Permalink
Cannot retrieve contributors at this time
514 lines (475 sloc)
24.8 KB
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
fieldtrip/ft_statistics_montecarlo.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [stat, cfg] = ft_statistics_montecarlo(cfg, dat, design, varargin) | |
% FT_STATISTICS_MONTECARLO performs a nonparametric statistical test by calculating | |
% Monte-Carlo estimates of the significance probabilities and/or critical values from | |
% the permutation distribution. This function should not be called directly, instead | |
% you should call the function that is associated with the type of data on which you | |
% want to perform the test. | |
% | |
% Use as | |
% stat = ft_timelockstatistics(cfg, data1, data2, data3, ...) | |
% stat = ft_freqstatistics (cfg, data1, data2, data3, ...) | |
% stat = ft_sourcestatistics (cfg, data1, data2, data3, ...) | |
% | |
% where the data is obtained from FT_TIMELOCKANALYSIS, FT_FREQANALYSIS or | |
% FT_SOURCEANALYSIS respectively, or from FT_TIMELOCKGRANDAVERAGE, | |
% FT_FREQGRANDAVERAGE or FT_SOURCEGRANDAVERAGE respectively | |
% and with cfg.method = 'montecarlo' | |
% | |
% The configuration options that can be specified are: | |
% cfg.numrandomization = number of randomizations, can be 'all' | |
% cfg.correctm = string, apply multiple-comparison correction, 'no', 'max', cluster', 'tfce', 'bonferroni', 'holm', 'hochberg', 'fdr' (default = 'no') | |
% cfg.alpha = number, critical value for rejecting the null-hypothesis per tail (default = 0.05) | |
% cfg.tail = number, -1, 1 or 0 (default = 0) | |
% cfg.correcttail = string, correct p-values or alpha-values when doing a two-sided test, 'alpha','prob' or 'no' (default = 'no') | |
% cfg.ivar = number or list with indices, independent variable(s) | |
% cfg.uvar = number or list with indices, unit variable(s) | |
% cfg.wvar = number or list with indices, within-cell variable(s) | |
% cfg.cvar = number or list with indices, control variable(s) | |
% cfg.feedback = string, 'gui', 'text', 'textbar' or 'no' (default = 'text') | |
% cfg.randomseed = string, 'yes', 'no' or a number (default = 'yes') | |
% | |
% If you use a cluster-based statistic, you can specify the following options that | |
% determine how the single-sample or single-voxel statistics will be thresholded and | |
% combined into one statistical value per cluster. | |
% cfg.clusterstatistic = how to combine the single samples that belong to a cluster, 'maxsum', 'maxsize', 'wcm' (default = 'maxsum') | |
% the option 'wcm' refers to 'weighted cluster mass', a statistic that combines cluster size and intensity; | |
% see Hayasaka & Nichols (2004) NeuroImage for details | |
% cfg.clusterthreshold = method for single-sample threshold, 'parametric', 'nonparametric_individual', 'nonparametric_common' (default = 'parametric') | |
% cfg.clusteralpha = for either parametric or nonparametric thresholding per tail (default = 0.05) | |
% cfg.clustercritval = for parametric thresholding (default is determined by the statfun) | |
% cfg.clustertail = -1, 1 or 0 (default = 0) | |
% | |
% To include the channel dimension for clustering of channel level data, you should specify | |
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS | |
% If you specify an empty neighbourhood structure, clustering will only be done | |
% over frequency and/or time and not over neighbouring channels. | |
% | |
% The statistic that is computed for each sample in each random reshuffling | |
% of the data is specified as | |
% cfg.statistic = 'indepsamplesT' independent samples T-statistic, | |
% 'indepsamplesF' independent samples F-statistic, | |
% 'indepsamplesregrT' independent samples regression coefficient T-statistic, | |
% 'indepsamplesZcoh' independent samples Z-statistic for coherence, | |
% 'depsamplesT' dependent samples T-statistic, | |
% 'depsamplesFmultivariate' dependent samples F-statistic MANOVA, | |
% 'depsamplesregrT' dependent samples regression coefficient T-statistic, | |
% 'actvsblT' activation versus baseline T-statistic. | |
% or you can specify your own low-level statistical function. | |
% | |
% You can also use a custom statistic of your choice that is sensitive to the | |
% expected effect in the data. You can implement the statistic in a "statfun" that | |
% will be called for each randomization. The requirements on a custom statistical | |
% function is that the function is called ft_statfun_xxx, and that the function returns | |
% a structure with a "stat" field containing the single sample statistical values. | |
% Have a look at the functions in the fieldtrip/statfun directory (e.g. | |
% FT_STATFUN_INDEPSAMPLEST) for the correct format of the input and output. | |
% | |
% See also FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS, FT_SOURCESTATISTICS, | |
% FT_STATISTICS_ANALYTIC, FT_STATISTICS_STATS, FT_STATISTICS_MVPA, | |
% FT_STATISTICS_CROSSVALIDATE | |
% Undocumented local options: | |
% cfg.resampling permutation, bootstrap | |
% cfg.computecritval yes|no, for the statfun | |
% cfg.computestat yes|no, for the statfun | |
% cfg.computeprob yes|no, for the statfun | |
% cfg.voxelstatistic deprecated | |
% cfg.voxelthreshold deprecated | |
% cfg.precondition before|after|[], for the statfun | |
% Copyright (C) 2005-2015, Robert Oostenveld | |
% | |
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org | |
% for the documentation and details. | |
% | |
% FieldTrip is free software: you can redistribute it and/or modify | |
% it under the terms of the GNU General Public License as published by | |
% the Free Software Foundation, either version 3 of the License, or | |
% (at your option) any later version. | |
% | |
% FieldTrip is distributed in the hope that it will be useful, | |
% but WITHOUT ANY WARRANTY; without even the implied warranty of | |
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
% GNU General Public License for more details. | |
% | |
% You should have received a copy of the GNU General Public License | |
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. | |
% | |
% $Id$ | |
% do a sanity check on the input data | |
assert(isnumeric(dat), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead'); | |
assert(isnumeric(design), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead'); | |
% check if the input cfg is valid for this function | |
cfg = ft_checkconfig(cfg, 'renamed', {'factor', 'ivar'}); | |
cfg = ft_checkconfig(cfg, 'renamed', {'unitfactor', 'uvar'}); | |
cfg = ft_checkconfig(cfg, 'renamed', {'repeatedmeasures', 'uvar'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'clusterthreshold', 'nonparametric', 'nonparametric_individual'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'yes', 'max'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'none', 'no'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'bonferoni', 'bonferroni'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'holms', 'holm'}); | |
cfg = ft_checkconfig(cfg, 'required', {'statistic'}); | |
cfg = ft_checkconfig(cfg, 'forbidden', {'ztransform', 'removemarginalmeans', 'randomfactor', 'voxelthreshold', 'voxelstatistic'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'statfun', 'depsamplesF', 'ft_statfun_depsamplesFmultivariate'}); | |
cfg = ft_checkconfig(cfg, 'renamedval', {'statfun', 'ft_statfun_depsamplesF', 'ft_statfun_depsamplesFmultivariate'}); | |
% set the defaults for the main function | |
cfg.alpha = ft_getopt(cfg, 'alpha', 0.05); | |
cfg.tail = ft_getopt(cfg, 'tail', 0); | |
cfg.correctm = ft_getopt(cfg, 'correctm', 'no'); | |
cfg.resampling = ft_getopt(cfg, 'resampling', 'permutation'); | |
cfg.feedback = ft_getopt(cfg, 'feedback', 'text'); | |
cfg.ivar = ft_getopt(cfg, 'ivar', 'all'); | |
cfg.uvar = ft_getopt(cfg, 'uvar', []); | |
cfg.cvar = ft_getopt(cfg, 'cvar', []); | |
cfg.wvar = ft_getopt(cfg, 'wvar', []); | |
cfg.correcttail = ft_getopt(cfg, 'correcttail', 'no'); | |
cfg.precondition = ft_getopt(cfg, 'precondition', []); | |
% explicit check for option 'yes' in cfg.correctail. | |
if strcmp(cfg.correcttail, 'yes') | |
ft_error('cfg.correcttail = ''yes'' is not allowed, use either ''prob'', ''alpha'' or ''no''') | |
end | |
if strcmp(cfg.correctm, 'tfce') | |
% TODO this could require some better defaults | |
cfg.connectivity = ft_getopt(cfg, 'connectivity', []); | |
cfg.tfce_h0 = ft_getopt(cfg, 'tfce_h0', 0); | |
cfg.tfce_H = ft_getopt(cfg, 'tfce_H', 2); | |
cfg.tfce_E = ft_getopt(cfg, 'tfce_E', 0.5); | |
cfg.tfce_nsteps = ft_getopt(cfg, 'tfce_nsteps', 100); | |
else | |
% these options only apply to tfce, to ensure appropriate configs they are forbidden when _not_ clustering | |
cfg = ft_checkconfig(cfg, 'unused', {'tfce_h0', 'tfce_H', 'tfce_E', 'tfce_nsteps'}); | |
end | |
if strcmp(cfg.correctm, 'cluster') | |
% set the defaults for clustering | |
cfg.clusterstatistic = ft_getopt(cfg, 'clusterstatistic', 'maxsum'); | |
cfg.clusterthreshold = ft_getopt(cfg, 'clusterthreshold', 'parametric'); | |
cfg.clusteralpha = ft_getopt(cfg, 'clusteralpha', 0.05); | |
cfg.clustercritval = ft_getopt(cfg, 'clustercritval', []); | |
cfg.clustertail = ft_getopt(cfg, 'clustertail', cfg.tail); | |
cfg.connectivity = ft_getopt(cfg, 'connectivity', []); % the default is dealt with below | |
else | |
% these options only apply to clustering, to ensure appropriate configs they are forbidden when _not_ clustering | |
cfg = ft_checkconfig(cfg, 'unused', {'clusterstatistic', 'clusteralpha', 'clustercritval', 'clusterthreshold', 'clustertail'}); | |
end | |
if any(strcmp(cfg.correctm, {'cluster' 'tfce'})) | |
% these options might require a spatial neighbourhood matrix | |
% deal with the neighbourhood of the channels/triangulation/voxels | |
if isempty(cfg.connectivity) | |
if isfield(cfg, 'dim') && ~isfield(cfg, 'channel') && ~isfield(cfg, 'tri') | |
% input data can be reshaped into a 3D volume, use bwlabeln/spm_bwlabel rather than clusterstat | |
ft_info('using connectivity of voxels in 3-D volume\n'); | |
cfg.connectivity = nan; | |
elseif isfield(cfg, 'tri') | |
% input data describes a surface along which neighbours can be defined | |
ft_info('using connectivity of vertices along triangulated surface\n'); | |
cfg.connectivity = triangle2connectivity(cfg.tri); | |
if isfield(cfg, 'insideorig') | |
cfg.connectivity = cfg.connectivity(cfg.insideorig, cfg.insideorig); | |
end | |
elseif isfield(cfg, 'avgoverchan') && istrue(cfg.avgoverchan) | |
% channel dimension has been averaged across, no sense in clustering across space | |
cfg.connectivity = true(1); | |
elseif isfield(cfg, 'channel') | |
cfg.neighbours = ft_getopt(cfg, 'neighbours', []); | |
cfg.connectivity = channelconnectivity(cfg); | |
else | |
% there is no connectivity in the spatial dimension | |
cfg.connectivity = false(size(dat,1)); | |
end | |
else | |
% use the specified connectivity: this is not fully robust because | |
% there is no guarantee that the order of the spatial elements in the | |
% data is the same as the order of the spatial elements in the | |
% adjacency matrix | |
end | |
end | |
% for backward compatibility and other warnings relating correcttail | |
if isfield(cfg,'correctp') && strcmp(cfg.correctp,'yes') | |
ft_warning('cfg.correctp has been renamed to cfg.correcttail and the options have been changed') | |
disp('setting cfg.correcttail to ''prob''') | |
cfg.correcttail = 'prob'; | |
cfg = rmfield(cfg,'correctp'); | |
elseif isfield(cfg,'correctp') && strcmp(cfg.correctp,'no') | |
cfg = ft_checkconfig(cfg, 'renamed', {'correctp', 'correcttail'}); | |
end | |
if strcmp(cfg.correcttail,'no') && cfg.tail==0 && cfg.alpha==0.05 | |
ft_warning('Doing a two-sided test without correcting p-values or alpha-level, p-values and alpha-level will reflect one-sided tests per tail. See http://bit.ly/2YQ1Hm8') | |
end | |
% for backward compatibility | |
if size(design,2)~=size(dat,2) | |
design = transpose(design); | |
end | |
if ischar(cfg.ivar) && strcmp(cfg.ivar, 'all') | |
cfg.ivar = 1:size(design,1); | |
end | |
% fetch function handle to the low-level statistics function | |
statfun = ft_getuserfun(cfg.statistic, 'statfun'); | |
if isempty(statfun) | |
ft_error('could not locate the appropriate statistics function'); | |
else | |
ft_info('using "%s" for the single-sample statistics\n', func2str(statfun)); | |
end | |
% construct the resampled design matrix or data-shuffling matrix | |
ft_info('constructing randomized design\n'); | |
resample = resampledesign(cfg, design); | |
Nrand = size(resample,1); | |
% most of the statfuns result in this warning, which is not interesting | |
ws = ft_warning('off', 'MATLAB:warn_r14_stucture_assignment'); | |
if strcmp(cfg.correctm, 'cluster') | |
% determine the critical value for cluster thresholding | |
if strcmp(cfg.clusterthreshold, 'nonparametric_individual') || strcmp(cfg.clusterthreshold, 'nonparametric_common') | |
ft_info('using a nonparametric threshold for clustering\n'); | |
cfg.clustercritval = []; % this will be determined later | |
elseif strcmp(cfg.clusterthreshold, 'parametric') && isempty(cfg.clustercritval) | |
ft_info('computing a parametric threshold for clustering\n'); | |
tmpcfg = cfg; % the next line does not pass on non-standard options that a statfun might use | |
% tmpcfg = keepfields(cfg, {'dim' 'dimord' 'clusteralpha' 'clustertail' 'ivar' 'uvar' 'cvar' 'wvar' 'contrastcoefs'}); | |
tmpcfg.computecritval = 'yes'; % explicitly request the computation of the crtitical value | |
tmpcfg.computestat = 'no'; % skip the computation of the statistic | |
tmpcfg.alpha = cfg.clusteralpha; % the statfun uses cfg.alpha most likely | |
try | |
cfg.clustercritval = getfield(statfun(tmpcfg, dat, design), 'critval'); | |
catch | |
disp(lasterr); | |
ft_error('could not determine the parametric critical value for clustering'); | |
end | |
elseif strcmp(cfg.clusterthreshold, 'parametric') && ~isempty(cfg.clustercritval) | |
ft_info('using the specified parametric threshold for clustering\n'); | |
cfg.clusteralpha = []; | |
end | |
end | |
% compute the statistic for the observed data | |
ft_progress('init', cfg.feedback, 'computing statistic'); | |
% get an estimate of the time required per evaluation of the statfun | |
time_pre = cputime; | |
try | |
% the nargout function in MATLAB 6.5 and older does not work on function handles | |
num = nargout(statfun); | |
catch | |
num = 1; | |
end | |
if num==1 | |
% only the statistic is returned | |
[statobs] = statfun(cfg, dat, design); | |
elseif num==2 | |
% both the statistic and the (updated) configuration are returned | |
[statobs, cfg] = statfun(cfg, dat, design); | |
elseif num==3 | |
% both the statistic and the (updated) configuration and the (updated) data are returned | |
tmpcfg = cfg; | |
if strcmp(cfg. precondition, 'before'), tmpcfg.preconditionflag = 1; end | |
[statobs, tmpcfg, dat] = statfun(tmpcfg, dat, design); | |
tmpcfg.preconditionflag = 0; | |
cfg = tmpcfg; | |
end | |
if isstruct(statobs) | |
% remember all details for later reference, continue to work with the statistic | |
statfull = statobs; | |
statobs = statobs.stat; | |
end | |
% remember the statistic for later reference, continue to work with the statistic | |
statfull.stat = statobs; | |
time_eval = cputime - time_pre; | |
ft_info('estimated time per randomization is %.2f seconds\n', time_eval); | |
% pre-allocate some memory | |
if strcmp(cfg.correctm, 'cluster') | |
statrand = zeros(size(statobs,1), size(resample,1), class(dat)); % this reduces the memory footprint, requires the user to use ft_struct2single on the input data | |
else | |
prb_pos = zeros(size(statobs)); | |
prb_neg = zeros(size(statobs)); | |
end | |
if strcmp(cfg.precondition, 'after') | |
tmpcfg = cfg; | |
tmpcfg.preconditionflag = 1; | |
[tmpstat, tmpcfg, dat] = statfun(tmpcfg, dat, design); | |
end | |
if any(strcmp(cfg.correctm, {'tfce' 'max'})) | |
% pre-allocate the memory to hold the distribution of most extreme positive (right) and negative (left) statistical values | |
posdistribution = nan(1,Nrand); | |
negdistribution = nan(1,Nrand); | |
end | |
% compute the statistic for the randomized data and count the outliers | |
for i = 1:Nrand | |
ft_progress(i/Nrand, 'computing statistic %d from %d\n', i, Nrand); | |
if strcmp(cfg.resampling, 'permutation') | |
tmpdesign = design(:,resample(i,:)); % the columns in the design matrix are reshufled by means of permutation | |
tmpdat = dat; % the data itself is not shuffled | |
if size(tmpdesign,1)==size(tmpdat,2) | |
tmpdesign = transpose(tmpdesign); | |
end | |
elseif strcmp(cfg.resampling, 'bootstrap') | |
tmpdesign = design; % the design matrix is not shuffled | |
tmpdat = dat(:,resample(i,:)); % the columns of the data are resampled by means of bootstrapping | |
end | |
if any(strcmp(cfg.correctm, {'cluster' 'tfce'})) | |
% keep each randomization in memory for cluster postprocessing | |
dum = statfun(cfg, tmpdat, tmpdesign); | |
if isstruct(dum) | |
statrand(:,i) = dum.stat; | |
else | |
statrand(:,i) = dum; | |
end | |
else | |
% do not keep each randomization in memory, but process them on the fly | |
statrand = statfun(cfg, tmpdat, tmpdesign); | |
if isstruct(statrand) | |
statrand = statrand.stat; | |
end | |
% the following line is for debugging | |
% stat.statkeep(:,i) = statrand; | |
if strcmp(cfg.correctm, 'max') | |
% compare each data element with the maximum statistic | |
prb_pos = prb_pos + (statobs<max(statrand(:))); | |
prb_neg = prb_neg + (statobs>min(statrand(:))); | |
posdistribution(i) = max(statrand(:)); | |
negdistribution(i) = min(statrand(:)); | |
else | |
% compare each data element with its own statistic | |
prb_pos = prb_pos + (statobs<statrand); | |
prb_neg = prb_neg + (statobs>statrand); | |
end | |
end | |
end | |
ft_progress('close'); | |
if strcmp(cfg.correctm, 'cluster') | |
% do the cluster postprocessing | |
[stat, cfg] = clusterstat(cfg, statrand, statobs); | |
elseif strcmp(cfg.correctm, 'tfce') | |
[stat, cfg] = tfcestat(cfg, statrand, statobs); | |
else | |
if ~isequal(cfg.numrandomization, 'all') | |
% in case of random permutations (i.e., montecarlo sample, and NOT full | |
% permutation), the minimum p-value should not be 0, but 1/N | |
prb_pos = prb_pos + 1; | |
prb_neg = prb_neg + 1; | |
Nrand = Nrand + 1; | |
end | |
switch cfg.tail | |
case 1 | |
clear prb_neg % not needed any more, free some memory | |
stat.prob = prb_pos./Nrand; | |
case -1 | |
clear prb_pos % not needed any more, free some memory | |
stat.prob = prb_neg./Nrand; | |
case 0 | |
% for each observation select the tail that corresponds with the lowest probability | |
prb_neg = prb_neg./Nrand; | |
prb_pos = prb_pos./Nrand; | |
stat.prob = min(prb_neg, prb_pos); % this is the probability for the most unlikely tail | |
end | |
end | |
% In case of a two tailed test, the type-I error rate (alpha) refers to | |
% both tails of the distribution, whereas the stat.prob value computed sofar | |
% corresponds with one tail, i.e. the probability, under the assumption of | |
% no effect or no difference (the null hypothesis), of obtaining a result | |
% equal to or more extreme than what was actually observed. The decision | |
% rule whether the null-hopothesis should be rejected given the observed | |
% probability therefore should consider alpha divided by two, to correspond | |
% with the probability in one of the tails (the most extreme tail). This | |
% is conceptually equivalent to performing a Bonferroni correction for the | |
% two tails. | |
% | |
% An alternative solution to distribute the alpha level over both tails is | |
% achieved by multiplying the probability with a factor of two, prior to | |
% thresholding it wich cfg.alpha. The advantage of this solution is that | |
% it results in a p-value that corresponds with a parametric probability. | |
% Below both options are realized | |
if strcmp(cfg.correcttail, 'prob') && cfg.tail==0 | |
stat.prob = stat.prob .* 2; | |
stat.prob(stat.prob>1) = 1; % clip at p=1 | |
% also correct the probabilities in the pos/negcluster fields | |
if isfield(stat, 'posclusters') | |
for i=1:length(stat.posclusters) | |
stat.posclusters(i).prob = stat.posclusters(i).prob*2; | |
if stat.posclusters(i).prob>1; stat.posclusters(i).prob = 1; end | |
end | |
end | |
if isfield(stat, 'negclusters') | |
for i=1:length(stat.negclusters) | |
stat.negclusters(i).prob = stat.negclusters(i).prob*2; | |
if stat.negclusters(i).prob>1; stat.negclusters(i).prob = 1; end | |
end | |
end | |
elseif strcmp(cfg.correcttail, 'alpha') && cfg.tail==0 | |
cfg.alpha = cfg.alpha / 2; | |
end | |
% compute range of confidence interval p ? 1.96(sqrt(var(p))), with var(p) = var(x/n) = p*(1-p)/N | |
stddev = sqrt(stat.prob.*(1-stat.prob)/Nrand); | |
stat.cirange = 1.96*stddev; | |
if isfield(stat, 'posclusters') | |
for i=1:length(stat.posclusters) | |
stat.posclusters(i).stddev = sqrt(stat.posclusters(i).prob.*(1-stat.posclusters(i).prob)/Nrand); | |
stat.posclusters(i).cirange = 1.96*stat.posclusters(i).stddev; | |
if i==1 && stat.posclusters(i).prob<cfg.alpha && stat.posclusters(i).prob+stat.posclusters(i).cirange>=cfg.alpha | |
ft_warning('FieldTrip:posCluster_exceeds_alpha', sprintf('The p-value confidence interval of positive cluster #%i includes %.3f - consider increasing the number of permutations!', i, cfg.alpha)); | |
end | |
end | |
end | |
if isfield(stat, 'negclusters') | |
for i=1:length(stat.negclusters) | |
stat.negclusters(i).stddev = sqrt(stat.negclusters(i).prob.*(1-stat.negclusters(i).prob)/Nrand); | |
stat.negclusters(i).cirange = 1.96*stat.negclusters(i).stddev; | |
if i==1 && stat.negclusters(i).prob<cfg.alpha && stat.negclusters(i).prob+stat.negclusters(i).cirange>=cfg.alpha | |
ft_warning('FieldTrip:negCluster_exceeds_alpha', sprintf('The p-value confidence interval of negative cluster #%i includes %.3f - consider increasing the number of permutations!', i, cfg.alpha)); | |
end | |
end | |
end | |
if ~isfield(stat, 'prob') | |
ft_warning('probability was not computed'); | |
else | |
switch lower(cfg.correctm) | |
case 'max' | |
% the correction is implicit in the method | |
ft_notice('using a maximum-statistic based method for multiple comparison correction\n'); | |
ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\n'); | |
stat.mask = stat.prob<=cfg.alpha; | |
stat.posdistribution = posdistribution; | |
stat.negdistribution = negdistribution; | |
case 'tfce' | |
ft_notice('using a threshold free cluster enhancement based method for multiple comparison correction\n'); | |
ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\n'); | |
stat.mask = stat.prob<=cfg.alpha; | |
case 'cluster' | |
% the correction is implicit in the method | |
ft_notice('using a cluster-based method for multiple comparison correction\n'); | |
ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\n'); | |
stat.mask = stat.prob<=cfg.alpha; | |
case 'bonferroni' | |
ft_notice('performing Bonferroni correction for multiple comparisons\n'); | |
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n'); | |
stat.mask = stat.prob<=(cfg.alpha ./ numel(stat.prob)); | |
case 'holm' | |
% test the most significatt significance probability against alpha/N, the second largest against alpha/(N-1), etc. | |
ft_notice('performing Holm-Bonferroni correction for multiple comparisons\n'); | |
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n'); | |
[pvals, indx] = sort(stat.prob(:)); % this sorts the significance probabilities from smallest to largest | |
k = find(pvals > (cfg.alpha ./ ((length(pvals):-1:1)')), 1, 'first'); % compare each significance probability against its individual threshold | |
mask = (1:length(pvals))'<k; | |
stat.mask = zeros(size(stat.prob)); | |
stat.mask(indx) = mask; | |
case 'hochberg' | |
% test the most significant significance probability against alpha/N, the second largest against alpha/(N-1), etc. | |
ft_notice('performing Hochberg''s correction for multiple comparisons (this is *not* the Benjamini-Hochberg FDR procedure!)\n'); | |
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n'); | |
[pvals, indx] = sort(stat.prob(:)); % this sorts the significance probabilities from smallest to largest | |
k = find(pvals <= (cfg.alpha ./ ((length(pvals):-1:1)')), 1, 'last'); % compare each significance probability against its individual threshold | |
mask = (1:length(pvals))'<=k; | |
stat.mask = zeros(size(stat.prob)); | |
stat.mask(indx) = mask; | |
case 'fdr' | |
ft_notice('performing FDR correction for multiple comparisons\n'); | |
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n'); | |
stat.mask = fdr(stat.prob, cfg.alpha); | |
otherwise | |
ft_notice('not performing a correction for multiple comparisons\n'); | |
stat.mask = stat.prob<=cfg.alpha; | |
end | |
end | |
% return the observed statistic | |
if ~isfield(stat, 'stat') | |
stat.stat = statobs; | |
end | |
if exist('statrand', 'var') | |
stat.ref = mean(statrand,2); | |
end | |
% return optional other details that were returned by the statfun | |
stat = copyfields(statfull, stat, fieldnames(statfull)); | |
ft_warning(ws); % revert to original state | |