Skip to content
Browse files

Change logs for Maxima 5.17.

  • Loading branch information...
1 parent dcd4409 commit 05d78b82f05100aacf882896144cbafb71a4c97d robert_dodier committed
Showing with 271 additions and 0 deletions.
  1. +84 −0 ChangeLog-5.17
  2. +187 −0 ChangeLog-5.17-special-functions
View
84 ChangeLog-5.17
@@ -0,0 +1,84 @@
+ Maxima 5.17 change log
+ Compiled 2008-12-07
+
+ Major items:
+
+ * Expand code for special functions. See: ChangeLog-5.17-special-functions
+
+
+ Backwards-incompatible changes:
+
+ * quad_qagi accepts upper and lower limits instead of flags for limits
+
+ * Cut out solve_inconsistent_error
+
+
+ New items in share:
+
+ * new, alternate implementation of vector operations
+
+ * colorterm: simple output color-coding
+
+
+ Other revisions:
+
+ * package distrib: noncentral t distribution, bug fixes
+
+ * package ezunits: revision, documentation
+
+ * package draw: pdf output
+
+ * package dynamics: new options
+
+ * package graphs: bug fixes, documentation, new functions
+
+ * package simplex: revision
+
+ * package solve_rec: new tests
+
+ * package amatrix: revision
+
+ * package augmented_lagrangian: revise documentation
+
+ * package mathml: format floats and bigfloats more carefully
+
+ * package stats: TeX and MathML output for inference_result object
+
+ * package diffequations: expand test suite
+
+ * imaxima: fix installation problems
+
+ * Maxima + ECL: fix build problems
+
+
+ Bug fixes:
+
+ 2298141: atan2 & asksign
+ 2210087: integrate((x+1)^2.0,x) loops endlessly
+ 2208303: Problem with jacobi_dn and elliptic_kc
+ 2176843: f90 does not use correct continuation character
+ 2171229: factor runs out of primes
+ 2144225: rationalize bug / fix
+ 2142758: integrate(sqrt(2-2*x^2)*(sqrt(2)*x^2+sqrt(2))/(4-4*x^2),x,0,1)
+ 2092317: Windows Installer Requires Admin Rights
+ 2083561: Limit of the Wallis product
+ 2037993: linsolve returns error instead of empty solution set
+ 1978090: strange limit result
+ 1729430: numberp of taylor poly
+ 1644575: acot(0.0) vs acot(0)
+ 1504146: taylor asks pn? when expr is zero
+ 1467368: logcontract returns unsimplified expr
+ 1269020: rectform(log(z)) with z declared complex
+ 1251540: Incorrect "inconsistent" error report (linsolve)
+ 1054472: defint(log(1+exp(A+B*cos(phi))),phi,0,%pi) wrong
+ 929704: defint log(abs(...))/sqrt(...) gives wrong result
+ 734851: pade interfered with by taylor
+ 620246: carg(complex)
+ 617699: carg([1]) is bogus
+
+ unnumbered: bug fixes for xreduce, cardinality, and equiv_classes
+ unnumbered: plot([x,x+y,y],[x,-4,4],[y,-4,4]); did not work
+ unnumbered: 1-d display of for-loop with unless condition being a symbol
+ unnumbered: Fix for hgfred([-n, -2*n], x) when n is declared integer
+ unnumbered: fix assume(b > 3/2); kill(all); assume(b < 1);
+ unnumbered: Declare some variables local in zb_prove
View
187 ChangeLog-5.17-special-functions
@@ -0,0 +1,187 @@
+ Maxima 5.17 change log for special functions
+ Compiled 2008-12-08
+ by Dieter Kaiser
+
+--------------------------------------------------------------------------------
+Extensions and changes to the Factorial function:
+
+ Maxima User function: factorial(z)
+ New Maxima User variable: factorial_expand
+
+ - Complex float and complex bigfloat support added
+ - Check for a negative integer or a real representation of an integer
+ - Set $factlim to the value 100,000 to avoid unintentional overflow
+ - Implementation of mirror symmetry
+ - Expand factorial(n+m) where m is an integer
+ The expansion depends on the Maxima User variable $factorial_expand.
+ The functionality is comparable with the function minfactorial.
+ But because the expansion is done by the simplifier we have no
+ problems with nested expression.
+
+ Related bugs:
+ SF[1571099] handling of large factorials
+ SF[1486452] minfactorial doesn't look inside "!"
+
+--------------------------------------------------------------------------------
+Changes to General factorial:
+
+ Maxima User function: genfact(x,y,z):
+
+ - Adding tests for the arguments of genfact(x,y,z).
+ The algorithm of genfact(x,y,z) only works for the following range
+ of the arguments: x, y, z positive integer and z <= x and y <= x/z.
+ The tests for this range of values have been added. For integer
+ values beyond this range a Maxima error is thrown. For all other
+ numbers Maxima returns a noun form.
+
+ Related bug:
+ SF [1093138] double factorial defn incorrect for noninteger operand
+
+--------------------------------------------------------------------------------
+Implementation of Double factorial
+
+ New Maxima User function: double_factorial(z)
+ New Maxima User variable: factorial_expand
+
+ double_factorial is a generalization of genfact(x,y,z) for real and
+ complex values. For an integer argument to double_factorial the
+ function genfact(x,y,z) is called.
+
+ - Numerical evaluation for integer, real and complex values in float
+ and bigfloat precision
+ - Implementation of the derivative
+ - Mirror symmetry
+ - Maxima Error for even negative integer
+ - When $factorial_expand T expansion for factorial_double(2*k+z)
+ and k an integer
+ - Transformation to a Gamma function with $makegamma
+
+ Related bug:
+ SF [1093138] double factorial defn incorrect for noninteger operand
+
+--------------------------------------------------------------------------------
+Extensions and improvements of the Gamma function
+
+ Maxima User function: gamma(z)
+ New Maxima User variable: gamma_expand
+
+ - Adding code to evaluate complex bigfloats using the routine cbffac.
+ - Detect a float or bigfloat representation of a negative integer.
+ - Adding a test to check an overflow in the numerical routine
+ gamma-lanczos.
+ - Adding code for autoloading cbffac in max_ext.lisp
+ - Simplify gamma(z+n) when n an integer e.g.
+ gamma(z+1) = n * gamma(z)
+ gamma(z+2) = n * (z+1) * gamma(z)
+ gamma(z-1) = - gamma(z) / (1-n)
+ gamma(z-2) = gamma(z) / ((1-n) * (2-n))
+ - Do the extraction of the realpart and imagpart when we know we
+ have a complex number.
+ - Improved accuracy for float, bigfloat and complex bigfloat values.
+ - reduce the default value of $gammalim to 10,000
+ - $gammalim and $factlim now work indepently
+
+ Related bugs:
+ SF [2013650] gamma(250.0) returns non-number; gamma(-1.0) finite
+ SF [2134791] Gamma ask for the sign of an expression
+
+--------------------------------------------------------------------------------
+Implementation of the Incomplete Gamma function
+
+ New Maxima User function: gamma_incomplete(a,z)
+
+ The following features are implemented:
+
+ - Evaluation for real and complex numbers in double float and
+ bigfloat precision
+ - Special values for gamma_incomplete(a,0) and gamma_incomplete(a,inf)
+ - When $gamma_expand T expand the following expressions:
+ gamma_incomplete(0,z)
+ gamma_incomplete(n+1/2)
+ gamma_incomplete(1/2-n)
+ gamma_incomplete(n,z)
+ gamma_incomplete(-n,z)
+ gamma_incomplete(a+n,z)
+ gamma_incomplete(a-n,z)
+ - Mirror symmetry
+ - Derivative wrt the arguments a and z
+
+--------------------------------------------------------------------------------
+Implementation of the Generalized Incomplete Gamma function
+
+ New Maxima User function: gamma_incomplete_generalized(a,z1,z2)
+
+ The following features are implemented:
+
+ - Evaluation for real and complex numbers in double float and
+ bigfloat precision
+ - Special values for:
+ gamma_incomplete_generalized(a,z1,0)
+ gamma_incomplete_generalized(a,0,z2),
+ gamma_incomplete_generalized(a,z1,inf)
+ gamma_incomplete_generalized(a,inf,z2)
+ gamma_incomplete_generalized(a,0,inf)
+ gamma_incomplete_generalized(a,x,x)
+ - When $gamma_expand T and n an integer expand
+ gamma_incomplete_generalized(a+n,z1,z2)
+ - Implementation of Mirror symmetry
+ - Derivative wrt the arguments a, z1 and z2
+
+--------------------------------------------------------------------------------
+Implementation of the Regularized Incomplete Gamma function
+
+ New Maxima User function: gamma_incomplete_regularized(a,z)
+
+ The following features are implemented:
+
+ - Evaluation for real and complex numbers in double float and
+ bigfloat precision
+ - Special values for:
+ gamma_incomplete_regularized(a,0)
+ gamma_incomplete_regularized(0,z)
+ gamma_incomplete_regularized(a,inf)
+ - When $gamma_expand T and n a positive integer expansions for
+ gamma_incomplete_regularized(n+1/2,z)
+ gamma_incomplete_regularized(1/2-n,z)
+ gamma_incomplete_regularized(n,z)
+ gamma_incomplete_regularized(a+n,z)
+ gamma_incomplete_regularized(a-n,z)
+ - Derivative wrt the arguments a and z
+ - Implementation of Mirror symmetry
+
+--------------------------------------------------------------------------------
+Implementation of the Logarithm of the Gamma function
+
+ New Maxima User function: log_gamma(z).
+
+ The following features are implemented:
+
+ - Evaluation for real and complex values in float and bigfloat
+ precision.
+ - For positive integer values n transformation to log(factorial(n)).
+ - Check for negative integers, float or bigfloat representation.
+ - Simplify gamma_log(inf) -> inf
+
+--------------------------------------------------------------------------------
+Extension and implementation of the Error functions
+
+ New Maxima User functions: erf(z)
+ erfc(z)
+ erfc(z)
+ erfi(z)
+ erf_generalized(z1,z2)
+
+ New Maxima User flag: erf_representation
+
+ The following features are implemented:
+
+ - Real and complex evaluation in double float and bigfloat precision.
+ - For numerical evaluation in double float precision the slatec
+ routine slatec:derf is called. In all other cases the numerical
+ routines of the Incomplete Gamma function are called.
+ - Specific values for zero, one, inf and minf
+ - Implementation of mirror symmetry
+ - Transform into a representation in terms of the Error function erf
+ when erf_representation is T
+ - Odd reflection symmetry is implemented for the Error function erf
+

0 comments on commit 05d78b8

Please sign in to comment.
Something went wrong with that request. Please try again.