Appendix I

Fluid-Particle Momentum Transfer

The trajectory of a Lagrangian particle is governed by the momentum conservation equation:

du 1
mthp = —EPCdAp,c(“p_“)”“p_“”+mpg (L.1)

where m;, is the particle mass, uy(7) the particle velocity, Ay the particle cross-sectional area, Cy the drag
coefficient, p the gas density, u the gas velocity in the vicinity of the particle, and g the gravity vector. There
is no analytical solution to this equation, but its linearized form:

du 1
Ttp =—Bu,—u)+g B= TmPPCdAp,cHup(o)_“H (1.2)
has the solution:
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assuming that the gas velocity u is unchanging over the short duration for which this solution is valid.

In FDS, the particle position is advanced over the course of a gas-phase time step, 6z, by a series of
sub-time steps, Otp, that are determined so as to ensure that the particle does not traverse the width of a grid
cell in one sub-time step:
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Note that the ceiling function, [CFL|, denotes the least integer greater than the CFL. For a given time step,
denoted by n, the particle position is advanced according to:
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where up

is given by Eq. (1.3).
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