.6% and 21.2%, respectively), which are the
potential weak points identified by Lehmann et al.

3.2 Snapshot Fuzzing
The idea to snapshot the memory space of an application or VM
is nothing new in fuzzing. Even a basic AFL harness, using the
fork syscall, technically uses snapshots for fuzzing. Of course,
over the years, more advanced snapshot mechanisms got proposed.
Newsham and Jesse [14] adapt the traditional AFL forks for full-
system fuzzing by forking a system-mode QEMU instance. After
uncovering the suboptimal scaling and speed of the fork syscall,
Xu et al. [27] propose a syscall that’s better-suited for fuzzing.

Instead of snapshotting a userspace process, VMs can snapshot
a complete guest state for fast resets of a full system. Notably,
Agamotto by Dokyung et al. [20] adds a quick VM snapshotting
mechanism to QEMU KVM to then fuzz kernel drivers. Similarly,
Nyx by Schumilo et al. [18] uses quick VM snapshots to fuzz kernel
and even userspace targets with high throughput.

4 DESIGN
The high-level objective of WAFL is to enable coverage-guided
fuzzing for binary-only WebAssembly programs using AFL++, and

to allow fast VM resets after each execution with lightweight snap-
shots. As mentioned in subsection 2.2, WebAssembly binaries can
target different ABIs. In the context of this work, we focus on stan-
dalone binaries targeting WASI and, in part, Emscripten.

4.1 WAFL-wasm3
We will discuss different ways to implement WebAssembly fuzzing
during this paper. We based a simple baseline implementation of
WAFL on wasm3, a fully interpreted VM. For this interpreter-based
WebAssembly VM, we inserted the feedback mechanism for AFL
directly into the wasm3 runtime. The patched WAFL-wasm3 inter-
preter runs instrumentation code at every WebAssembly Control
Instruction during execution (see [16]).

This takes place in the m3_exec component. When executing
a control instruction, we take note of the target address (i.e., the
address of the next block being executed) and relay it to a feedback
function. It calculates a hash from the given address and the one
it has previously seen. These hashes correspond to edges in the
program’s Control Flow Graph. Their Least Significant Bits are then
used as an index into the AFL shared map, where the corresponding
field is incremented.

Upon runtime startup, a setup routine needs to be run that maps
this shared memory region provided by AFL++ into the runtime
address space.

The second core component is the forkserver, [2] a component
normally inserted into binaries under test by AFL++. Before the
actual program starts, it performs a handshake with the parent
process and drops into a forking loop. Child processes exit the loop,
continue normal execution through the program under test and
terminate. Placing this component as late into the runtime startup as
possible provides an opportunity for speed enhancements because
child processes can thereby skip the initialization phase. If an error
occurs at runtime, the child process is aborted, and the forkserver
tells AFL++ about the crash.

With these modifications (and switching off the binary check),
AFL++ is able to fuzz WebAssembly binaries through wasm3. How-
ever, performance-wise, this leaves a lot to be desired.

4.2 WAVM-WAFL
Recalling the vast performance differences between WebAssembly
runtimes (subsection 2.3), fuzzing solutions based on an interpreter
(like wasm3) cannot be expected to deliver the highest execution
speeds. Instead, we implemented the main WAFL version, based on
a fast AOT compiling runtime. We chose WAVM, which has good
performance according to benchmarks [1]. However, it requires a
different approach for instrumentation.

Upon loading a WebAssembly file, WAVM compiles the binary
to platform-native code using LLVM-JIT and executes optimization
passes on the generated code. This is convenient since AFL++ uses
LLVM optimizer passes to insert its instrumentation code. Conse-
quently, the first step was linking the classic AFL LLVM pass to
WAVM (requiring a one-line modification to the pass) and setting
it up to run last.

The setup code for the shared map and forkserver is the same as
WAFL-wasm3.
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4.3 Lightweight VM Snapshots and Resets
In AFL++ terms, fuzzing in persistent mode [2] means reusing
one child process for multiple iterations. It allows replacing time-
intensive fork() syscalls by looping over relevant code regions in
the child process. Persistent mode fits well with our application,
where the interesting code is the pre-compiled target. However, a
target may accumulate state during execution or even leak memory,
rendering persistent fuzzing unstable. Hence, if we want to fuzz
without forks, we must reset the target state after each execution.
Ideally, we want to do this without patching the WebAssembly
binary or instrumenting it further, especially in a binary-only sce-
nario.

WebAssembly defines three kinds of stateful objects which might
be altered by the target program: globals, tables, and memories [3].
Currently, compilers only use one memory, an array of bytes. In it,
they create a familiar layout comprised of Stack, Heap, and Data
sections [9]. Based on this observation, we can implement VM
snapshots and restores: we intercept the runtime shortly before the
first call into the target code. At this point, the linear memory has
already been initialized by the runtime. We create a snapshot of its
content and size. When control flow returns to the runtime after
each loop iteration, we shrink the memory to its initial size and
write back the snapshot.

Using this minimalistic snapshot engine removes the consid-
erable overhead of re-initializing the runtime, promising a corre-
sponding performance increase.

4.4 Improved Instrumentation
AFL++ provides multiple options for instrumentation besides the
classic pass. An early improvement called InsTrim [6] analyzes the
programs Control Flow Graph to reduce the number of instrumen-
tation points, thereby increasing fuzzing performance. Integration
of InsTrim into WAVM required a small Makefile change for AFL++
and the same one-line patch as for the classic pass.

As additional options for the discussed instrumentation tech-
niques, AFL++ offers Context-sensitive and N-Gram Branch Cov-
erage presented by [22]. Both modify the calculation of shared
map indices when an instrumentation point gets hit. The former
incorporates the calling context, represented by a simplified call
stack by XORing it with the normal branch ID. The latter stores the
last N branch IDs in a tuple and hashes them together (using XOR
and bit-shifting) to calculate an index. To switch between all these
options, an environment variable (AFL_LLVM_INSTRUMENT) can be
set for WAVM analogous to afl-clang-fast.

Currently, the default AFL++ instrumentation is based on San-
itizerCoverage [21], LLVM’s code coverage instrumentation. For
SanitizerCoverage, an address is used to calculate a unique index
into the shared map:
idx = ((&offset - &guard) >> 2) & (MAP_SIZE - 1)

The instrumentation subtracts an offset pointer to calculate re-
producible indices across runs, despite randomly remapped guard
variables. Since all guard variables are 32-bit unsigned integers
placed continuously in memory, shifting their addresses two bits to
the right makes indices consecutive. Lastly, masking ensures that
all indices are in [0, MAP_SIZE − 1] (so they will not collide as long
as MAP_SIZE > #дuards). We encountered an issue with AFL++’s

SanitizerCoverage implementation that kept it from working for
WAFL. The user (us) needs to provide implementations for two
callback functions. However, in WAFL, the first callback is never
called, leaving the guards (indices into the shared map) uninitial-
ized, Instead, WAFL now relies on LLVM’s own SanitizerCoverage
implementation directly.

4.5 Shared Memory Fuzzing
AFL usually passes test cases to target programs via the file system,
inducing overhead. Either AFL passes the input file name to the
program as an argument, or it opens the file itself and pipes the
contents to the target via standard input.When fuzzing in persistent
mode, AFL++ can instead pass input through a shared memory
buffer similar to the shared map for hit counts.

Assuming that most targets will be able to read from standard
input, the goal was making reads from it independent of the file
system. To this end, we added a check to the WAVM runtime im-
plementation of the WASI readv() syscall: If the file number cor-
responds to standard input, a custom routine reads from the shared
buffer instead. Every iteration, the persistent loop re-opens the
buffer with the correct length using fmemopen().

4.6 Blocking libc Instrumentation for Speed
There is usually no dynamic linking in WebAssembly. Everything
comes bundled in one statically linked file. WebAssembly programs
are commonly written in high-level languages (C or Rust). These
languages provide a set of standard functions that need to be in-
corporated in the binary, which means they get instrumented by
WAFL as well.

Given that, in a white-box fuzzing scenario, one would probably
not instrument library code, the respective functions in WebAssem-
bly binaries should also be excluded. For this, we leverage AFL++’s
blocklist functionality. ForWAFL, we only needed to modifyWAVM
slightly to support it: Function names are usually not passed from
the input file into the generated code. After adding this feature, we
were able to read function names in the LLVM passes.

We adapted a list of symbols in the WASI C library [26] 2 to the
LLVM format, by prefixing each name with fun:. Additionally, we
added printf_core and pop_arg, two function names appearing
commonly in WASI binaries. Using this blocklist, we reduce the
number of instrumented code blocks considerably, as shown in
Figure 2. With small targets, like brotli and lzma2dec, instrumented
edge counts can be cut by 63% (1697 vs. 628 for lzma2dec with
the Classic pass). For the LLVM pass, we added a small check to
WAVM that reads the AFL_LLVM_{ALLOW,DENY}LIST environment
variables and passes the indicated file names to LLVM if it supports
this feature (version 11 and up).

5 EVALUATION
In the following, we will evaluate the WAFL development steps
discussed in section 4. Moreover, we compare WAFL to native in-
strumentation, to a binary compiled using AFL++’s LLVM backend
with the same simple harness. As set out in section 3, there is not
much prior work to compare WAFL to, other than the in-browser
solution presented by Metzman [11]. Unfortunately, their binaries
2expected/wasm32-wasi/defined-symbols.txt
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Figure 2: Number of instrumented edges in threeWebAssem-
bly binaries using Classic, InsTrim and SanitizerCoverage,
with and without the blocklist.

do not run inWAVMorwasm3. Therefore, they were compiled from
source with a custom standalone runner that reads a buffer from
stdin and passes it to LLVMFuzzerTestOneInput(). This worked
well for brotli and lzma, two compression libraries, but failed for
sqlite. Additionally, we include libsndfile, an audio library, in this
evaluation, and describe an ad-hoc test against binary-only We-
bAssembly blobs.

5.1 Test Setup
The platform used is a server with two AMD EPYC 7281 16-core
processors and 112GiB of RAM running Ubuntu 20.04 (Linux 5.4).
All tests were run in parallel using LLVM / Clang version 12 and
AFL++ 3.15a. We took the fuzz targets and harnesses from OSS-
Fuzz [19]: After compiling them according to the provided build
scripts, we linked against a custom standalone runner that reads
from standard input.

For the native binary, we used afl-clang-fast. We com-
piled the WASI binaries using Clang with the wasm32-wasi
backend and a sysroot from wasi-libc 12 [26]. Additionally,
-mthread-model single had to be passed to the compiler be-
cause WASI does not support threads. We evaluated WAFL’s
performance in a variety of configurations enumerated in Table 1.
We ran every configuration for 24 hours, averaging over five runs,
to find out how many times the target gets executed per second
and how many branches the fuzzer discovers.

As a comparison, the fuzzers for brotli and lzma2dec created
in [11] were run for a multi-hour fuzz run in Firefox 91. The maxi-
mum execution speed reported during that time is used here to have
an optimistic estimation of the in-browser performance. However,
this value might still under-estimate the solution’s full potential,
as Metzman provides an optimized sqlite-fast variant that does not
draw on the browser canvas, substantially outperforming sqlite
by about 10x . For brotli and lzma2dec, there is no such fast binary
available.

5.2 Brotli Harness
The brotli library provides a fuzz target for its decoder; the pro-
duced WebAssembly binary weights 201 KiB. As input for AFL++,
the included fuzzer seed corpus was used. The results can be seen
in Figure 3. While the non-persistent WAVM setup (174 exec/s) is
vastly outperformed by the native binary (1878 exec/s), enabling
persistent mode changes the picture. Here, all three instrumenta-
tion options (Classic, InsTrim and SanitizerCoverage) run faster
than the native binary (with 2532, 5008 and 2753 exec/s, respec-
tively). Additionally, enabling shared memory fuzzing increases
performance to 3328 for Classic and 3376 for SanitizerCoverage,
but slightly decreases it for InsTrim (4715 exec/s).

In the final stage, including shared memory fuzzing and block-
listing C library functions, the performance of a SanitizerCoverage
based instrumentation drops below the version with just persistent
mode enabled (2644 exec/s), although the other two configurations
achieve their best values (Classic with 4077 exec/s and InsTrim
with 7443 exec/s), the latter even outperforming the optimized na-
tive binary (6917 exec/s). The browser-based libFuzzer achieved a
maximum of 1081 exec/s.

5.3 Lzma Harness
The lzma project in OSS-Fuzz contains fuzz targets for widely-used
compression algorithms such as 7z, lzma, lzma2 and xz. Binaries
are similar in size, and the lzma2 decode fuzzer (96 KiB) was chosen
arbitrarily for evaluation. Seed files are provided within the project,
so the lzma2dec corpus was used.

The highest speeds are achieved with the InsTrim-based instru-
mentation in all three configurations: with snapshots and shared
memory (9655 exec/s), closely followed by the same configuration
with blocklists (9171 exec/s) and with only snapshots (8859 exec/s).
The classic AFL instrumentation scores best with blocklists enabled
(7053 exec/s), outperforming the configurations without blocklists
(6372 exec/s) and with only snapshots (4902 exec/s). SanitizerCov-
erage behaves the same, performing best with all options enabled
(6339 exec/s), slightly worse without blocklists (5988 exec/s) and
notably slower without shared memory input (4571 exec/s).

These numbers fall between the performance of our non-
optimized native target (1780 exec/s) and an optimized target
compiled with AFL++’s libFuzzer driver, including persistent mode
and shared memory fuzzing (9186 exec/s), with the best config-
uration again outperforming the optimized native version. The
maximum speed achieved by libFuzzer in-browser was 1076 exec/s.

5.4 Libsndfile Harness
Sndfile is a library for converting sound files and formats. It is con-
siderably larger than brotli (1.2MiB as WebAssembly) and AFL++’s
forkserver initialization timeout had to be increased due to the AOT
compilation overhead. Short of a proper seed corpus, testfile.mp3
from the liblame repository was used as input to AFL++. Execution
time for different configurations are shown in Figure 3. All configu-
rations are rather slow, owing to the large binary. Running without
snapshots performs well on first sight (414 exec/s vs. 754 in persis-
tent mode), but cannot be recommended because virtually no paths
are discovered. Enabling blocklists roughly cuts the performance
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Brotli Lzma Sndfile

Instrumentation Pass i ii iii exec/s paths exec/s paths exec/s paths
afl-clang PCGuard × × — 1878± 301 2002± 73 1780± 53 16± 0 — —
afl-clang PCGuard ✓iv ✓ — 6917± 3647 2107± 69 9186± 3186 12± 0 — —
libFuzzer (web) — ✓v — — 1081 — 1076 — — —
WAFL-WAVM Classic × × × 174± 27 2202± 55 179± 30 1151± 71 414± 48 59± 8
WAFL-WAVM Classic ✓ × × 2532± 648 2477± 54 4902± 336 1330± 37 754± 10 2101± 2298
WAFL-WAVM Classic ✓ ✓ × 3328± 2114 2401± 150 6372± 949 1300± 83 715± 122 2978± 1654
WAFL-WAVM Classic ✓ ✓ ✓ 4077± 1686 2230± 81 7053± 953 1245± 40 290± 12 2099± 398
WAFL-WAVM InsTrim ✓ × × 5008± 2409 3031± 154 8859± 2459 1061± 43 701± 31 1977± 1775
WAFL-WAVM InsTrim ✓ ✓ × 4715± 2354 2983± 80 9655± 2712 1047± 36 717± 11 3428± 1908
WAFL-WAVM InsTrim ✓ ✓ ✓ 7443± 1569 2532± 139 9171± 1376 915± 32 301± 126 1574± 525
WAFL-WAVM SanCov ✓ × × 2753± 1292 2044± 108 4571± 370 946± 26 669± 18 1804± 466
WAFL-WAVM SanCov ✓ ✓ × 3376± 1166 2066± 97 5988± 1059 911± 33 636± 47 3778± 2733
WAFL-WAVM SanCov ✓ ✓ ✓ 2644± 2067 1897± 96 6339± 903 844± 28 444± 26 1724± 1463

i Snapshots ii Shared Memory iii Blocklist iv Persistent loop vIn-process

Table 1: Fuzzer executions per second and paths found for WAFL with different configurations, native binaries instrumented
with afl-clang and the in-browser libFuzzer WebAssembly solution from [11].
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Figure 3: Fuzzer executions per second across all benchmark configurations.

in half for this program, with all three instrumentation algorithms
performing on par. However, looking at the discovered paths with-
out blocklists, SanitizerCoverage scores best at 3778 paths, with
InsTrim (3428) and Classic (2978) behind.

5.5 WAFL Snapshot Performance
In the benchmarks described above, WAFL with persistent mode
performs better than a native binary without persistent mode and,
in some cases, comparable to an optimized native binary. To evalu-
ate the speed of our lightweight VM memory snapshots, we tested
a small C program that allocates a chunk of memory and writes
into it. The results are depicted in Figure 4. For small allocation
sizes, WAFL needs 55 µs for one execution, while the native binary

takes 150 µs. Only at an allocation size of 256 KiB and larger fork
outperforms WAFL snapshots, which need 160 µs at that point.
Notably, this measurement also takes overhead during execution
into account, where most time is spent according to our evaluation.
Moreover, we benchmarked on a single core. We assume WAFL
snapshots will scale a lot better than kernel interactions and page
table walks, needed by the slow fork syscall [27].

5.6 Binary-Only Fuzzing of Real-World
WebAssembly Applications

There are already a number of real-world applications powered
by WebAssembly [5]. We queried wapm [23] to find suitable test
candidates. The amount of packages in wapm is still low. However,
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into account, where most time is spent according to our evaluation.
Moreover, we benchmarked on a single core. We assume WAFL
snapshots will scale a lot better than kernel interactions and page
table walks, needed by the slow fork syscall [27].

5.6 Binary-Only Fuzzing of Real-World
WebAssembly Applications

There are already a number of real-world applications powered
by WebAssembly [5]. We queried wapm [23] to find suitable test
candidates. The amount of packages in wapm is still low. However,
we found two packages that were straightforward to execute and
fuzz, namely cowsay and qr2text.
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Figure 4: Execution latency over allocation size. WAFL snap-
shots outperform native forked harnesses that touch less
than 256KiB per execution.

we found two packages that were straightforward to execute and
fuzz, namely cowsay and qr2text.

After running WAVM against qr2text, a program that, contrary
to its name, creates QR codes from text input did not find any bugs.
After a starting phase, fuzzing speed stabilized around 400 exec/s.
No crashes were triggered during six hours.

In the wapm version of cowsay, AFL++ immediately uncovered
crashes. After manual analysis, we concluded that this rust version
of cowsay available in the package manager would indeed panic on
any non-UTF8 input. While this proves the applicability of WAFL
in a real-world scenario, the bug wouldn’t cause any real harm,
leading to a DoS against a network-based cowsay in the worst case.

5.7 Discussion
As expected, the interpreter-basedWAFL-wasm3 andWAFL-WAVM
without persistent mode are slow, much slower than the in-browser
fuzzer baseline. However, wasm3 is, surprisingly, faster thanWAVM
in this scenario. One possible explanation is the smaller runtime
that may be beneficial when forking. As soon as snapshot mode
is enabled, performance surpasses the native binary, regardless of
the instrumentation used. This shows the use of snapshot mode in
practice.

Additionally, enabling shared memory fuzzing has a positive
effect for the brotli and lzma2dec targets. Overall, the result is
positive, indicating that shared memory fuzzing should be used if
available (i.e., input is passed via stdin instead of files). We expect
that the result benefits from scaling to multiple cores, as shared
memory input does not need to go through the kernel.

Regarding blocklists, there is a mixed picture: In some configura-
tions (Brotli with SanitizerCoverage, Lzma with InsTrim), it seems
that performance decreases with blocklists. This might be due to
harder (and more relevant) paths being found by the fuzzer. Fig-
ure 2 shows high absolute numbers of instrumented blocks saved
for the Classic instrumentation, but almost none for SanitizerCov-
erage. Due to this, the positive effect on SanitizerCoverage may be

small. Overall, we think that blocklists help with fuzzing, but the
measured effect is small.

Comparing the different instrumentation passes, SanitizerCov-
erage yields disappointing results, with InsTrim being stronger
than both others. The results might be target-dependent, but in
our test set, InsTrim can be recommended as the best choice for
instrumentation.

6 FUTUREWORK
SanitizerCoverage has the lowest number of instrumented blocks
and is favored over InsTrim by upstream AFL++. In our measure-
ments, its integration in WAFL-WAVM performs worse in compari-
son.We suspect that the callback design, especially the initialization
of guards during runtime, can be improved further. Ultimately, it
should be possible to reach faster speeds than InsTrim. If the ini-
tialization problem can be solved, either in WAVM or by editing
the SanitizerCoverage pass, inlining the callbacks comes at no cost
using the Inline8bitCounters option.

There are further instrumentation options in AFL++ not explored
in this paper. AFL++ has Link Time Optimization (LTO) LLVM
passes and recommends using them. Since, in our case, the input is
already in one big translation unit, it is unlikely that they would
improve results, but this remains to be verified.

More promising are feedback improvements. CompCov [2] splits
multi-byte compare instructions into single-byte compares, making
it easier for the fuzzer to traverse them. Also, by hooking compares,
using heuristics similar to the libc instrumentation blocklist, Cm-
pLog support can be added, feeding feedback to AFL++’s RedQueen
mutator. Both options trade in some execution speed for better cov-
erage but will require further modifications in the WAVM runtime.

7 CONCLUSION
WAFL instruments unmodified WebAssembly binaries during the
AOT compilation step ofWAVM, by applying existing AFL++ LLVM
passes. We integrate AFL++ optimizations, like shared-memory
fuzzing, into the runtime to profit from them, even though the
application under test is running in a sandboxed scenario.

Our evaluation shows that the performance is excellent. Com-
pared with native targets built from source, we discovered sur-
prising results: For small targets the lightweight WAVM snapshots
outperform native AFL x86-64 harnesses compiled from source,
if they rely on the slow fork syscall. This is true for any non-
persistent-mode target.

WAFL solves a problem so far unsolved: how to uncover bugs in
compiled WebAssembly binaries. The need for a binary-only fuzzer
is evident, as prior work has shown that a majority of binaries in
the wild are potentially vulnerable [5]. WAFL is the first tool to
fuzz binary-only WebAssembly targets.

Availability
WAFL is available open-source at https://github.com/fgsect/WAFL.
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