
FINOS on GitHub - settings and
processes

TODOs:

1. Agenda and Minutes Meeting, how to use GitHub Wiki
2. Team discussions to deliver mailing List and Real-time Chat

Objective 2
FINOS Vocabulary 2

FINOS Roles and permission mapping 3
GitHub permission definitions 3
FINOS Roles 3
Team definition and settings 3
Commits, Issues and Pull Request permissions 5
Repo Collaboration settings 5

Team collaboration use cases 7
Agenda and Minutes Meeting 7
Mailing List and Real-time Chat 7
Documentation (and Product Marketing) websites 7

Migration checklist 8
First notification email for PMC 8
Second notification email for PMC 9

Alternative structure 9
External to GitHub hosting 9
GitHub hosting in another organization 10
The `Mirroring` experience 10

Objective
Provide a prescriptive, complete process to migrate a program from the existing GitHub
organization to the FINOS GitHub organization.

Define a detailed description of FINOS GitHub organization, in terms of:

1. FINOS Roles and permission mapping
2. Program/Project Team collaboration use cases, which includes:

a. Commits, Issues and Pull Request permissions
b. Agenda and Minutes Meeting, currently managed with Atlassian Confluence 1

c. Mailing List and Real-time Chat. Group communication, currently based on
(Google Groups) mailing-list (exploratory) 2

d. Documentation (and Product Marketing) websites (powered by GitHub Pages)
3. FINOS Staff maintenance processes and tasks
4. Community Handbook guidelines and documentation
5. Migration (from current per-program github org structure) checklist and collaterals
6. Program and project rosters

GitHub Teams (and topics) are used to map FINOS entities and bodies with GitHub permission
model, across all FINOS Programs and Projects.

FINOS Vocabulary
● Program - Programs are how the FINOS community organizes its nearly 100 projects.

Programs help align efforts, address shared business problems, and build out common
technical platforms.

● Project - A FINOS initiative that is part of a given program. A project may host digital
assets (of different types, not only code) using one or more GitHub repositories, often
under the github.com/finos organization

More terms are explained below in the FINOS Roles.

1 Some programs, such as DT and FO, are ready to move to the /finos github org now but do NOT want to
move their collaboration use cases to github yet (i.e., they want to stay on the Wiki)
2 GitHub teams discussion could replace Google Groups Mailing Lists for threaded conversations and/or
project announcements. And Gitter could be used as real-time chat conversations (like Symphony, Slack,
or Discord, although this question requires banks to validate accessibility to third-party applications.

https://github.com/finos

FINOS Roles and permission mapping

GitHub permission definitions
Admin: Members will be able to clone, pull, push, and add new collaborators to all repositories
(combination of the maintain role with the ability to add external collaborators).
Maintain: Members can read, clone, and push to this repository. They can also manage issues,
pull requests, and some repository settings (combination of the write, triage roles and some
repository management configuration capabilities)
Read: Members will be able to clone and pull all (public and private) repositories.
None: Members will be able to clone and pull public repositories.

FINOS Roles

Finos Role Description Permissions Team name

Project
Team

Every GitHub user that is a project
maintainer, as granted by the PMC

Maintain across all
project repos

{program}-{project}

External
Contributor

Any GitHub user who contributes or
participates in a project but is not a
regular project team member

None across all
project repos (default)

No team

Project Lead An individual who is responsible for
the project

Admin across all
project repos

Enforced via
repository
collaboration settings

Program
Team

Every GitHub user who is part of a
program’s project team or FINOS
leadership

None across all
program repos
(default)

{program}-program

PMC Team Every GitHub user who is part of the
PMC

Maintain across all
program repos

{program}-pmc

PMC Lead An individual who is responsible for
the PMC

Not mapped No team

Team definition and settings
Every program, pmc and project will be mapped as a GitHub team, following a 2-levels
hierarchical structure, as shown below.

Team inheritance allows all program repositories and members to be listed in single landing
pages, shown below.

Commits, Issues and Pull Request permissions
Any GitHub user is able to fork, open issues and submit pull requests to at least one branch of
any FINOS hosted repository.

Any GitHub user that is part of a github.com/finos team is also a member of FINOS
organization, and therefore the GitHub ID (ie @maoo) can be mentioned on commit messages,
issues, pull requests and can be engaged as a issue/pr reviewer/assignee.

NOTE! Anyone who left a comment on the issue can be engaged as reviewer/assigned, but any
other (GitHub FINOS org) non-member will not show in the list of possible assignees/reviewers.

Repo Collaboration settings
Program-specific GitHub Team (ie dt-program) must have Read access, in order to populate
the list of repositories at Team level (ie
https://github.com/orgs/finos/teams/dt-program/repositories)

https://github.com/orgs/finos/teams/dt-program/repositories

Project-specific GitHub Team (ie dt-datahelix) and program PMC (ie dt-pmc) must have
Maintain access, in order to give maintainers the right level of access to the repository (see
table above).

The program-specific group (in this case dt-program) has Read access to each program repo,
to provide the program landing pages shown above; an alternative solution would be to use
GitHub Topics.

The Project Lead will have Admin access to the repository, as an individual; note that this
permission is already enforced in our current GitHub repository structure.

https://github.com/topics

The Project Lead must be also configured as Maintainer of the related project team (in this
case dt-datahelix)

.

Team collaboration use cases

Agenda and Minutes Meeting
TBD
Potentially: Create issue template for your meetings, open issue for each meeting? Use a
GitHub Action to automatically open the issue every X weeks.

Mailing List and Real-time Chat
Team discussions are an alternative solution to Google Groups that allows the project team to
discuss project-related matters; it allows private conversations within a team, as well as public
ones. It’s a good way for teams to share news, as well as major decisions and communications,
with the public.

[More, add links, add team inheritance considerations, email notifications (if any, and how to
configure them), how pin works, if/how it works together with issues and prs (ie mentions)]

Documentation (and Product Marketing) websites
This work have been already done, socialized and used extensively; documentation is available
on the Project Documentation docs page

Alternative structure
Some programs may decide to maintain their own GitHub organization and not be joined into
the FINOS org. This is likely to maintain legacy program name recognition. This is an
anti-pattern, and I would heavily discourage it in almost all use cases. Any project that believes
it needs it’s own org to for its own branding is diminishing value from the Foundation.

External to GitHub hosting
GitHub provides automatic mirroring for repos hosted outside of GitHub (e.g. GitLab, a
corporate git server, etc) that will mirror the repositories contents into a repo on GitHub every
few hours.

NOTE: Any code changes made in this location will be overwritten on each mirror
operation. Also, if a project is hosting their code and collaboration elsewhere, it may
cause more confusion for users who do not get the level of service at the GitHub
repository as expected.

GitHub hosting in another organization
If a program decides to maintain their own organization on GitHub, the built-in mirroring
functionality will no longer work. Instead, we’ll have to manually set up either a webhook that will
duplicate the changes on each commit, or a scheduled job that will clone, then force push the
repository on a routine schedule. Both should be accomplished via GitHub Actions. Jamie can
provide these actions upon request.

NOTE: Any code changes made in the mirrored location would be overwritten on each
mirror operation. Also, if a project is hosting their code and collaboration elsewhere, it
may cause more confusion for users who do not get the level of service at the GitHub
repository as expected.

The `Mirroring` experience
When you come to a mirrored repository, there should be a strong signal that the repository is
not in active operation at this location, but instead point you towards the proper location. This

https://finosfoundation.atlassian.net/wiki/spaces/FDX/pages/75530469/Project+documentation

can be accomplished in the repository description, and should ideally be at the top of the
README as well.

