Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 26 additions & 9 deletions genkit-tools/cli/config/firebase.index.ts.template
Original file line number Diff line number Diff line change
@@ -1,37 +1,51 @@
import * as z from "zod";

// Import the Genkit core libraries and plugins.
import {generate} from "@genkit-ai/ai";
import {configureGenkit} from "@genkit-ai/core";
import {firebaseAuth} from "@genkit-ai/firebase/auth";
import {onFlow} from "@genkit-ai/firebase/functions";
$GENKIT_MODEL_IMPORT
import * as z from "zod";
$GENKIT_CONFIG_IMPORTS
$GENKIT_MODEL_IMPORT

// From the Firebase plugin, import the functions needed to deploy flows using
// Cloud Functions.
import {firebaseAuth} from "@genkit-ai/firebase/auth";
import {onFlow} from "@genkit-ai/firebase/functions";

configureGenkit({
plugins: [
$GENKIT_CONFIG_PLUGINS
],
// Log debug output to tbe console.
logLevel: "debug",
// Perform OpenTelemetry instrumentation and enable trace collection.
enableTracingAndMetrics: true,
});

// Define a simple flow that prompts an LLM to generate menu suggestions.
export const menuSuggestionFlow = onFlow(
{
name: "menuSuggestionFlow",
inputSchema: z.string(),
outputSchema: z.string(),
authPolicy: firebaseAuth((user) => {
// Firebase Auth is required to call this flow using the Firebase Functions SDK.
// TODO: Write additional logic tailored to the needs of your app.
// For example:
// By default, the firebaseAuth policy requires that all requests have an
// `Authorization: Bearer` header containing the user's Firebase
// Authentication ID token. All other requests are rejected with error
// 403. If your app client uses the Firebase Cloud Functions callable
// functions feature, the library automatically attaches this header to
// requests.

// You should also set additional policy requirements as appropriate for
// your app. For example:
// if (!user.email_verified) {
// throw new Error("Verified email required to run flow");
// }
}),
},
async (subject) => {
// Construct a request and send it to the model API.
const prompt =
`Suggest an item for the menu of a ${subject} themed restaurant`;

const llmResponse = await generate({
model: $GENKIT_MODEL,
prompt: prompt,
Expand All @@ -40,7 +54,10 @@ export const menuSuggestionFlow = onFlow(
},
});

// Handle the response from the model API. In this sample, we just
// convert it to a string, but more complicated flows might coerce the
// response into structured output or chain the response into another
// LLM call, etc.
return llmResponse.text();
}
);

23 changes: 18 additions & 5 deletions genkit-tools/cli/config/googleCloud.index.ts.template
Original file line number Diff line number Diff line change
@@ -1,25 +1,31 @@
import { generate } from '@genkit-ai/ai';
import { configureGenkit } from '@genkit-ai/core';
import { defineFlow, startFlowsServer } from '@genkit-ai/flow';
$GENKIT_MODEL_IMPORT
import * as z from 'zod';

// Import the Genkit core libraries and plugins.
import {generate} from '@genkit-ai/ai';
import {configureGenkit} from '@genkit-ai/core';
import {defineFlow, startFlowsServer} from '@genkit-ai/flow';
$GENKIT_CONFIG_IMPORTS
$GENKIT_MODEL_IMPORT

configureGenkit({
plugins: [
$GENKIT_CONFIG_PLUGINS
],
logLevel: 'debug',
// Log debug output to tbe console.
logLevel: "debug",
// Perform OpenTelemetry instrumentation and enable trace collection.
enableTracingAndMetrics: true,
});

// Define a simple flow that prompts an LLM to generate menu suggestions.
export const menuSuggestionFlow = defineFlow(
{
name: 'menuSuggestionFlow',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (subject) => {
// Construct a request and send it to the model API.
const llmResponse = await generate({
prompt: `Suggest an item for the menu of a ${subject} themed restaurant`,
model: $GENKIT_MODEL,
Expand All @@ -28,8 +34,15 @@ export const menuSuggestionFlow = defineFlow(
},
});

// Handle the response from the model API. In this sample, we just convert
// it to a string, but more complicated flows might coerce the response into
// structured output or chain the response into another LLM call, etc.
return llmResponse.text();
}
);

// Start a flow server, which exposes your flows as HTTP endpoints. This call
// must come last, after all of your plug-in configuration and flow definitions.
// You can optionally specify a subset of flows to serve, and configure some
// HTTP server options, but by default, the flow server serves all defined flows.
startFlowsServer();
20 changes: 16 additions & 4 deletions genkit-tools/cli/config/main.go.template
Original file line number Diff line number Diff line change
Expand Up @@ -6,22 +6,25 @@ import (
"fmt"
"log"

// Import the Genkit core libraries.
"github.com/firebase/genkit/go/ai"
"github.com/firebase/genkit/go/genkit"
$GENKIT_MODEL_IMPORT
)

func $GENKIT_FUNC_NAME() {
ctx := context.Background()
if err := $GENKIT_MODEL_INIT; err != nil {
log.Fatal(err)
}

$GENKIT_MODEL_INIT

// Define a simple flow that prompts an LLM to generate menu suggestions.
genkit.DefineFlow("menuSuggestionFlow", func(ctx context.Context, input string) (string, error) {
m := $GENKIT_MODEL_LOOKUP
$GENKIT_MODEL_LOOKUP
if m == nil {
return "", errors.New("menuSuggestionFlow: failed to find model")
}

// Construct a request and send it to the model API.
resp, err := m.Generate(ctx,
ai.NewGenerateRequest(
&ai.GenerationCommonConfig{Temperature: 1},
Expand All @@ -30,13 +33,22 @@ func $GENKIT_FUNC_NAME() {
if err != nil {
return "", err
}

// Handle the response from the model API. In this sample, we just
// convert it to a string, but more complicated flows might coerce the
// response into structured output or chain the response into another
// LLM call, etc.
text, err := resp.Text()
if err != nil {
return "", fmt.Errorf("menuSuggestionFlow: %v", err)
}
return text, nil
})

// Initialize Genkit and start a flow server. This call must come last,
// after all of your plug-in configuration and flow definitions. When you
// pass a nil configuration to Init, Genkit starts a local flow server,
// which you can interact with using the developer UI.
if err := genkit.Init(ctx, nil); err != nil {
log.Fatal(err)
}
Expand Down
18 changes: 15 additions & 3 deletions genkit-tools/cli/config/nextjs.genkit.ts.template
Original file line number Diff line number Diff line change
@@ -1,27 +1,33 @@
"use server"

import * as z from 'zod';

// Import the Genkit core libraries and plugins.
import { generate } from '@genkit-ai/ai';
import { configureGenkit } from '@genkit-ai/core';
import { defineFlow, runFlow } from '@genkit-ai/flow';
$GENKIT_MODEL_IMPORT
import * as z from 'zod';
$GENKIT_CONFIG_IMPORTS
$GENKIT_MODEL_IMPORT

configureGenkit({
plugins: [
$GENKIT_CONFIG_PLUGINS
],
logLevel: 'debug',
// Log debug output to tbe console.
logLevel: "debug",
// Perform OpenTelemetry instrumentation and enable trace collection.
enableTracingAndMetrics: true,
});

// Define a simple flow that prompts an LLM to generate menu suggestions.
const menuSuggestionFlow = defineFlow(
{
name: 'menuSuggestionFlow',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (subject) => {
// Construct a request and send it to the model API.
const llmResponse = await generate({
prompt: `Suggest an item for the menu of a ${subject} themed restaurant`,
model: $GENKIT_MODEL,
Expand All @@ -30,11 +36,17 @@ const menuSuggestionFlow = defineFlow(
},
});

// Handle the response from the model API. In this sample, we just
// convert it to a string, but more complicated flows might coerce the
// response into structured output or chain the response into another
// LLM call, etc.
return llmResponse.text();
}
);

export async function callMenuSuggestionFlow() {
// Invoke the flow. The value you pass as the second parameter must conform to
// your flow's input schema.
const flowResponse = await runFlow(menuSuggestionFlow, 'banana');
console.log(flowResponse);
}
54 changes: 41 additions & 13 deletions genkit-tools/cli/src/commands/init/init-go.ts
Original file line number Diff line number Diff line change
Expand Up @@ -36,31 +36,57 @@ interface ModelOption {
/** Path to Genkit sample template. */
const templatePath = '../../../config/main.go.template';

/** Ollama init call template. Keep indenting to for expected output. */
const ollamaInit = `ollama.Init(ctx, ollama.Config{
ServerAddress: "http://127.0.0.1:11434",
Models: []ollama.ModelDefinition{{Name: "gemma"}},
})`;

/** Model to plugin name. */
const modelOptions: Record<ModelProvider, ModelOption> = {
googleai: {
label: 'Google AI',
package: 'github.com/firebase/genkit/go/plugins/googleai',
init: 'googleai.Init(ctx, "")',
lookup: 'googleai.Model("gemini-1.5-flash")',
init: `// Initialize the Google AI plugin. When you pass an empty string for the
\t// apiKey parameter, the Google AI plugin will use the value from the
\t// GOOGLE_GENAI_API_KEY environment variable, which is the recommended
\t// practice.
\tif err := googleai.Init(ctx, ""); err != nil {
\t\tlog.Fatal(err)
\t}`,
lookup: `// The Google AI API provides access to several generative models. Here,
\t\t// we specify gemini-1.5-flash.
\t\tm := googleai.Model("gemini-1.5-flash")`,
},
vertexai: {
label: 'Google Cloud Vertex AI',
package: 'github.com/firebase/genkit/go/plugins/vertexai',
init: 'vertexai.Init(ctx, "", "")',
lookup: 'vertexai.Model("gemini-1.5-flash")',
init: `// Initialize the Vertex AI plugin. When you pass an empty string for the
\t// projectID parameter, the Vertex AI plugin will use the value from the
\t// GCLOUD_PROJECT environment variable. When you pass an empty string for
\t// the location parameter, the plugin uses the default value, us-central1.
\tif err := vertexai.Init(ctx, "", ""); err != nil {
\t\tlog.Fatal(err)
\t}`,
lookup: `// The Vertex AI API provides access to several generative models. Here,
\t\t// we specify gemini-1.5-flash.
\t\tm := vertexai.Model("gemini-1.5-flash")`,
},
ollama: {
label: 'Ollama (e.g. Gemma)',
package: 'github.com/firebase/genkit/go/plugins/ollama',
init: ollamaInit,
lookup: 'ollama.Model("gemma")',
init: `// Initialize the Ollama plugin.
\terr := ollama.Init(ctx, ollama.Config{
\t\t// The address of your Ollama API server. This is often a different host
\t\t// from your app backend (which runs Genkit), in order to run Ollama on
\t\t// a GPU-accelerated machine.
ServerAddress: "http://127.0.0.1:11434",

\t\t// The models you want to use. These must already be downloaded and
\t\t// available to the Ollama server.
\t\tModels: []ollama.ModelDefinition{{Name: "gemma"}},
\t})
\tif err != nil {
\t\tlog.Fatal(err)
\t}`,
lookup: `// Ollama provides an interface to many open generative models. Here,
\t\t// we specify Google's Gemma model, which we configured the Ollama
\t\t// plugin to provide, above.
\t\tm := ollama.Model("gemma")`,
},
none: {
label: 'None',
Expand Down Expand Up @@ -206,7 +232,9 @@ async function generateSampleFile(model: ModelProvider) {
)
.replace(
'$GENKIT_MODEL_IMPORT',
modelOption.package ? `"${modelOption.package}"` : ''
modelOption.package
? `\n\t// Import the ${modelOption.label} plugin.\n\t"${modelOption.package}"`
: ''
)
.replace('$GENKIT_MODEL_INIT', modelOption.init)
.replace('$GENKIT_MODEL_LOOKUP', modelOption.lookup);
Expand Down
Loading