Skip to content
Permalink
release
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
function [stat, cfg] = ft_statistics_montecarlo(cfg, dat, design, varargin)
% FT_STATISTICS_MONTECARLO performs a nonparametric statistical test by calculating
% Monte-Carlo estimates of the significance probabilities and/or critical values from
% the permutation distribution. This function should not be called directly, instead
% you should call the function that is associated with the type of data on which you
% want to perform the test.
%
% Use as
% stat = ft_timelockstatistics(cfg, data1, data2, data3, ...)
% stat = ft_freqstatistics (cfg, data1, data2, data3, ...)
% stat = ft_sourcestatistics (cfg, data1, data2, data3, ...)
%
% where the data is obtained from FT_TIMELOCKANALYSIS, FT_FREQANALYSIS or
% FT_SOURCEANALYSIS respectively, or from FT_TIMELOCKGRANDAVERAGE,
% FT_FREQGRANDAVERAGE or FT_SOURCEGRANDAVERAGE respectively
% and with cfg.method = 'montecarlo'
%
% The configuration options that can be specified are:
% cfg.numrandomization = number of randomizations, can be 'all'
% cfg.correctm = string, apply multiple-comparison correction, 'no', 'max', cluster', 'tfce', 'bonferroni', 'holm', 'hochberg', 'fdr' (default = 'no')
% cfg.alpha = number, critical value for rejecting the null-hypothesis per tail (default = 0.05)
% cfg.tail = number, -1, 1 or 0 (default = 0)
% cfg.correcttail = string, correct p-values or alpha-values when doing a two-sided test, 'alpha','prob' or 'no' (default = 'no')
% cfg.ivar = number or list with indices, independent variable(s)
% cfg.uvar = number or list with indices, unit variable(s)
% cfg.wvar = number or list with indices, within-cell variable(s)
% cfg.cvar = number or list with indices, control variable(s)
% cfg.feedback = string, 'gui', 'text', 'textbar' or 'no' (default = 'text')
% cfg.randomseed = string, 'yes', 'no' or a number (default = 'yes')
%
% If you use a cluster-based statistic, you can specify the following options that
% determine how the single-sample or single-voxel statistics will be thresholded and
% combined into one statistical value per cluster.
% cfg.clusterstatistic = how to combine the single samples that belong to a cluster, 'maxsum', 'maxsize', 'wcm' (default = 'maxsum')
% the option 'wcm' refers to 'weighted cluster mass', a statistic that combines cluster size and intensity;
% see Hayasaka & Nichols (2004) NeuroImage for details
% cfg.clusterthreshold = method for single-sample threshold, 'parametric', 'nonparametric_individual', 'nonparametric_common' (default = 'parametric')
% cfg.clusteralpha = for either parametric or nonparametric thresholding per tail (default = 0.05)
% cfg.clustercritval = for parametric thresholding (default is determined by the statfun)
% cfg.clustertail = -1, 1 or 0 (default = 0)
%
% To include the channel dimension for clustering of channel level data, you should specify
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS
% If you specify an empty neighbourhood structure, clustering will only be done
% over frequency and/or time and not over neighbouring channels.
%
% The statistic that is computed for each sample in each random reshuffling
% of the data is specified as
% cfg.statistic = 'indepsamplesT' independent samples T-statistic,
% 'indepsamplesF' independent samples F-statistic,
% 'indepsamplesregrT' independent samples regression coefficient T-statistic,
% 'indepsamplesZcoh' independent samples Z-statistic for coherence,
% 'depsamplesT' dependent samples T-statistic,
% 'depsamplesFmultivariate' dependent samples F-statistic MANOVA,
% 'depsamplesregrT' dependent samples regression coefficient T-statistic,
% 'actvsblT' activation versus baseline T-statistic.
% or you can specify your own low-level statistical function.
%
% You can also use a custom statistic of your choice that is sensitive to the
% expected effect in the data. You can implement the statistic in a "statfun" that
% will be called for each randomization. The requirements on a custom statistical
% function is that the function is called ft_statfun_xxx, and that the function returns
% a structure with a "stat" field containing the single sample statistical values.
% Have a look at the functions in the fieldtrip/statfun directory (e.g.
% FT_STATFUN_INDEPSAMPLEST) for the correct format of the input and output.
%
% See also FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS, FT_SOURCESTATISTICS,
% FT_STATISTICS_ANALYTIC, FT_STATISTICS_STATS, FT_STATISTICS_MVPA,
% FT_STATISTICS_CROSSVALIDATE
% Undocumented local options:
% cfg.resampling permutation, bootstrap
% cfg.computecritval yes|no, for the statfun
% cfg.computestat yes|no, for the statfun
% cfg.computeprob yes|no, for the statfun
% cfg.voxelstatistic deprecated
% cfg.voxelthreshold deprecated
% cfg.precondition before|after|[], for the statfun
% Copyright (C) 2005-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% do a sanity check on the input data
assert(isnumeric(dat), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead');
assert(isnumeric(design), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'factor', 'ivar'});
cfg = ft_checkconfig(cfg, 'renamed', {'unitfactor', 'uvar'});
cfg = ft_checkconfig(cfg, 'renamed', {'repeatedmeasures', 'uvar'});
cfg = ft_checkconfig(cfg, 'renamedval', {'clusterthreshold', 'nonparametric', 'nonparametric_individual'});
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'yes', 'max'});
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'none', 'no'});
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'bonferoni', 'bonferroni'});
cfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'holms', 'holm'});
cfg = ft_checkconfig(cfg, 'required', {'statistic'});
cfg = ft_checkconfig(cfg, 'forbidden', {'ztransform', 'removemarginalmeans', 'randomfactor', 'voxelthreshold', 'voxelstatistic'});
cfg = ft_checkconfig(cfg, 'renamedval', {'statfun', 'depsamplesF', 'ft_statfun_depsamplesFmultivariate'});
cfg = ft_checkconfig(cfg, 'renamedval', {'statfun', 'ft_statfun_depsamplesF', 'ft_statfun_depsamplesFmultivariate'});
% set the defaults for the main function
cfg.alpha = ft_getopt(cfg, 'alpha', 0.05);
cfg.tail = ft_getopt(cfg, 'tail', 0);
cfg.correctm = ft_getopt(cfg, 'correctm', 'no');
cfg.resampling = ft_getopt(cfg, 'resampling', 'permutation');
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.ivar = ft_getopt(cfg, 'ivar', 'all');
cfg.uvar = ft_getopt(cfg, 'uvar', []);
cfg.cvar = ft_getopt(cfg, 'cvar', []);
cfg.wvar = ft_getopt(cfg, 'wvar', []);
cfg.correcttail = ft_getopt(cfg, 'correcttail', 'no');
cfg.precondition = ft_getopt(cfg, 'precondition', []);
% explicit check for option 'yes' in cfg.correctail.
if strcmp(cfg.correcttail, 'yes')
ft_error('cfg.correcttail = ''yes'' is not allowed, use either ''prob'', ''alpha'' or ''no''')
end
if strcmp(cfg.correctm, 'tfce')
% TODO this could require some better defaults
cfg.connectivity = ft_getopt(cfg, 'connectivity', []);
cfg.tfce_h0 = ft_getopt(cfg, 'tfce_h0', 0);
cfg.tfce_H = ft_getopt(cfg, 'tfce_H', 2);
cfg.tfce_E = ft_getopt(cfg, 'tfce_E', 0.5);
cfg.tfce_nsteps = ft_getopt(cfg, 'tfce_nsteps', 100);
else
% these options only apply to tfce, to ensure appropriate configs they are forbidden when _not_ clustering
cfg = ft_checkconfig(cfg, 'unused', {'tfce_h0', 'tfce_H', 'tfce_E', 'tfce_nsteps'});
end
if strcmp(cfg.correctm, 'cluster')
% set the defaults for clustering
cfg.clusterstatistic = ft_getopt(cfg, 'clusterstatistic', 'maxsum');
cfg.clusterthreshold = ft_getopt(cfg, 'clusterthreshold', 'parametric');
cfg.clusteralpha = ft_getopt(cfg, 'clusteralpha', 0.05);
cfg.clustercritval = ft_getopt(cfg, 'clustercritval', []);
cfg.clustertail = ft_getopt(cfg, 'clustertail', cfg.tail);
cfg.connectivity = ft_getopt(cfg, 'connectivity', []); % the default is dealt with below
else
% these options only apply to clustering, to ensure appropriate configs they are forbidden when _not_ clustering
cfg = ft_checkconfig(cfg, 'unused', {'clusterstatistic', 'clusteralpha', 'clustercritval', 'clusterthreshold', 'clustertail'});
end
if any(strcmp(cfg.correctm, {'cluster' 'tfce'}))
% these options might require a spatial neighbourhood matrix
% deal with the neighbourhood of the channels/triangulation/voxels
if isempty(cfg.connectivity)
if isfield(cfg, 'dim') && ~isfield(cfg, 'channel') && ~isfield(cfg, 'tri')
% input data can be reshaped into a 3D volume, use bwlabeln/spm_bwlabel rather than clusterstat
ft_info('using connectivity of voxels in 3-D volume\n');
cfg.connectivity = nan;
elseif isfield(cfg, 'tri')
% input data describes a surface along which neighbours can be defined
ft_info('using connectivity of vertices along triangulated surface\n');
cfg.connectivity = triangle2connectivity(cfg.tri);
if isfield(cfg, 'insideorig')
cfg.connectivity = cfg.connectivity(cfg.insideorig, cfg.insideorig);
end
elseif isfield(cfg, 'avgoverchan') && istrue(cfg.avgoverchan)
% channel dimension has been averaged across, no sense in clustering across space
cfg.connectivity = true(1);
elseif isfield(cfg, 'channel')
cfg.neighbours = ft_getopt(cfg, 'neighbours', []);
cfg.connectivity = channelconnectivity(cfg);
else
% there is no connectivity in the spatial dimension
cfg.connectivity = false(size(dat,1));
end
else
% use the specified connectivity: this is not fully robust because
% there is no guarantee that the order of the spatial elements in the
% data is the same as the order of the spatial elements in the
% adjacency matrix
end
end
% for backward compatibility and other warnings relating correcttail
if isfield(cfg,'correctp') && strcmp(cfg.correctp,'yes')
ft_warning('cfg.correctp has been renamed to cfg.correcttail and the options have been changed')
disp('setting cfg.correcttail to ''prob''')
cfg.correcttail = 'prob';
cfg = rmfield(cfg,'correctp');
elseif isfield(cfg,'correctp') && strcmp(cfg.correctp,'no')
cfg = ft_checkconfig(cfg, 'renamed', {'correctp', 'correcttail'});
end
if strcmp(cfg.correcttail,'no') && cfg.tail==0 && cfg.alpha==0.05
ft_warning('Doing a two-sided test without correcting p-values or alpha-level, p-values and alpha-level will reflect one-sided tests per tail. See http://bit.ly/2YQ1Hm8')
end
% for backward compatibility
if size(design,2)~=size(dat,2)
design = transpose(design);
end
if ischar(cfg.ivar) && strcmp(cfg.ivar, 'all')
cfg.ivar = 1:size(design,1);
end
% fetch function handle to the low-level statistics function
statfun = ft_getuserfun(cfg.statistic, 'statfun');
if isempty(statfun)
ft_error('could not locate the appropriate statistics function');
else
ft_info('using "%s" for the single-sample statistics\n', func2str(statfun));
end
% construct the resampled design matrix or data-shuffling matrix
ft_info('constructing randomized design\n');
resample = resampledesign(cfg, design);
Nrand = size(resample,1);
% most of the statfuns result in this warning, which is not interesting
ws = ft_warning('off', 'MATLAB:warn_r14_stucture_assignment');
if strcmp(cfg.correctm, 'cluster')
% determine the critical value for cluster thresholding
if strcmp(cfg.clusterthreshold, 'nonparametric_individual') || strcmp(cfg.clusterthreshold, 'nonparametric_common')
ft_info('using a nonparametric threshold for clustering\n');
cfg.clustercritval = []; % this will be determined later
elseif strcmp(cfg.clusterthreshold, 'parametric') && isempty(cfg.clustercritval)
ft_info('computing a parametric threshold for clustering\n');
tmpcfg = cfg; % the next line does not pass on non-standard options that a statfun might use
% tmpcfg = keepfields(cfg, {'dim' 'dimord' 'clusteralpha' 'clustertail' 'ivar' 'uvar' 'cvar' 'wvar' 'contrastcoefs'});
tmpcfg.computecritval = 'yes'; % explicitly request the computation of the crtitical value
tmpcfg.computestat = 'no'; % skip the computation of the statistic
tmpcfg.alpha = cfg.clusteralpha; % the statfun uses cfg.alpha most likely
try
cfg.clustercritval = getfield(statfun(tmpcfg, dat, design), 'critval');
catch
disp(lasterr);
ft_error('could not determine the parametric critical value for clustering');
end
elseif strcmp(cfg.clusterthreshold, 'parametric') && ~isempty(cfg.clustercritval)
ft_info('using the specified parametric threshold for clustering\n');
cfg.clusteralpha = [];
end
end
% compute the statistic for the observed data
ft_progress('init', cfg.feedback, 'computing statistic');
% get an estimate of the time required per evaluation of the statfun
time_pre = cputime;
try
% the nargout function in MATLAB 6.5 and older does not work on function handles
num = nargout(statfun);
catch
num = 1;
end
if num==1
% only the statistic is returned
[statobs] = statfun(cfg, dat, design);
elseif num==2
% both the statistic and the (updated) configuration are returned
[statobs, cfg] = statfun(cfg, dat, design);
elseif num==3
% both the statistic and the (updated) configuration and the (updated) data are returned
tmpcfg = cfg;
if strcmp(cfg. precondition, 'before'), tmpcfg.preconditionflag = 1; end
[statobs, tmpcfg, dat] = statfun(tmpcfg, dat, design);
tmpcfg.preconditionflag = 0;
cfg = tmpcfg;
end
if isstruct(statobs)
% remember all details for later reference, continue to work with the statistic
statfull = statobs;
statobs = statobs.stat;
end
% remember the statistic for later reference, continue to work with the statistic
statfull.stat = statobs;
time_eval = cputime - time_pre;
ft_info('estimated time per randomization is %.2f seconds\n', time_eval);
% pre-allocate some memory
if strcmp(cfg.correctm, 'cluster')
statrand = zeros(size(statobs,1), size(resample,1), class(dat)); % this reduces the memory footprint, requires the user to use ft_struct2single on the input data
else
prb_pos = zeros(size(statobs));
prb_neg = zeros(size(statobs));
end
if strcmp(cfg.precondition, 'after')
tmpcfg = cfg;
tmpcfg.preconditionflag = 1;
[tmpstat, tmpcfg, dat] = statfun(tmpcfg, dat, design);
end
if any(strcmp(cfg.correctm, {'tfce' 'max'}))
% pre-allocate the memory to hold the distribution of most extreme positive (right) and negative (left) statistical values
posdistribution = nan(1,Nrand);
negdistribution = nan(1,Nrand);
end
% compute the statistic for the randomized data and count the outliers
for i = 1:Nrand
ft_progress(i/Nrand, 'computing statistic %d from %d\n', i, Nrand);
if strcmp(cfg.resampling, 'permutation')
tmpdesign = design(:,resample(i,:)); % the columns in the design matrix are reshufled by means of permutation
tmpdat = dat; % the data itself is not shuffled
if size(tmpdesign,1)==size(tmpdat,2)
tmpdesign = transpose(tmpdesign);
end
elseif strcmp(cfg.resampling, 'bootstrap')
tmpdesign = design; % the design matrix is not shuffled
tmpdat = dat(:,resample(i,:)); % the columns of the data are resampled by means of bootstrapping
end
if any(strcmp(cfg.correctm, {'cluster' 'tfce'}))
% keep each randomization in memory for cluster postprocessing
dum = statfun(cfg, tmpdat, tmpdesign);
if isstruct(dum)
statrand(:,i) = dum.stat;
else
statrand(:,i) = dum;
end
else
% do not keep each randomization in memory, but process them on the fly
statrand = statfun(cfg, tmpdat, tmpdesign);
if isstruct(statrand)
statrand = statrand.stat;
end
% the following line is for debugging
% stat.statkeep(:,i) = statrand;
if strcmp(cfg.correctm, 'max')
% compare each data element with the maximum statistic
prb_pos = prb_pos + (statobs<max(statrand(:)));
prb_neg = prb_neg + (statobs>min(statrand(:)));
posdistribution(i) = max(statrand(:));
negdistribution(i) = min(statrand(:));
else
% compare each data element with its own statistic
prb_pos = prb_pos + (statobs<statrand);
prb_neg = prb_neg + (statobs>statrand);
end
end
end
ft_progress('close');
if strcmp(cfg.correctm, 'cluster')
% do the cluster postprocessing
[stat, cfg] = clusterstat(cfg, statrand, statobs);
elseif strcmp(cfg.correctm, 'tfce')
[stat, cfg] = tfcestat(cfg, statrand, statobs);
else
if ~isequal(cfg.numrandomization, 'all')
% in case of random permutations (i.e., montecarlo sample, and NOT full
% permutation), the minimum p-value should not be 0, but 1/N
prb_pos = prb_pos + 1;
prb_neg = prb_neg + 1;
Nrand = Nrand + 1;
end
switch cfg.tail
case 1
clear prb_neg % not needed any more, free some memory
stat.prob = prb_pos./Nrand;
case -1
clear prb_pos % not needed any more, free some memory
stat.prob = prb_neg./Nrand;
case 0
% for each observation select the tail that corresponds with the lowest probability
prb_neg = prb_neg./Nrand;
prb_pos = prb_pos./Nrand;
stat.prob = min(prb_neg, prb_pos); % this is the probability for the most unlikely tail
end
end
% In case of a two tailed test, the type-I error rate (alpha) refers to
% both tails of the distribution, whereas the stat.prob value computed sofar
% corresponds with one tail, i.e. the probability, under the assumption of
% no effect or no difference (the null hypothesis), of obtaining a result
% equal to or more extreme than what was actually observed. The decision
% rule whether the null-hopothesis should be rejected given the observed
% probability therefore should consider alpha divided by two, to correspond
% with the probability in one of the tails (the most extreme tail). This
% is conceptually equivalent to performing a Bonferroni correction for the
% two tails.
%
% An alternative solution to distribute the alpha level over both tails is
% achieved by multiplying the probability with a factor of two, prior to
% thresholding it wich cfg.alpha. The advantage of this solution is that
% it results in a p-value that corresponds with a parametric probability.
% Below both options are realized
if strcmp(cfg.correcttail, 'prob') && cfg.tail==0
stat.prob = stat.prob .* 2;
stat.prob(stat.prob>1) = 1; % clip at p=1
% also correct the probabilities in the pos/negcluster fields
if isfield(stat, 'posclusters')
for i=1:length(stat.posclusters)
stat.posclusters(i).prob = stat.posclusters(i).prob*2;
if stat.posclusters(i).prob>1; stat.posclusters(i).prob = 1; end
end
end
if isfield(stat, 'negclusters')
for i=1:length(stat.negclusters)
stat.negclusters(i).prob = stat.negclusters(i).prob*2;
if stat.negclusters(i).prob>1; stat.negclusters(i).prob = 1; end
end
end
elseif strcmp(cfg.correcttail, 'alpha') && cfg.tail==0
cfg.alpha = cfg.alpha / 2;
end
% compute range of confidence interval p ? 1.96(sqrt(var(p))), with var(p) = var(x/n) = p*(1-p)/N
stddev = sqrt(stat.prob.*(1-stat.prob)/Nrand);
stat.cirange = 1.96*stddev;
if isfield(stat, 'posclusters')
for i=1:length(stat.posclusters)
stat.posclusters(i).stddev = sqrt(stat.posclusters(i).prob.*(1-stat.posclusters(i).prob)/Nrand);
stat.posclusters(i).cirange = 1.96*stat.posclusters(i).stddev;
if i==1 && stat.posclusters(i).prob<cfg.alpha && stat.posclusters(i).prob+stat.posclusters(i).cirange>=cfg.alpha
ft_warning('FieldTrip:posCluster_exceeds_alpha', sprintf('The p-value confidence interval of positive cluster #%i includes %.3f - consider increasing the number of permutations!', i, cfg.alpha));
end
end
end
if isfield(stat, 'negclusters')
for i=1:length(stat.negclusters)
stat.negclusters(i).stddev = sqrt(stat.negclusters(i).prob.*(1-stat.negclusters(i).prob)/Nrand);
stat.negclusters(i).cirange = 1.96*stat.negclusters(i).stddev;
if i==1 && stat.negclusters(i).prob<cfg.alpha && stat.negclusters(i).prob+stat.negclusters(i).cirange>=cfg.alpha
ft_warning('FieldTrip:negCluster_exceeds_alpha', sprintf('The p-value confidence interval of negative cluster #%i includes %.3f - consider increasing the number of permutations!', i, cfg.alpha));
end
end
end
if ~isfield(stat, 'prob')
ft_warning('probability was not computed');
else
switch lower(cfg.correctm)
case 'max'
% the correction is implicit in the method
ft_notice('using a maximum-statistic based method for multiple comparison correction\n');
ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\n');
stat.mask = stat.prob<=cfg.alpha;
stat.posdistribution = posdistribution;
stat.negdistribution = negdistribution;
case 'tfce'
ft_notice('using a threshold free cluster enhancement based method for multiple comparison correction\n');
ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\n');
stat.mask = stat.prob<=cfg.alpha;
case 'cluster'
% the correction is implicit in the method
ft_notice('using a cluster-based method for multiple comparison correction\n');
ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\n');
stat.mask = stat.prob<=cfg.alpha;
case 'bonferroni'
ft_notice('performing Bonferroni correction for multiple comparisons\n');
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n');
stat.mask = stat.prob<=(cfg.alpha ./ numel(stat.prob));
case 'holm'
% test the most significatt significance probability against alpha/N, the second largest against alpha/(N-1), etc.
ft_notice('performing Holm-Bonferroni correction for multiple comparisons\n');
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n');
[pvals, indx] = sort(stat.prob(:)); % this sorts the significance probabilities from smallest to largest
k = find(pvals > (cfg.alpha ./ ((length(pvals):-1:1)')), 1, 'first'); % compare each significance probability against its individual threshold
mask = (1:length(pvals))'<k;
stat.mask = zeros(size(stat.prob));
stat.mask(indx) = mask;
case 'hochberg'
% test the most significant significance probability against alpha/N, the second largest against alpha/(N-1), etc.
ft_notice('performing Hochberg''s correction for multiple comparisons (this is *not* the Benjamini-Hochberg FDR procedure!)\n');
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n');
[pvals, indx] = sort(stat.prob(:)); % this sorts the significance probabilities from smallest to largest
k = find(pvals <= (cfg.alpha ./ ((length(pvals):-1:1)')), 1, 'last'); % compare each significance probability against its individual threshold
mask = (1:length(pvals))'<=k;
stat.mask = zeros(size(stat.prob));
stat.mask(indx) = mask;
case 'fdr'
ft_notice('performing FDR correction for multiple comparisons\n');
ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\n');
stat.mask = fdr(stat.prob, cfg.alpha);
otherwise
ft_notice('not performing a correction for multiple comparisons\n');
stat.mask = stat.prob<=cfg.alpha;
end
end
% return the observed statistic
if ~isfield(stat, 'stat')
stat.stat = statobs;
end
if exist('statrand', 'var')
stat.ref = mean(statrand,2);
end
% return optional other details that were returned by the statfun
stat = copyfields(statfull, stat, fieldnames(statfull));
ft_warning(ws); % revert to original state