Governance of Context and
Intents Types from the FDC3 API

Proposals for supporting Context and Intents releases outside of the
FDC3 API release cycle

Definitions:;

Problem Statement

The maintainers team is broadly supportive for an easier and quicker way of adding Intents

and Context more frequently:

e Current process is holding back new additions, some of which have been waiting
almost 10 months.

o For each and every Context and Intent that is defined and created. A PR is
submitted back to the main standard. However, the standard is only released
periodically when we have a major milestone release.

o Raising your first PR can be intimidating (docs/docusourus, schemas, links to
other content)

e Vendor feedback from the field if a capability is not within the standard, therefore |
cant use FDC3.
e The current process doesn't support/help with proprietary formats.

o Supporting proprietary types would promote uptake of other parts of the

standard
m Great feedback for standard types where they are needed
m We should have a clear workflow from creating a private proprietary

type, to publishing it, to standardizing it (if needed)

Requirements:

1.

2.

Don't break FDC3 for existing applications
Governance of standard types independently from FDC3 standard versions, whilst
still checking the consensus of the FDC3 community.
a. Additional appointed maintainers could help provide governance
Anything that is trying to change Intents and Context types as concepts would have
to go back up to the FDC3 Standards working group.
Maintain some form of version control
Make it easy for people to create & publish new proprietary types (at the moment,

creating a new standard type involves a lot of markdown)

Design Goals:

Create a website or section of the website that is a Catalog of object definitions -
which can be updated between/independently of FDC3 versions!.
Provide clear guidance on:
o Best practices for developing, describing and packaging new Intents or
Contexts.
o How to contribute an Intent or Context.
Community can add PR's for new additions into the catalog. This would allow people
to get on with sharing context and interop'ing without having to necessarily wait for
standards to happen. E.g. for context, types could include:
o published proprietary context types, which can be used to interop with a
given vendor's data structures, e.g. "'symphony.chat” or "chartig.chart”
o standardized context types, which are within the "fdc3.*" namespace like
"fdc3.contact”
o proposed/@experimental standard context types, by publishing early
community feedback should be easier to gather
We can all see their definitions and a separate NPM module that contains types for

them all.

e Be able to move to a rolling basis where we release more frequently, say, every

quarter, or even on a rolling basis (i.e. whenever additions are approved/merged).

e Publish incremental updates using semantic versioning e.g. v.1.0.0?

o Both for an NPM module and individual types?

Implementation ideas [discussions to have /

ideas for the future

e Create a website or section of the website that is a Catalog of object definitions.

o Each of these types has a version and change log

Getting Started Site 1%
Introduction
Why FDC3?
FDC3 Charter

FDC3 Standard w
Abstract
Compliance
Glossary
References
Supported Platforms
AP| Part 2
App Directory Part >
Intents Part Site 2>
Context Data Part >

1. Getting Started

élcome toFDC3 2.0

The mission of the Financial Desktop Connectivity and Collaboration Consortium (FDC3) is to develop specific
protocols and taxonomies to advance the ability of desktop applications in financial workflows to interoperate in
a plug-and-play fashion, without prior bi-lateral agreements.

FDC3 provides an open standard for interoperability between applications on the financial desktop.

This includes standardized verbs to invoke actions between applications (intents), a standardized context
data format, a REST-based App Directory standard, and standardized AP| operations for a Desktop Agent.

Motivation

FDC3 codifies standard patterns that application developers have been using for cross-application workflows
between web and native applications in the financial industry.

e

For more information, see Why FDC37

e Repository style approach, where you create proposals (PRs) and push them to a

repository after they are agreed upon

o When a PR is approved a new NPM module would be created and made

available immediately, it's also visible on the FDC3 website

o New additions could exist under a companies own namespacing, allowing for

company specific types as well.

Proposal

