Skip to content
Permalink
release
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
function [stat] = ft_connectivityanalysis(cfg, data)
% FT_CONNECTIVITYANALYSIS computes various measures of connectivity between
% MEG/EEG channels or between source-level signals.
%
% Use as
% stat = ft_connectivityanalysis(cfg, data)
% stat = ft_connectivityanalysis(cfg, timelock)
% stat = ft_connectivityanalysis(cfg, freq)
% stat = ft_connectivityanalysis(cfg, source)
% where the first input argument is a configuration structure (see below)
% and the second argument is the output of FT_PREPROCESSING,
% FT_TIMELOCKANLAYSIS, FT_FREQANALYSIS, FT_MVARANALYSIS or FT_SOURCEANALYSIS.
%
% The different connectivity metrics are supported only for specific
% datatypes (see below).
%
% The configuration structure has to contain
% cfg.method = string, can be
% 'amplcorr', amplitude correlation, support for freq and source data
% 'coh', coherence, support for freq, freqmvar and source data.
% For partial coherence also specify cfg.partchannel, see below.
% For imaginary part of coherency or coherency also specify
% cfg.complex, see below.
% 'csd', cross-spectral density matrix, can also calculate partial
% csds - if cfg.partchannel is specified, support for freq
% and freqmvar data
% 'dtf', directed transfer function, support for freq and freqmvar data
% 'granger', granger causality, support for freq and freqmvar data
% 'pdc', partial directed coherence, support for freq and freqmvar data
% 'plv', phase-locking value, support for freq and freqmvar data
% 'powcorr', power correlation, support for freq and source data
% 'powcorr_ortho', power correlation with single trial
% orthogonalisation, support for source data
% 'ppc' pairwise phase consistency
% 'psi', phaseslope index, support for freq and freqmvar data
% 'wpli', weighted phase lag index (signed one, still have to
% take absolute value to get indication of strength of
% interaction. Note that this measure has a positive
% bias. Use wpli_debiased to avoid this.
% 'wpli_debiased' debiased weighted phase lag index (estimates squared wpli)
% 'wppc' weighted pairwise phase consistency
% 'corr' Pearson correlation, support for timelock or raw data
% 'laggedcoherence', lagged coherence estimate
% 'plm' phase linearity measurement
% 'mim' multivariate interaction measure, support for freq data
% 'cancoh' canonical coherence, support for freq data
%
% Additional configuration options are
% cfg.channel = Nx1 cell-array containing a list of channels which are
% used for the subsequent computations. This only has an effect
% when the input data is univariate. See FT_CHANNELSELECTION
% cfg.channelcmb = Nx2 cell-array containing the channel combinations on
% which to compute the connectivity. This only has an effect when
% the input data is univariate. See FT_CHANNELCOMBINATION
% cfg.trials = Nx1 vector specifying which trials to include for the
% computation. This only has an effect when the input data
% contains repetitions.
% cfg.feedback = string, specifying the feedback presented to the user. Default
% is 'none'. See FT_PROGRESS
%
% For specific methods the configuration can also contain
% cfg.partchannel = cell-array containing a list of channels that need to be
% partialized out, support for method 'coh', 'csd', 'plv'
% cfg.complex = string, 'abs' (default), 'angle', 'complex', 'imag', 'real',
% '-logabs', support for method 'coh', 'csd', 'plv'
% cfg.removemean = string, 'yes' (default), or 'no', support for
% method 'powcorr' and 'amplcorr'.
% cfg.bandwidth = scalar, needed for 'psi', half-bandwidth of the integration
% across frequencies (in Hz, default is the Rayleigh frequency)
% needed for 'plm', half-bandwidth of the integration window (in Hz)
% cfg.indices = vector, needed for 'mim' and 'cancoh', indexing which channels
% belong together
% cfg.realflag = false (default) or true, needed for 'cancoh',
% indicating whether the canonical vectors are
% determined from the real-valued part of a complex
% matrix.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PREPROCESSING, FT_TIMELOCKANALYSIS, FT_FREQANALYSIS,
% FT_MVARANALYSIS, FT_SOURCEANALYSIS, FT_NETWORKANALYSIS.
%
% For the implemented methods, see also FT_CONNECTIVITY_CORR,
% FT_CONNECTIVITY_GRANGER, FT_CONNECTIVITY_PPC, FT_CONNECTIVITY_WPLI,
% FT_CONNECTIVITY_PDC, FT_CONNECTIVITY_DTF, FT_CONNECTIVITY_PSI,
% FT_CONNECTIVITY_MIM
% Undocumented options:
% cfg.refindx =
% cfg.jackknife =
% cfg.method = 'mi'/'di'/'dfi';
% cfg.granger.block =
% cfg.granger.conditional =
%
% Methods to be implemented
% 'xcorr', cross correlation function
% 'di', directionality index
% 'spearman' spearman's rank correlation
% Copyright (C) 2009, Jan-Mathijs Schoffelen, Andre Bastos, Martin Vinck, Robert Oostenveld
% Copyright (C) 2010-2011, Jan-Mathijs Schoffelen, Martin Vinck
% Copyright (C) 2012-2021, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% FIXME it should be checked carefully whether the following works
% check if the input data is valid for this function
% data = ft_checkdata(data, 'datatype', {'raw', 'timelock', 'freq', 'source'});
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.channelcmb = ft_getopt(cfg, 'channelcmb', {'all' 'all'});
cfg.refindx = ft_getopt(cfg, 'refindx', 'all', 1);
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.complex = ft_getopt(cfg, 'complex', 'abs');
cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no');
cfg.removemean = ft_getopt(cfg, 'removemean', 'yes');
cfg.partchannel = ft_getopt(cfg, 'partchannel', '');
cfg.parameter = ft_getopt(cfg, 'parameter');
hasjack = (isfield(data, 'method') && strcmp(data.method, 'jackknife')) || (isfield(data, 'dimord') && startsWith(data.dimord, 'rptjck'));
hasrpt = (isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'rpt'))) || (isfield(data, 'avg') && isfield(data.avg, 'mom')) || (isfield(data, 'trial') && isfield(data.trial, 'mom')); % FIXME old-fashioned pcc data
dojack = strcmp(cfg.jackknife, 'yes');
normrpt = 0; % default, has to be overruled e.g. in plv, because of single replicate normalisation
normpow = 1; % default, has to be overruled e.g. in csd
% select trials of interest
if ~strcmp(cfg.trials, 'all')
tmpcfg = keepfields(cfg, {'trials', 'tolerance', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo'});
data = ft_selectdata(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
end
% select channels/channelcombination of interest and set the cfg-options accordingly
if isfield(data, 'label')
selchan = cell(0, 1);
if ~isempty(cfg.channelcmb) && ~isequal(cfg.channelcmb, {'all' 'all'}) && size(cfg.channelcmb,2)==2
tmpcmb = ft_channelcombination(cfg.channelcmb, data.label);
tmpchan = unique(tmpcmb(:));
cfg.channelcmb = ft_channelcombination(cfg.channelcmb(:, 1:2), tmpchan, 1);
selchan = [selchan; unique(cfg.channelcmb(:))];
elseif ~isempty(cfg.channelcmb) && isequal(cfg.channelcmb, {'all' 'all'})
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, data.label, 1);
selchan = [selchan; unique(cfg.channelcmb(:))];
end
cfg.channel = ft_channelselection(cfg.channel, data.label);
selchan = [selchan; cfg.channel];
if ~isempty(cfg.partchannel)
cfg.partchannel = ft_channelselection(cfg.partchannel, data.label);
selchan = [selchan; cfg.partchannel];
end
tmpcfg = [];
tmpcfg.channel = unique(selchan);
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
elseif isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
if ~isempty(cfg.partchannel)
ft_error('partialization is only possible without linearly indexed bivariate data');
end
if ~isempty(cfg.channelcmb)
% FIXME do something extra here
end
% FIXME call ft_selectdata
end
% FIXME check which methods require hasrpt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% data bookkeeping - ensure that the input data is appropriate for the method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
needrpt = true; % logical flag to specify whether (pseudo)-repetitions are required in the lower level connectivity function (can be singleton)
switch cfg.method
case {'coh' 'csd'}
if ~isempty(cfg.partchannel)
if hasrpt && ~hasjack && ~isfield(data, 'labelcmb')
ft_warning('partialisation on single trial observations is not supported, removing trial dimension');
try
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbstyle', 'fullfast');
inparam = 'crsspctrm';
hasrpt = contains(getdimord(data, inparam), 'rpt');
catch
ft_error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation');
end
else
% FIXME not sure whether any inappropriate input is caught down
% below
inparam = 'crsspctrm';
end
else
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source' 'source+mesh'});
inparam = 'crsspctrm';
end
if strcmp(cfg.method, 'csd')
normpow = 0;
outparam = 'crsspctrm';
elseif strcmp(cfg.method, 'coh')
outparam = 'cohspctrm';
end
dtype = ft_datatype(data);
switch dtype
case 'source'
if isempty(cfg.refindx), ft_error('indices of reference voxels need to be specified'); end
% if numel(cfg.refindx)>1, ft_error('more than one reference voxel is not yet supported'); end
otherwise
end
% FIXME think of accommodating partial coherence for source data with only a few references
case {'wpli'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
if isfield(data, 'fourierspctrm')
inparam = 'fourierspctrm';
else
inparam = 'crsspctrm';
end
outparam = 'wplispctrm';
if hasjack, ft_error('to compute wpli, data should be in rpt format'); end
case {'wpli_debiased'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
if isfield(data, 'fourierspctrm')
inparam = 'fourierspctrm';
else
inparam = 'crsspctrm';
end
outparam = 'wpli_debiasedspctrm';
if hasjack, ft_error('to compute wpli, data should be in rpt format'); end
case {'ppc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'ppcspctrm';
if hasjack, ft_error('to compute ppc, data should be in rpt format'); end
case {'wppc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wppcspctrm';
if hasjack, ft_error('to compute wppc, data should be in rpt format'); end
case {'plv'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
inparam = 'crsspctrm';
outparam = 'plvspctrm';
normrpt = 1;
case {'corr' 'cancorr'}
data = ft_checkdata(data, 'datatype', {'raw' 'timelock'});
if isfield(data, 'cov')
% it looks like a timelock with a cov, which is perfectly valid as input
data = ft_checkdata(data, 'datatype', 'timelock');
else
% it does not have a cov
data = ft_checkdata(data, 'datatype', 'raw');
tmpcfg = [];
tmpcfg.covariance = 'yes';
data = ft_timelockanalysis(tmpcfg, data);
end
inparam = 'cov';
outparam = cfg.method;
if strcmp(cfg.method, 'cancorr'), cfg.indices = ft_getopt(cfg, 'indices', []); end
case {'amplcorr' 'powcorr'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source' 'source+mesh'});
dtype = ft_datatype(data);
switch dtype
case {'freq' 'freqmvar'}
inparam = 'powcovspctrm';
case {'source' 'source+mesh'}
inparam = 'powcov';
if isempty(cfg.refindx), ft_error('indices of reference voxels need to be specified'); end
% if numel(cfg.refindx)>1, ft_error('more than one reference voxel is not yet supported'); end
otherwise
end
outparam = [cfg.method, 'spctrm'];
case {'granger' 'instantaneous_causality' 'total_interdependence' 'transfer' 'iis'}
% create subcfg for the spectral factorization
if ~isfield(cfg, 'granger')
cfg.granger = [];
end
cfg.granger.conditional = ft_getopt(cfg.granger, 'conditional', 'no');
cfg.granger.block = ft_getopt(cfg.granger, 'block', []);
cfg.granger.channelcmb = ft_getopt(cfg.granger, 'channelcmb', cfg.channelcmb);
cfg = removefields(cfg, 'channelcmb');
data = ft_checkdata(data, 'datatype', {'mvar' 'freqmvar' 'freq'});
inparam = {'transfer', 'noisecov', 'crsspctrm'};
if strcmp(cfg.method, 'granger'), outparam = 'grangerspctrm'; end
if strcmp(cfg.method, 'instantaneous_causality'), outparam = 'instantspctrm'; end
if strcmp(cfg.method, 'total_interdependence'), outparam = 'totispctrm'; end
if strcmp(cfg.method, 'transfer'), outparam = {'transfer' 'noisecov' 'crsspctrm'}; end
if strcmp(cfg.method, 'iis'), outparam = 'iis'; end
% check whether the frequency bins are more or less equidistant
dfreq = diff(data.freq)./mean(diff(data.freq));
assert(all(dfreq>0.999) && all(dfreq<1.001), ['non equidistant frequency bins are not supported for method ',cfg.method]);
case {'ddtf'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = {'transfer' 'crsspctrm'};
outparam = [cfg.method, 'spctrm'];
case {'dtf' 'pdc' 'gpdc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'transfer';
outparam = [cfg.method, 'spctrm'];
case {'psi'}
cfg.bandwidth = ft_getopt(cfg, 'bandwidth', []);
cfg.normalize = ft_getopt(cfg, 'normalize', 'no');
assert(~isempty(cfg.bandwidth), 'you need to supply cfg.bandwidth with ''psi'' as method');
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'psispctrm';
% check whether the frequency bins are more or less equidistant
dfreq = diff(data.freq)./mean(diff(data.freq));
assert(all(dfreq>0.999) && all(dfreq<1.001), 'non equidistant frequency bins are not supported for method ''psi''');
case {'powcorr_ortho'}
data = ft_checkdata(data, 'datatype', {'source', 'freq'});
% inparam = 'avg.mom';
inparam = 'mom';
outparam = 'powcorrspctrm';
case {'mi' 'di' 'dfi'}
% create the subcfg for the mutual information
if ~isfield(cfg, cfg.method), cfg.(cfg.method) = []; end
cfg.(cfg.method).method = ft_getopt(cfg.(cfg.method), 'method', 'gcmi'); % default to the Gaussian Copula based method
cfg.(cfg.method).numbin = ft_getopt(cfg.(cfg.method), 'numbin', 10);
cfg.(cfg.method).lags = ft_getopt(cfg.(cfg.method), 'lags', 0);
cfg.(cfg.method).montage = ft_getopt(cfg.(cfg.method), 'montage', []);
cfg.(cfg.method).complex = ft_getopt(cfg.(cfg.method), 'complex', 'complex');
cfg.(cfg.method).combinelags = ft_getopt(cfg.(cfg.method), 'combinelags', false);
cfg.(cfg.method).feature = ft_getopt(cfg.(cfg.method), 'feature', []);
cfg.(cfg.method).precondition = ft_getopt(cfg.(cfg.method), 'precondition', false);
% what are the input requirements?
data = ft_checkdata(data, 'datatype', {'raw' 'timelock' 'freq' 'source'});
dtype = ft_datatype(data);
if strcmp(dtype, 'timelock')
if ~isfield(data, 'trial')
inparam = 'avg';
else
inparam = 'trial';
end
hasrpt = isfield(data, 'dimord') && startsWith(data.dimord, 'rpt');
cfg.refchannel = ft_getopt(cfg, 'refchannel', []);
cfg.refindx = ft_getopt(cfg, 'refindx', []);
elseif strcmp(dtype, 'raw')
inparam = 'trial';
hasrpt = 1;
cfg.refchannel = ft_getopt(cfg, 'refchannel', []);
cfg.refindx = ft_getopt(cfg, 'refindx', []);
elseif strcmp(dtype, 'freq')
inparam = 'something';
else
inparam = 'something else';
end
outparam = cfg.method;
needrpt = 1;
case 'laggedcoherence'
data = ft_checkdata(data, 'datatype', {'freq'});
if ~isfield(data, 'fourierspctrm')
error('this connectivity method requires a ''fourierspctrm'' in the input data');
end
inparam = 'lcrsspctrm';
outparam = 'lcohspctrm';
% create the subcfg for the lagged coherence
if ~isfield(cfg, 'laggedcoherence'), cfg.laggedcoherence = []; end
cfg.laggedcoherence.lags = ft_getopt(cfg.laggedcoherence, 'lags', []);
cfg.laggedcoherence.timeresolved = false;
case 'plm'
data = ft_checkdata(data, 'datatype', 'raw');
if ~isfield(data, 'fsample')
data.fsample = 1./mean(diff(data.time{1}));
end
inparam = 'trial';
outparam = 'plm';
cfg.bandwidth = ft_getopt(cfg, 'bandwidth', 0.5);
case 'mim'
cfg.indices = ft_getopt(cfg, 'indices', []);
data = ft_checkdata(data, 'datatype', 'freq');
inparam = 'crsspctrm';
outparam = 'mimspctrm';
case 'cancoh'
cfg.indices = ft_getopt(cfg, 'indices', []);
cfg.realflag = ft_getopt(cfg, 'realflag', 0);
data = ft_checkdata(data, 'datatype', 'freq');
inparam = 'crsspctrm';
outparam = 'cancohspctrm';
otherwise
ft_error('unknown method % s', cfg.method);
end
dtype = ft_datatype(data);
% FIXME throw an error if cfg.complex~='abs', and dojack==1
% FIXME throw an error if no replicates and cfg.method='plv'
% FIXME trial selection has to be implemented still
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% data bookkeeping - check whether the required inparam is present in the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if any(~isfield(data, inparam)) || (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm')))
if iscell(inparam)
% in the case of multiple inparams, use the first one to check the
% input data (e.g. checking for 'transfer' for requested granger)
inparam = inparam{1};
end
switch dtype
case {'freq' 'freqmvar'}
if strcmp(inparam, 'crsspctrm')
if isfield(data, 'fourierspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 'channelcmb', cfg.channelcmb, 'keeprpt', normrpt);
elseif strcmp(inparam, 'crsspctrm') && isfield(data, 'powspctrm')
% if input data is old-fashioned, i.e. contains powandcsd
[data, powindx, hasrpt] = univariate2bivariate(data, 'powandcsd', 'crsspctrm', dtype, 'channelcmb', cfg.channelcmb, 'keeprpt', normrpt);
elseif isfield(data, 'labelcmb')
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
elseif strcmp(inparam, 'lcrsspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'lcrsspctrm', dtype, 'channelcmb', cfg.channelcmb, 'timeresolved', cfg.laggedcoherence.timeresolved, 'lags', cfg.laggedcoherence.lags);
elseif strcmp(inparam, 'powcovspctrm')
if isfield(data, 'powspctrm')
[data, powindx] = univariate2bivariate(data, 'powspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'channelcmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method, 'amplcorr'));
elseif isfield(data, 'fourierspctrm')
[data, powindx] = univariate2bivariate(data, 'fourierspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'channelcmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method, 'amplcorr'));
end
elseif strcmp(inparam, 'transfer')
if isfield(data, 'fourierspctrm')
% FIXME this is fast but throws away the trial dimension, consider
% a way to keep trial information if needed, but use the fast way
% if possible
data = ft_checkdata(data, 'cmbstyle', 'fullfast');
hasrpt = 0;
elseif isfield(data, 'powspctrm')
data = ft_checkdata(data, 'cmbstyle', 'full');
end
% convert the inparam back to cell-array in the case of granger
if any(strcmp(cfg.method, {'granger' 'instantaneous_causality' 'total_interdependence' 'transfer' 'iis'}))
inparam = {'transfer' 'noisecov' 'crsspctrm'};
tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {'granger'});
optarg = ft_cfg2keyval(tmpcfg.granger);
elseif strcmp(cfg.method, 'ddtf')
inparam = {'transfer' 'crsspctrm'};
tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {'ddtf'});
optarg = ft_cfg2keyval(tmpcfg.ddtf);
else
tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {cfg.method});
optarg = ft_cfg2keyval(tmpcfg.(cfg.method));
end
% compute the transfer matrix
data = ft_connectivity_csd2transfer(data, optarg{:});
end
case {'source' 'source+mesh'}
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
cfg.refindx = 1:size(data.pos,1);
elseif ischar(cfg.refindx)
ft_error('cfg.refindx should be a 1xN vector, or ''all''');
end
if strcmp(inparam, 'crsspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'mom', 'crsspctrm', dtype, 'channelcmb', cfg.refindx, 'keeprpt', 0);
% [data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 0, cfg.refindx, [], 1);
elseif strcmp(inparam, 'powcov')
if isfield(data, 'pow')
[data, powindx, hasrpt] = univariate2bivariate(data, 'pow', 'powcov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'channelcmb', cfg.refindx, 'sqrtflag', strcmp(cfg.method, 'amplcorr'), 'keeprpt', 0);
elseif isfield(data, 'mom')
[data, powindx, hasrpt] = univariate2bivariate(data, 'mom', 'powcov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'channelcmb', cfg.refindx, 'sqrtflag', strcmp(cfg.method, 'amplcorr'), 'keeprpt', 0);
end
end
case 'comp'
[data, powindx, hasrpt] = univariate2bivariate(data, 'trial', 'cov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'channelcmb', cfg.channelcmb, 'sqrtflag', false, 'keeprpt', 1);
end % switch dtype
elseif (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm')))
% this means that there is a sparse crsspctrm in the data
else
powindx = [];
end % ensure that the bivariate measure exists
% do some additional work if single trial normalisation is required
% for example when plv needs to be computed
if normrpt && hasrpt
if strcmp(inparam, 'crsspctrm')
tmp = data.(inparam);
nrpt = size(tmp, 1);
ft_progress('init', cfg.feedback, 'normalising...');
for k = 1:nrpt
ft_progress(k/nrpt, 'normalising amplitude of replicate % d from % d to 1\n', k, nrpt);
tmp(k, :, :, :, :) = tmp(k, :, :, :, :)./abs(tmp(k, :, :, :, :));
end
ft_progress('close');
data.(inparam) = tmp;
end
end
% convert the labels for the partialisation channels into indices
% do the same for the labels of the channels that should be kept
% convert the labels in the output to reflect the partialisation
if ~isempty(cfg.partchannel) && (isfield(data, 'label') || isfield(data, 'labelcmb'))
if isfield(data, 'label')
label = data.label;
elseif isfield(data, 'labelcmb')
[indx, label] = labelcmb2indx(data.labelcmb);
end
allchannel = ft_channelselection(label, cfg.channel);
pchanindx = match_str(allchannel, cfg.partchannel);
cfg.pchanindx = pchanindx;
partstr = '';
for k = 1:numel(cfg.partchannel)
partstr = [partstr, '-', cfg.partchannel{k}];
end
if isfield(data, 'label')
% update labels of the partialed channels
for k = 1:numel(data.label)
data.label{k} = [data.label{k}, '\', partstr(2:end)];
end
elseif isfield(data, 'labelcmb')
for k = 1:numel(data.labelcmb)
data.labelcmb{k} = [data.labelcmb{k}, '\', partstr(2:end)];
end
end
else
cfg.pchanindx = [];
end
% check if jackknife is required
if hasrpt && dojack && hasjack
% do nothing
elseif hasrpt && dojack && ~ismember(cfg.method, {'wpli', 'wpli_debiased', 'ppc', 'wppc'})
% compute leave-one-outs
% assume the inparam(s) are well-behaved, i.e. they have the 'rpt'
% dimension as the first dimension
if iscell(inparam)
for k = 1:numel(inparam)
nrpt = size(data.(inparam{k}),1);
sumdat = sum(data.(inparam{k}),1);
data.(inparam{k}) = (sumdat(ones(nrpt,1),:,:,:,:,:) - data.(inparam{k}))./(nrpt-1);
clear sumdat;
end
else
nrpt = size(data.(inparam),1);
sumdat = sum(data.(inparam),1);
data.(inparam) = (sumdat(ones(nrpt,1),:,:,:,:,:) - data.(inparam))./(nrpt-1);
clear sumdat;
end
hasjack = true;
elseif hasrpt && ~ismember(cfg.method, {'wpli', 'wpli_debiased', 'ppc', 'wppc', 'powcorr_ortho', 'mi', 'di', 'dfi'})% || needrpt)
% create dof variable
if isfield(data, 'dof')
dof = data.dof;
elseif isfield(data, 'cumtapcnt')
dof = sum(data.cumtapcnt);
end
tmpcfg = [];
tmpcfg.avgoverrpt = 'yes';
tmpcfg.nanmean = 'yes';
data = ft_selectdata(tmpcfg, data);
hasrpt = false;
else
% nothing required
end
% ensure that the first dimension is singleton if ~hasrpt
if ~hasrpt && needrpt
if ischar(inparam)
data.dimord = ['rpt_' getdimord(data, inparam)];
data.(inparam) = reshape(data.(inparam), [1 size(data.(inparam))]);
else
for k = 1:numel(inparam)
data.([inparam{k} 'dimord']) = ['rpt_' getdimord(data, inparam{k})];
data.(inparam{k}) = reshape(data.(inparam{k}), [1 size(data.(inparam{k}))]);
end
end
hasrpt = true;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the desired connectivity metric by calling the appropriate ft_connectivity_XXX function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'coh'
% coherence (unsquared), if cfg.complex = 'imag' imaginary part of coherency
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
if ~isempty(cfg.pchanindx) && isfield(data, 'label')
% the labels need to be updated (because some may have disappeared)
data.label(cfg.pchanindx) = [];
end
case 'csd'
% cross-spectral density (e.g. useful if partialisation is required)
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
if ~isempty(cfg.pchanindx) && isfield(data, 'label')
% the labels need to be updated (because some may have disappeared)
data.label(cfg.pchanindx) = [];
end
case {'wpli' 'wpli_debiased'}
% weighted pli or debiased weighted phase lag index.
optarg = {'feedback', cfg.feedback, 'dojack', dojack, 'debias', strcmp(cfg.method, 'wpli_debiased')};
if isequal(inparam, 'fourierspctrm')
optarg = cat(2, optarg, {'isunivariate' 1 'cumtapcnt' data.cumtapcnt});
end
[datout, varout, nrpt] = ft_connectivity_wpli(data.(inparam), optarg{:});
data.dimord = strrep(data.dimord, 'chan', 'chan_chan'); % needed for data structure consistency
case {'wppc' 'ppc'}
% weighted pairwise phase consistency or pairwise phase consistency
optarg = {'feedback', cfg.feedback, 'dojack', dojack, 'weighted', strcmp(cfg.method, 'wppc')};
[datout, varout, nrpt] = ft_connectivity_ppc(data.(inparam), optarg{:});
case 'plv'
% phase locking value
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
if ~isempty(cfg.pchanindx) && isfield(data, 'label')
% the labels need to be updated (because some may have disappeared)
data.label(cfg.pchanindx) = [];
end
case 'amplcorr'
% amplitude correlation
dimord = getdimord(data, inparam);
optarg = {'feedback', cfg.feedback, 'dimord', dimord, 'complex', 'real', 'pownorm', 1, 'pchanindx', [], 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'powcorr'
% power correlation
dimord = getdimord(data, inparam);
optarg = {'feedback', cfg.feedback, 'dimord', dimord, 'complex', 'real', 'pownorm', 1, 'pchanindx', [], 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'transfer'
% the necessary stuff has already been computed
datout = data.transfer;
noisecov = data.noisecov;
crsspctrm = data.crsspctrm;
if ~hasrpt
datout = shiftdim(datout,1);
noisecov = shiftdim(noisecov,1);
crsspctrm = shiftdim(crsspctrm,1);
end
case {'granger' 'instantaneous_causality' 'total_interdependence' 'iis'}
% granger causality
if ft_datatype(data, 'freq') || ft_datatype(data, 'freqmvar')
if isfield(data, 'labelcmb') && isfield(cfg.granger, 'sfmethod') && strcmp(cfg.granger.sfmethod, 'bivariate_conditional')
% create a powindx variable that ft_connectivity_granger can use to
% do the conditioning
[indx, label, blockindx, blocklabel] = labelcmb2indx(data.labelcmb);
cmbindx12 = labelcmb2indx(cfg.granger.channelcmb(:,1:2), label);
cmbindx23 = labelcmb2indx(cfg.granger.channelcmb(:,2:3), label);
cmbindx = [cmbindx12 cmbindx23(:,2); cmbindx12(:,[2 1]) cmbindx23(:,2)];
powindx.cmbindx = indx;
powindx.blockindx = blockindx;
powindx.outindx = cmbindx;
newlabelcmb = cell(size(cmbindx,1),2);
for k = 1:size(newlabelcmb,1)
newlabelcmb{k,1} = sprintf('%s|%s',label{cmbindx(k,2)},label{cmbindx(k,3)}); % deliberate swap of 2/1 as per the conventional definition in conditional granger computation
newlabelcmb{k,2} = sprintf('%s|%s',label{cmbindx(k,1)},label{cmbindx(k,3)});
end
data.labelcmb = newlabelcmb;
elseif isfield(data, 'labelcmb') && ~istrue(cfg.granger.conditional)
% multiple pairwise non-parametric transfer functions
% linearly indexed
% The following is very slow, one may make assumptions regarding
% the order of the channels -> csd2transfer gives combinations in
% quadruplets, where the first and fourth are auto-combinations,
% and the second and third are cross-combinations
% powindx = labelcmb2indx(data.labelcmb);
%
% The following is not needed anymore, because ft_connectivity_granger
% relies on some hard-coded assumptions for the channel-pair ordering.
% Otherwise it becomes just too slow.
% powindx = zeros(size(data.labelcmb));
% for k = 1:size(powindx, 1)/4
% ix = ((k-1)*4+1):k*4;
% powindx(ix, :) = [1 1;4 1;1 4;4 4] + (k-1)*4;
% end
powindx = [];
if isfield(data, 'label')
% this field should be removed
data = rmfield(data, 'label');
end
elseif isfield(data, 'labelcmb') && istrue(cfg.granger.conditional)
% conditional (blockwise) needs linearly represented cross-spectra,
% that have been produced by ft_connectivity_csd2transfer
%
% each row in Nx2 cell-array tmp refers to a comparison
% tmp{k, 1} represents the ordered blocks
% for the full trivariate model: the second element drives the
% first element, while the rest is partialed out.
% tmp{k, 2} represents the ordered blocks where the driving block
% is left out
blocks = unique(data.blockindx);
nblocks = numel(blocks);
cnt = 0;
for k = 1:nblocks
for m = (k+1):nblocks
cnt = cnt+1;
rest = setdiff(reshape(blocks,[1 numel(blocks)]), [k m]); % make sure to reshape blocks into 1xn vector
tmp{cnt, 1} = [k m rest];
tmp{cnt, 2} = [k rest];
newlabelcmb{cnt, 1} = data.block(m).name; % note the index swap: convention is driver in left column
newlabelcmb{cnt, 2} = data.block(k).name;
cnt = cnt+1;
tmp{cnt, 1} = [m k rest];
tmp{cnt, 2} = [m rest];
newlabelcmb{cnt, 1} = data.block(k).name;
newlabelcmb{cnt, 2} = data.block(m).name;
end
end
% make a temporary label list
tmp2 = cell(numel(data.labelcmb),1);
for m = 1:numel(data.labelcmb)
tok = tokenize(data.labelcmb{m}, '[');
tmp2{m} = tok{1};
end
label = cat(1,data.block.label); %unique(tmp2);
[powindx.cmbindx, powindx.n] = blockindx2cmbindx(data.labelcmb, {label data.blockindx}, tmp);
data.labelcmb = newlabelcmb;
if isfield(data, 'label')
% this field should be removed
data = rmfield(data, 'label');
end
elseif isfield(cfg.granger, 'block') && ~isempty(cfg.granger.block)
% make a temporary label list
if isfield(data, 'label')
label = data.label;
else
tmp = cell(numel(data.labelcmb),1);
for m = 1:numel(data.labelcmb)
tok = tokenize(data.labelcmb{m}, '[');
tmp{m} = tok{1};
end
label = unique(tmp);
end
% blockwise granger
for k = 1:numel(cfg.granger.block)
%newlabel{k, 1} = cat(2, cfg.granger.block(k).label{:});
newlabel{k,1} = cfg.granger.block(k).name;
powindx{k,1} = match_str(label, cfg.granger.block(k).label);
end
data.label = newlabel;
else
powindx = [];
end
if ~exist('powindx', 'var'), powindx = []; end
if strcmp(cfg.method, 'granger'), methodstr = 'granger'; end
if strcmp(cfg.method, 'instantaneous_causality'), methodstr = 'instantaneous'; end
if strcmp(cfg.method, 'total_interdependence'), methodstr = 'total'; end
if strcmp(cfg.method, 'iis'), methodstr = 'iis'; end
optarg = {'hasjack', hasjack, 'method', methodstr, 'powindx', powindx, 'dimord', data.dimord};
[datout, varout, nrpt] = ft_connectivity_granger(data.transfer, data.noisecov, data.crsspctrm, optarg{:});
if strcmp(cfg.method, 'iis')
data.freq = nan;
end
else
ft_error('granger for time domain data is not yet implemented');
end
case {'dtf' 'ddtf'}
% directed transfer function
if isfield(data, 'labelcmb')
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
optarg = {'feedback', cfg.feedback, 'powindx', powindx, 'hasjack', hasjack};
if hasrpt
datin = data.transfer;
else
datin = reshape(data.transfer, [1 size(data.transfer)]);
data.crsspctrm = reshape(data.crsspctrm, [1 size(data.crsspctrm)]);
end
if strcmp(cfg.method, 'ddtf'), optarg = cat(2, optarg, {'crsspctrm' data.crsspctrm}); end
[datout, varout, nrpt] = ft_connectivity_dtf(datin, optarg{:});
case {'pdc' 'gpdc'}
% partial directed coherence
if isfield(data, 'labelcmb')
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
optarg = {'feedback', cfg.feedback, 'powindx', powindx, 'hasjack', hasjack};
if strcmp(cfg.method, 'gpdc'), optarg = cat(2, optarg, {'noisecov' data.noisecov}); end
if hasrpt
datin = data.(inparam);
else
datin = reshape(data.(inparam), [1 size(data.(inparam))]);
end
[datout, varout, nrpt] = ft_connectivity_pdc(datin, optarg{:});
case 'psi'
% phase slope index
nbin = nearest(data.freq, data.freq(1)+cfg.bandwidth)-1;
optarg = {'feedback', cfg.feedback, 'dimord', data.dimord, 'nbin', nbin, 'normalize', cfg.normalize, 'hasrpt', hasrpt, 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_psi(data.(inparam), optarg{:});
case 'powcorr_ortho'
% Joerg Hipp's power correlation method
optarg = {'refindx', cfg.refindx, 'tapvec', data.cumtapcnt};
if isfield(data, 'mom')
% this is expected to be a single frequency
%dat = cat(2, data.mom{data.inside}).';
% HACK
dimord = getdimord(data, 'mom');
dimtok = tokenize(dimord, '_');
posdim = find(strcmp(dimtok, '{pos}'));
posdim = 4; % we concatenate across positions...
rptdim = find(~cellfun('isempty',strfind(dimtok, 'rpt')));
rptdim = rptdim-1; % the posdim has to be taken into account...
dat = cat(4, data.mom{data.inside});
dat = permute(dat,[posdim rptdim setdiff(1:ndims(dat),[posdim rptdim])]);
datout = ft_connectivity_powcorr_ortho(dat, optarg{:});
% HACK continued: format the output according to the inside and
% refindx specifications
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
% create all-to-all output
tmp = zeros(numel(data.inside));
tmp(data.inside,data.inside) = datout;
datout = tmp;
clear tmp;
outdimord = 'pos_pos_freq';
else
% create all-to-few output
tmp = zeros(numel(data.inside), numel(cfg.refindx));
tmp(data.inside, :) = datout;
datout = tmp;
clear tmp;
outdimord = 'pos_pos_freq';
end
elseif strcmp(data.dimord, 'rpttap_chan_freq')
% loop over all frequencies
[nrpttap, nchan, nfreq] = size(data.fourierspctrm);
datout = cell(1, nfreq);
for i=1:length(data.freq)
dat = data.fourierspctrm(:,:,i).';
datout{i} = ft_connectivity_powcorr_ortho(dat, optarg{:});
end
datout = cat(3, datout{:});
% HACK otherwise I don't know how to inform the code further down about the dimord
data.dimord = 'rpttap_chan_chan_freq';
else
ft_error('unsupported data representation');
end
varout = [];
nrpt = numel(data.cumtapcnt);
case {'mi' 'di' 'dfi'}
% mutual information using the information breakdown toolbox, or gcmi
% presence of the toolbox is checked in the low-level function.
% directed information using the gcmi toolbox, requires a lag to be
% specified
if (strcmp(cfg.method, 'di') || strcmp(cfg.method, 'dfi')) && any(cfg.(cfg.method).lags<=0)
error('directed information requires cfg.di.lags to be > 0');
end
if ~strcmp(dtype, 'raw') && (numel(cfg.(cfg.method).lags)>1 || cfg.(cfg.method).lags~=0)
ft_error('computation of lagged mutual information is only possible with ''raw'' data in the input');
end
% if not specified prior to the call, make sure empty 'opts' field exists
if ~isfield(cfg.(cfg.method), 'opts')
cfg.(cfg.method).opts = [];
end
switch dtype
case 'raw'
% ensure the lags to be in samples, not in seconds.
cfg.(cfg.method).lags = round(cfg.(cfg.method).lags.*data.fsample);
% check which row(s) in the data are the reference
if isempty(cfg.refchannel) && isempty(cfg.refindx)
error('either ''cfg.refchannel'', or ''cfg.refindx'' should be specified');
elseif ~isempty(cfg.refchannel)
cfg.refindx = match_str(data.label, cfg.refchannel);
elseif ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
%error('this is yet not possible and should be fixed elegantly'); %FIXME now we should decide whether we allow for multivariate reference channels, or we treat the refindx as a per-element vector, i.e. allow for all-to-all
end
if strcmp(cfg.method, 'dfi') || strcmp(cfg.method, 'mi')
cfg.(cfg.method).feature = ft_getopt(cfg.(cfg.method), 'feature', []);
if strcmp(cfg.method, 'dfi') && isempty(cfg.dfi.feature)
error('dfi requires a feature to be specified');
end
cfg.(cfg.method).featureindx = match_str(data.label, cfg.(cfg.method).feature);
cfg.(cfg.method).featurelags = ft_getopt(cfg.(cfg.method), 'featurelags');
if ~isempty(cfg.(cfg.method).featurelags), cfg.(cfg.method).featurelags = round(cfg.(cfg.method).featurelags.*data.fsample); end
end
dat = catnan(data.trial, max(abs(cfg.(cfg.method).lags)));
% deal with cfg.mi.montage, which allows for multivariate stuff
if ~isempty(cfg.(cfg.method).montage)
[i1, i2] = match_str(data.label, cfg.(cfg.method).montage.labelorg);
i3 = setdiff((1:numel(data.label))',i1);
tra = cfg.(cfg.method).montage.tra(:,i2);
tra(end+(1:numel(i3)),end+(1:numel(i3))) = eye(numel(i3));
newlabel = [cfg.(cfg.method).montage.labelnew;data.label(i3)];
% update the refindx
cfg.refindx = match_str(newlabel, cfg.refchannel);
dat = dat([i1; i3], :);
refindx = cfg.refindx;
else
tra = [];
newlabel = [];
refindx = cfg.refindx;
end
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
outdimord = 'chan_chan';
elseif numel(cfg.refindx)==1 || numel(cfg.refchannel)==1,
outdimord = 'chan';
else
outdimord = 'chan';
%ft_error('at present cfg.refindx should be either ''all'', or scalar');
end
if numel(cfg.(cfg.method).lags)>1 && ~istrue(cfg.(cfg.method).combinelags)
data.time = cfg.(cfg.method).lags./data.fsample;
outdimord = [outdimord, '_time'];
else
data = rmfield(data, 'time');
end
if ~isempty(newlabel)
data.label = newlabel;
end
case 'timelock'
dat = data.(inparam);
dat = reshape(permute(dat, [2 3 1]), [size(dat, 2) size(dat, 1)*size(dat, 3)]);
data = rmfield(data, 'time');
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
outdimord = 'chan_chan';
elseif numel(cfg.refindx)==1
outdimord = 'chan';
else
ft_error('at present cfg.refindx should be either ''all'', or scalar');
end
%data.dimord = 'chan_chan';
case 'freq'
ft_error('not yet implemented');
case 'source'
% for the time being work with mom
% dat = cat(2, data.mom{data.inside}).';
dat = cat(1, data.mom{data.inside});
% dat = abs(dat);
end
optarg = {'numbin', cfg.(cfg.method).numbin, 'lags', cfg.(cfg.method).lags, 'refindx', refindx, ...
'method', cfg.(cfg.method).method, 'complex', cfg.(cfg.method).complex, 'precondition', cfg.(cfg.method).precondition, ...
'opts', cfg.(cfg.method).opts};
if ~isempty(tra), optarg = cat(2, optarg, {'tra' tra}); end
if strcmp(cfg.method, 'mi'), optarg = cat(2, optarg, {'conditional', false}); end
if strcmp(cfg.method, 'mi'), optarg = cat(2, optarg, {'featureindx', cfg.(cfg.method).featureindx}); end
if strcmp(cfg.method, 'mi'), optarg = cat(2, optarg, {'featurelags', cfg.(cfg.method).featurelags}); end
if strcmp(cfg.method, 'mi'), optarg = cat(2, optarg, {'combinelags', cfg.(cfg.method).combinelags}); end
if strcmp(cfg.method, 'di'), optarg = cat(2, optarg, {'conditional', true}); end
if strcmp(cfg.method, 'di'), optarg = cat(2, optarg, {'combinelags', cfg.(cfg.method).combinelags}); end
if strcmp(cfg.method, 'dfi'), optarg = cat(2, optarg, {'conditional', true}); end
if strcmp(cfg.method, 'dfi'), optarg = cat(2, optarg, {'featureindx', cfg.(cfg.method).featureindx}); end
if strcmp(cfg.method, 'dfi'), optarg = cat(2, optarg, {'featurelags', cfg.(cfg.method).featurelags}); end
if strcmp(cfg.method, 'dfi'), optarg = cat(2, optarg, {'combinelags', cfg.(cfg.method).combinelags}); end
[datout] = ft_connectivity_mutualinformation(dat, optarg{:});
varout = [];
nrpt = [];
case 'corr'
% pearson's correlation coefficient
optarg = {'dimord', getdimord(data, inparam), 'feedback', cfg.feedback, 'hasjack', hasjack, 'pownorm', true, 'complex', 'complex'};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
if ~isempty(cfg.pchanindx) && isfield(data, 'label')
% the labels need to be updated (because some may have disappeared)
data.label(cfg.pchanindx) = [];
end
case 'xcorr'
% cross-correlation function
ft_error('method %s is not yet implemented', cfg.method);
case 'spearman'
% spearman's rank correlation
ft_error('method %s is not yet implemented', cfg.method);
case 'laggedcoherence'
% lagged coherence estimate
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
optarg = cat(2, optarg, {'powindx', powindx});
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
data = removefields(data, 'dof'); % the dof is not to be trusted
case 'plm'
% phase linearity measurement.
optarg = {'bandwidth', cfg.bandwidth, 'fsample', data.fsample};
datout = ft_connectivity_plm(data.(inparam), optarg{:});
varout = [];
outdimord = 'rpt_chan_chan';
case 'mim'
% multiple interaction measure
optarg = {'indices', cfg.indices};
if numel(cfg.indices)~=numel(data.label)
ft_error('for a mim computation, the cfg.indices vector should be the same as the number of channels in the input data');
end
if (contains(data.dimord, 'rpt') && size(data.(inparam),1) == 1) || ~contains(data.dimord, 'rpt')
datout = ft_connectivity_mim(shiftdim(data.(inparam)), optarg{:});
else
ft_error('the ''rpt'' dimension should either be of singleton length, or non existent for mim computation');
end
outdimord = 'chan_chan_freq';
varout = [];
% mim requires an updated (shortened) label
label = cell(max(cfg.indices),1);
for k = 1:max(cfg.indices)
str = sprintf('%s, ', data.label{cfg.indices==k});
str = str(1:end-2);
label{k,1} = sprintf('(%s)', str);
end
data.label = label;
case 'cancoh'
% canonical coherence
optarg = {'indices', cfg.indices, 'realflag', cfg.realflag};
if numel(cfg.indices)~=numel(data.label)
ft_error('for a canonical coherence computation, the cfg.indices vector should be the same as the number of channels in the input data');
end
if (contains(data.dimord, 'rpt') && size(data.(inparam),1) == 1) || ~contains(data.dimord, 'rpt')
datout = ft_connectivity_cancorr(shiftdim(data.(inparam)), optarg{:});
else
ft_error('the ''rpt'' dimension should either be of singleton length, or non existent for canonical coherence computation');
end
outdimord = 'chan_chan_freq';
varout = [];
% cancoh requires an updated (shortened) label
label = cell(max(cfg.indices),1);
for k = 1:max(cfg.indices)
str = sprintf('%s, ', data.label{cfg.indices==k});
str = str(1:end-2);
label{k,1} = sprintf('(%s)', str);
end
data.label = label;
otherwise
ft_error('unknown method %s', cfg.method);
end % switch method
% remove the auto combinations if necessary -> FIXME this is granger specific and thus could move to ft_connectivity_granger
if (strcmp(cfg.method, 'granger') || strcmp(cfg.method, 'instantaneous_causality') || strcmp(cfg.method, 'total_interdependence')) && isfield(cfg, 'granger') && isfield(cfg.granger, 'sfmethod') && strcmp(cfg.granger.sfmethod, 'bivariate')
% remove the auto-combinations based on the order in the data
switch dtype
case {'freq' 'freqmvar'}
keepchn = 1:size(datout, 1);
keepchn = mod(keepchn, 4)==2 | mod(keepchn, 4)==3;
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout)
varout = varout(keepchn, :, :, :, :);
end
data.labelcmb = data.labelcmb(keepchn, :);
case 'source'
% not yet implemented
end
end
if exist('powindx', 'var') && ~isempty(powindx)
% based on powindx
switch dtype
case {'freq' 'freqmvar'}
if isfield(data, 'labelcmb') && ~isstruct(powindx)
keepchn = powindx(:, 1) ~= powindx(:, 2);
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout)
if all(size(varout)==size(nrpt))
nrpt = nrpt(keepchn, :, :, :, :);
end
varout = varout(keepchn, :, :, :, :);
end
data.labelcmb = data.labelcmb(keepchn, :);
end
case 'source'
nvox = size(unique(data.pos(:, 1:3), 'rows'), 1);
ncmb = size(data.pos, 1)/nvox-1;
remove = (powindx(:, 1) == powindx(:, 2)) & ((1:size(powindx, 1))' > nvox*ncmb);
keepchn = ~remove;
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout)
varout = varout(keepchn, :, :, :, :);
end
inside = false(size(data.pos, 1),1);
inside(data.inside) = true;
inside = inside(keepchn);
% data.inside = find(inside)';
% data.outside = find(inside==0)';
data.pos = data.pos(keepchn, :);
data.inside = data.inside(keepchn);
end % switch dtype
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the output structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch dtype
case {'freq' 'freqmvar'}
stat = keepfields(data, {'label', 'labelcmb', 'grad', 'elec', 'opto'});
if isfield(data, 'labelcmb')
% ensure the correct dimord in case the input was 'powandcsd'
data.dimord = strrep(data.dimord, 'chan_', 'chancmb_');
end
tok = tokenize(data.dimord, '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
if ~iscell(outparam)
stat.(outparam) = datout;
if ~isempty(varout)
stat.([outparam, 'sem']) = (varout./nrpt).^0.5;
end
else
stat.(outparam{1}) = datout;
for k = 2:numel(outparam)
if exist(outparam{k}, 'var')
stat.(outparam{k}) = eval(outparam{k});
end
end
end
case 'timelock'
stat = keepfields(data, {'label', 'labelcmb', 'grad', 'elec', 'opto'});
% deal with the dimord
if exist('outdimord', 'var')
stat.dimord = outdimord;
else
% guess
tok = tokenize(getdimord(data, inparam), '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
end
stat.(outparam) = datout;
if ~isempty(varout)
stat.([outparam, 'sem']) = (varout./nrpt).^0.5;
end
case {'source' 'source+mesh'}
stat = keepfields(data, {'pos', 'dim', 'transform', 'inside', 'outside' 'tri'});
stat.(outparam) = datout;
if ~isempty(varout)
stat.([outparam, 'sem']) = (varout/nrpt).^0.5;
end
% deal with the dimord
if exist('outdimord', 'var')
stat.dimord = outdimord;
else
% guess
tok = tokenize(getdimord(data, inparam), '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
end
case 'raw'
stat = [];
stat.label = data.label;
stat.(outparam) = datout;
if ~isempty(varout)
stat.([outparam, 'sem']) = (varout/nrpt).^0.5;
end
if exist('outdimord', 'var')
stat.dimord = outdimord;
end
end % switch dtype
if isfield(stat, 'dimord')
dimtok = tokenize(stat.dimord, '_');
% these dimensions in the output data must come from the input data
if any(strcmp(dimtok, 'time')), stat.time = data.time; end
if any(strcmp(dimtok, 'freq')), stat.freq = data.freq; end
else
% just copy them over, alhtough we don't know for sure whether they are needed in the output
if isfield(data, 'freq'), stat.freq = data.freq; end
if isfield(data, 'time'), stat.time = data.time; end
end
if exist('dof', 'var'), stat.dof = dof; end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance stat
ft_postamble history stat
ft_postamble savevar stat
%-------------------------------------------------------------------------------
%subfunction to concatenate data with nans in between, needed for
%time-shifted mi
function [datamatrix] = catnan(datacells, nnans)
nchan = size(datacells{1}, 1);
nsmp = cellfun('size',datacells,2);
nrpt = numel(datacells);
%---initialize
datamatrix = nan(nchan, sum(nsmp) + nnans*(nrpt+1));
%---fill the matrix
for k = 1:nrpt
if k==1
begsmp = 1+nnans;
endsmp = nsmp(1)+nnans;
else
begsmp = k*nnans + sum(nsmp(1:(k-1))) + 1;
endsmp = k*nnans + sum(nsmp(1:k));
end
datamatrix(:,begsmp:endsmp) = datacells{k};
end