Permalink
Cannot retrieve contributors at this time
310 lines (269 sloc)
11.4 KB
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
fieldtrip/ft_timelockanalysis.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [timelock] = ft_timelockanalysis(cfg, data) | |
% FT_TIMELOCKANALYSIS computes the timelocked average ERP/ERF and optionally computes | |
% the covariance matrix over the specified time window. | |
% | |
% Use as | |
% [timelock] = ft_timelockanalysis(cfg, data) | |
% | |
% The data should be organised in a structure as obtained from the FT_PREPROCESSING | |
% function. The configuration should be according to | |
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details | |
% cfg.latency = [begin end] in seconds, or 'all', 'minperiod', 'maxperiod', 'prestim', 'poststim' (default = 'all') | |
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') | |
% cfg.keeptrials = 'yes' or 'no', return individual trials or average (default = 'no') | |
% cfg.nanmean = string, can be 'yes' or 'no' (default = 'yes') | |
% cfg.normalizevar = 'N' or 'N-1' (default = 'N-1') | |
% cfg.covariance = 'no' or 'yes' (default = 'no') | |
% cfg.covariancewindow = [begin end] in seconds, or 'all', 'minperiod', 'maxperiod', 'prestim', 'poststim' (default = 'all') | |
% cfg.removemean = 'yes' or 'no', for the covariance computation (default = 'yes') | |
% | |
% To facilitate data-handling and distributed computing you can use | |
% cfg.inputfile = ... | |
% cfg.outputfile = ... | |
% If you specify one of these (or both) the input data will be read from a *.mat | |
% file on disk and/or the output data will be written to a *.mat file. These mat | |
% files should contain only a single variable, corresponding with the | |
% input/output structure. | |
% | |
% See also FT_TIMELOCKGRANDAVERAGE, FT_TIMELOCKSTATISTICS | |
% FIXME if input is one raw trial, the covariance is not computed correctly | |
% | |
% Undocumented local options: | |
% cfg.feedback | |
% cfg.preproc | |
% | |
% Deprecated options: | |
% cfg.blcovariance | |
% cfg.blcovariancewindow | |
% cfg.normalizecov | |
% cfg.vartrllength | |
% Copyright (C) 2018, Jan-Mathijs Schoffelen | |
% Copyright (C) 2003-2006, Markus Bauer | |
% Copyright (C) 2003-2022, Robert Oostenveld | |
% | |
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org | |
% for the documentation and details. | |
% | |
% FieldTrip is free software: you can redistribute it and/or modify | |
% it under the terms of the GNU General Public License as published by | |
% the Free Software Foundation, either version 3 of the License, or | |
% (at your option) any later version. | |
% | |
% FieldTrip is distributed in the hope that it will be useful, | |
% but WITHOUT ANY WARRANTY; without even the implied warranty of | |
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
% GNU General Public License for more details. | |
% | |
% You should have received a copy of the GNU General Public License | |
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. | |
% | |
% $Id$ | |
% these are used by the ft_preamble/ft_postamble function and scripts | |
ft_revision = '$Id$'; | |
ft_nargin = nargin; | |
ft_nargout = nargout; | |
% do the general setup of the function | |
ft_defaults | |
ft_preamble init | |
ft_preamble debug | |
ft_preamble loadvar data | |
ft_preamble provenance data | |
% the ft_abort variable is set to true or false in ft_preamble_init | |
if ft_abort | |
return | |
end | |
% check if the input data is valid for this function | |
data = ft_checkdata(data, 'datatype', {'raw+comp', 'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes'); | |
% check if the input cfg is valid for this function | |
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729 | |
cfg = ft_checkconfig(cfg, 'forbidden', {'normalizecov'}); | |
cfg = ft_checkconfig(cfg, 'forbidden', {'blcovariance', 'blcovariancewindow'}); | |
cfg = ft_checkconfig(cfg, 'renamed', {'blc', 'demean'}); | |
cfg = ft_checkconfig(cfg, 'renamed', {'blcwindow', 'baselinewindow'}); | |
% set the defaults | |
cfg.preproc = ft_getopt(cfg, 'preproc' , []); | |
cfg.channel = ft_getopt(cfg, 'channel' , 'all'); | |
cfg.latency = ft_getopt(cfg, 'latency' , 'all'); | |
cfg.trials = ft_getopt(cfg, 'trials' , 'all', 1); | |
cfg.keeptrials = ft_getopt(cfg, 'keeptrials' , 'no'); | |
cfg.vartrllength = ft_getopt(cfg, 'vartrllength' , 0); | |
cfg.nanmean = ft_getopt(cfg, 'nanmean' , 'yes'); | |
cfg.normalizevar = ft_getopt(cfg, 'normalizevar' , 'N-1'); | |
cfg.covariance = ft_getopt(cfg, 'covariance' , 'no'); | |
cfg.covariancewindow = ft_getopt(cfg, 'covariancewindow' , 'all'); | |
cfg.removemean = ft_getopt(cfg, 'removemean' , 'yes'); | |
cfg.feedback = ft_getopt(cfg, 'feedback' , 'text'); | |
% create logical flags for convenience | |
keeptrials = istrue(cfg.keeptrials); | |
computecov = istrue(cfg.covariance); | |
% ensure that the preproc specific options are located in the cfg.preproc substructure | |
cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'}); | |
if ~isempty(cfg.preproc) | |
% preprocess the data, i.e. apply filtering, baselinecorrection, etc. | |
fprintf('applying preprocessing options\n'); | |
if ~isfield(cfg.preproc, 'feedback') | |
cfg.preproc.feedback = cfg.feedback; | |
end | |
data = ft_preprocessing(cfg.preproc, data); | |
[cfg.preproc, data] = rollback_provenance(cfg.preproc, data); | |
end | |
% compute the covariance matrix, if requested | |
if computecov | |
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'}); | |
tmpcfg.latency = cfg.covariancewindow; | |
datacov = ft_selectdata(tmpcfg, data); | |
% restore the provenance information | |
[dum, datacov] = rollback_provenance(cfg, datacov); % not sure what to do here | |
datacov = ft_checkdata(datacov, 'datatype', 'timelock'); | |
if isfield(datacov, 'trial') | |
[nrpt, nchan, ntime] = size(datacov.trial); | |
else | |
% if the data structure has only a single trial | |
nrpt = 1; | |
[nchan, ntime] = size(datacov.avg); | |
datacov.trial = shiftdim(datacov.avg, -1); | |
datacov = rmfield(datacov, 'avg'); | |
datacov.dimord = 'rpt_chan_time'; | |
end | |
% pre-allocate memory space for the covariance matrices | |
if keeptrials | |
covsig = nan(nrpt, nchan, nchan); | |
else | |
covsig = zeros(nchan, nchan); | |
allsmp = 0; | |
end | |
% compute the covariance per trial | |
for k = 1:nrpt | |
dat = reshape(datacov.trial(k,:,:), [nchan ntime]); | |
datsmp = isfinite(dat); | |
if ~all(ismember(sum(datsmp,1), [0 nchan])) | |
ft_error('channel specific NaNs are not supported for covariance computation'); | |
end | |
numsmp = sum(datsmp(1,:)); | |
if istrue(cfg.removemean) | |
dat = ft_preproc_baselinecorrect(dat); | |
numsmp = max(numsmp-1,1); | |
end | |
dat(~datsmp) = 0; | |
if keeptrials | |
covsig(k,:,:) = dat*dat'./numsmp; | |
else | |
covsig = covsig + dat*dat'; | |
allsmp = allsmp + numsmp; | |
% normalisation will be done after the for-loop | |
end | |
end | |
if ~keeptrials | |
covsig = covsig./allsmp; | |
end | |
end | |
% select trials and channels of interest | |
orgcfg = cfg; | |
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'latency', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'}); | |
data = ft_selectdata(tmpcfg, data); | |
% restore the provenance information | |
[cfg, data] = rollback_provenance(cfg, data); | |
% do not use the default option returned by FT_SELECTDATA, but the original one for this function | |
cfg.nanmean = orgcfg.nanmean; | |
% do a sanity check | |
if isempty(data.trial) | |
if ~isempty(cfg.trials) | |
ft_error('there are no trials selected'); | |
else | |
ft_error('there are no trials in the input data'); | |
end | |
end | |
if keeptrials | |
% convert to a timelock structure with trials kept and NaNs for missing data points, when there's only a single trial in the input data | |
% structure, this leads to an 'avg' field, rather than a 'trial' field, and also the trialinfo is removed, so keep separate before conversion | |
if isfield(data, 'trialinfo'), trialinfo = data.trialinfo; end | |
data = ft_checkdata(data, 'datatype', {'timelock+comp' 'timelock'}); | |
if keeptrials && isfield(data, 'trial') | |
% nothing required here | |
elseif keeptrials && ~isfield(data, 'trial') | |
% don't know whether this is a use case | |
data.trial = shiftdim(data.avg, -1); | |
if exist('trialinfo', 'var') | |
data.trialinfo = trialinfo; | |
end | |
end | |
elseif ~keeptrials | |
% whether to normalize the variance with N or N-1, see VAR | |
normalizewithN = strcmpi(cfg.normalizevar, 'N'); | |
% compute a running sum average/var etc. to save memory | |
% the code below tries to construct a general time-axis where samples of all trials can fall on | |
% find the earliest beginning and latest ending | |
begtime = min(cellfun(@min, data.time)); | |
endtime = max(cellfun(@max, data.time)); | |
% find 'common' sampling rate | |
fsample = 1./nanmean(cellfun(@mean, cellfun(@diff,data.time, 'uniformoutput', false))); | |
% estimate number of samples | |
nsmp = round((endtime-begtime)*fsample) + 1; % numerical round-off issues should be dealt with by this round, as they will/should never cause an extra sample to appear | |
% construct general time-axis | |
time = linspace(begtime, endtime, nsmp); | |
nchan = numel(data.label); | |
ntrial = numel(data.trial); | |
% placeholder for running sums | |
tmpsum = zeros(nchan, length(time)); | |
tmpssq = tmpsum; | |
tmpdof = tmpsum; | |
begsmp = nan(ntrial, 1); | |
endsmp = nan(ntrial, 1); | |
% do a 2-pass running sum, sacrificing speed for numeric stability | |
for i=1:ntrial | |
begsmp(i) = nearest(time, data.time{i}(1)); | |
endsmp(i) = nearest(time, data.time{i}(end)); | |
tmp = data.trial{i}; | |
tmpdof(:,begsmp(i):endsmp(i)) = isfinite(tmp) + tmpdof(:,begsmp(i):endsmp(i)); | |
if istrue(cfg.nanmean) | |
tmp(~isfinite(tmp)) = 0; | |
end | |
tmpsum(:,begsmp(i):endsmp(i)) = tmp + tmpsum(:,begsmp(i):endsmp(i)); | |
end | |
avgmat = tmpsum ./ tmpdof; | |
tmpsum = zeros(nchan, length(time)); | |
for i=1:ntrial | |
tmp = data.trial{i}; | |
tmp = tmp - avgmat(:,begsmp(i):endsmp(i)); | |
if istrue(cfg.nanmean) | |
tmp(~isfinite(tmp)) = 0; | |
end | |
tmpsum(:,begsmp(i):endsmp(i)) = tmp + tmpsum(:,begsmp(i):endsmp(i)); | |
tmpssq(:,begsmp(i):endsmp(i)) = tmp.^2 + tmpssq(:,begsmp(i):endsmp(i)); | |
end | |
dofmat = tmpdof; | |
%avgmat = tmpsum ./ tmpdof; | |
varmat = tmpssq ./ tmpdof - (tmpsum ./ tmpdof).^2; | |
if normalizewithN | |
% just to be sure | |
varmat(dofmat<=0) = NaN; | |
else | |
varmat = varmat .* (dofmat ./ (dofmat-1)); | |
% see https://stats.stackexchange.com/questions/4068/how-should-one-define-the-sample-variance-for-scalar-input | |
% the fieldtrip/external/stats/nanvar implementation behaves differently here than Mathworks VAR and NANVAR implementations | |
varmat(dofmat<=1) = NaN; | |
end | |
end | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
% collect the results | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
timelock = keepfields(data, {'time', 'grad', 'elec', 'opto', 'topo', 'topodimord', 'topolabel', 'unmixing', 'unmixingdimord', 'label'}); | |
if ~keeptrials | |
timelock.avg = avgmat; | |
timelock.var = varmat; | |
timelock.dof = dofmat; | |
timelock.time = time; | |
timelock.dimord = 'chan_time'; | |
else | |
timelock = copyfields(data, timelock, {'trial' 'sampleinfo', 'trialinfo'}); | |
timelock.dimord = 'rpt_chan_time'; | |
end | |
if computecov | |
timelock.cov = covsig; | |
end | |
% do the general cleanup and bookkeeping at the end of the function | |
ft_postamble debug | |
ft_postamble previous data | |
ft_postamble provenance timelock | |
ft_postamble history timelock | |
ft_postamble savevar timelock |