
Advancing 
Morphir With 
.NET
Here is where your presentation begins



Table of contents

Other approaches

Discussion and Q&A

Market & competition

Discussion

How switching to .NET as our primary 
codebase can benefit Morphir as a whole

A quick overview of Morphir’s relationship with Elm01
Morphir & Elm

Proposal For Moving Forward
02

03

04



Introduction
Hi, I’m Damian Reeves, a Morphir maintainer 

focusing on Morphir’s integration with Scala, the 
JVM, and .NET.



Morphir
A multi-language system built on a data 

format that captures an application’s 
domain model and business logic in a 

technology agnostic manner.



Morphir 
Elm
A Brief History On Morphir & It’s Relationship 
With Elm

01



An Extremely Rough Timeline

Today
Interest in Morphir is 

growing and there is a 
need for tooling that 
spans multiple tech 

stacks

2020

Morphir open-sourced 
and donated to FINOS

Circa 2018
The team involved in building ”Morphir” 

realized that its data model closely 
resembled Elm’s feature set & we could fast 

track some things by leaning on the Elm 
ecosystem.

Before 2018

“Morphir” started as a proprietary tool 
that was built in Scala as an embedded 

DSL.



Swot analysis 
for Elm circa 2018

Aligns very closely with the 
Morphir IR and Morphir’s

principles. The language is 
easy to pick up.

Elm is positioned as a web
development language. And 
the language is unfamiliar to 
many developers.

While the tooling such as IDE
support, test tools, code

formatting & web dev tools are
awesome, packaging has some 

deficiencies.

Elm’s “benevolent dictator” 
approach to the language could 
prove to be problematic 
overtime. Also main corporate 
sponsor No Red Ink not a tech 
giant like Microsoft, Google, 
etc.

Strengths

Opportunities

Weakness

Threats



Decision A Win

Switching to Elm allowed the team
to move fast with constrained 

resources and staffing

The success of the approach paved the way 
for open sourcing Morphir, with an 
opportunity to use OSS relationships to grow 
the ecosystem.

Move Fast

Paved The Way For OSS

When it came to the 
first frontend language 

we had native tooling

Batteries Included Tooling



Problem

Now in 2023 (5 years later) is a good time to consider what we can do 
to fuel the next wave of growth in the Morphir ecosystem :

● There is a desire (by users and potential users) to target 
additional languages, data formats, and tech stacks

● The Elm ecosystem hasn’t progressed much in the last 5 years 
and certainly not at the rate at other ecosystems

● Demand for new features outpaces our ability to deliver them 
quickly

● Arguably spending time building more language support tools 
than we would need to if we were primarily on a more widely 
adopted and mature tech stack:
● Incremental build
● Packaging support



Morphir 
.NET
Moving forward With .NET as Morphir’s
primary development platform

02



Spend the next month or two focusing on 
maturing morphir-dotnet and using .NET 

and F# are our primary development 
platform and language.

The Idea In A Nutshell



Elm / .NET

In the last 5 years .NET has 
grown, expanded it’s cross-

platform reach, and runs 
virtually everywhere: 

including in the browser via 
WebAssembly.

The Elm language and 
ecosystem has not evolved 

much in the last 5 years.
A key area of support 

(package management) 
needed is not a priority for 

the maintainer.

Elm .NET



.NET has modern features and 
targets modern workloads from 

cloud to ML and AI.

Built as a multi-
language platform 

from the start.

Why .NET?

The .NET platform is a mature 
tech stack with the backing of 

Microsoft

Runs virtually 
everywhere

Microsoft and it’s partners 
have a strong commitment to 

providing world class 
developer tools

All of .NET and the 
most popular libraries 
are developed in the 

open.

Mature Modern Multi-Language

Cross-Platform Developer Tools OSS



Key .NET 
Benefits

NuGet is a large, 
battletested, package 

manager that is used to 
serve-up a variety of 
package types. It has 

string support in 
enterprises.

MSBuild headlines a 
variety of build tools 
which can be used to 
build code. .NET build
tools support not only
.NET languages but a

variety of other 
platforms as well.

Whether it is the Roslyn 
C# compiler, F# 

compiler services, or 
Source Generators, 

.NET has a strong story 
and community around 

metaprogramming 
related tasks

NuGet Build Tools Metaprogramming



Not To 
Be Overlooked Benefits

Polyglot notebooks
provide potential for
being a great way to

combine business logic
and visualization.

Elm and F# are very close 
syntactically and it is very 

simple to port Elm code to F# 
and ramp up on F# with basis 

in Elm. The “Elmish” tools allow 
you to use TEA/Model View 
Update in many scenarios.

.NET has one of the 
strongest stories around 

WebAssembly. With 
WASI it is possible to 
run WASM projects 

outside of the browser: 
i.e. in console apps and 

servers.

.NET Interactive F# WebAssembly



A BIT 
MORE ON 

F#



F# Benefits

Functional 
programming language 
with first class support 

in the platform.

F# has language features which makes 
building DSLs and programming language 
tooling easier: i.e. Type Providers, 
Quotations, FSharp Compiler Service

Functional

Metaprogramming

The F# to JavaScript
compiler which recently
has expanded its scope.

Fable



Last June the Fable team announced 
some great news for Fable 4!

Morphir
Fable



Beta level as of September 2022 Alpha level as of 
2022

Always been there

Alpha level as of 2022 (but 
already used in production)

Alpha level as of 2022 Experimental and was 
part of PoC of 

expanding Fable to 
other langs

JavaScript Python Rust

Dart TypeScript PHP

Fable Language Support
Morphir
Fable

https://fable.io/blog/2022/2022-09-28-fable-4-theta.html



Morphir
Fable

This means switching to .NET and 
F# would have a multiplicative 

impact on our goals of expansion to 
new platforms, without duplicating 

code.

Fable · Announcing Fable 4 Theta Release

https://fable.io/blog/2022/2022-09-28-fable-4-theta.html


Swot analysis

Mature, Modern, Evolving, 
Bright Future, Write Once and 

Explode Our Reach

Morphir’s .NET support is in 
its infancy and needs more 
developers

Fable 4 and WASI support are
still developing, but both 
targeted for this year and 

available for use now.

Microsoft gets distracted by 
something else.

Strengths

Opportunities

Weakness

Threats



Alternatives
“But I like X more…”

03



Worth
Mentioning

A very strong contender for being Morphir’s primary development 
language. Despite the massive reach of the web and Nodejs, I feel
the proposed solution has more potential.

While a strong supporter of Scala and it’s ability to compile to multiple platforms: 
JVM, JavaScript, Native. The maturity of the ecosystem and the lack of a 
WebAssembly authoring story for the JVM puts it behind .NET and TypeScript.

Great language, great ecosystem, awesome WebAssembly support.
But the learning curve here is big. The Fable toolchain can bootstrap 
future efforts to expand our reach with native Rust support.

TypeScript

Scala/JVM

Rust



Discussion
Let’s Talk

04



CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik

Thanks!
Do you have any questions?
Let’s chat in the Morphir Slack channel or on the 
Discussion board.

Please keep this slide for attribution

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

