diff --git a/Makefile b/Makefile index 327d43bb2..1f7ea4679 100644 --- a/Makefile +++ b/Makefile @@ -648,7 +648,7 @@ endif CHIP_OBJS = jedec.o stm50.o w39.o w29ee011.o \ sst28sf040.o 82802ab.o \ sst49lfxxxc.o sst_fwhub.o edi.o flashchips.o spi.o spi25.o spi25_statusreg.o \ - spi95.o opaque.o sfdp.o en29lv640b.o at45db.o writeprotect.o + spi95.o opaque.o sfdp.o en29lv640b.o at45db.o writeprotect.o s25f.o ############################################################################### # Library code. diff --git a/chipdrivers.h b/chipdrivers.h index cf0381172..b42c36387 100644 --- a/chipdrivers.h +++ b/chipdrivers.h @@ -170,6 +170,11 @@ int erase_sector_49lfxxxc(struct flashctx *flash, unsigned int address, unsigned int printlock_sst_fwhub(struct flashctx *flash); int unlock_sst_fwhub(struct flashctx *flash); +/* s25f.c */ +int probe_spi_big_spansion(struct flashctx *flash); +int s25fl_block_erase(struct flashctx *flash, unsigned int addr, unsigned int blocklen); +int s25fs_block_erase_d8(struct flashctx *flash, unsigned int addr, unsigned int blocklen); + /* w39.c */ int printlock_w39f010(struct flashctx * flash); int printlock_w39l010(struct flashctx * flash); diff --git a/meson.build b/meson.build index 1acbdb35e..fd5a5ef79 100644 --- a/meson.build +++ b/meson.build @@ -354,6 +354,7 @@ srcs += 'libflashrom.c' srcs += 'opaque.c' srcs += 'print.c' srcs += 'programmer.c' +srcs += 's25f.c' srcs += 'sfdp.c' srcs += 'spi25.c' srcs += 'spi25_statusreg.c' diff --git a/s25f.c b/s25f.c new file mode 100644 index 000000000..32af53ef5 --- /dev/null +++ b/s25f.c @@ -0,0 +1,391 @@ +/* + * This file is part of the flashrom project. + * + * Copyright (C) 2014 Google LLC. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +/* + * s25f.c - Helper functions for Spansion S25FL and S25FS SPI flash chips. + * Uses 24 bit addressing for the FS chips and 32 bit addressing for the FL + * chips (which is required by the overlayed sector size devices). + * TODO: Implement fancy hybrid sector architecture helpers. + */ + +#include + +#include "chipdrivers.h" +#include "spi.h" +#include "writeprotect.h" + +/* + * RDAR and WRAR are supported on chips which have more than one set of status + * and control registers and take an address of the register to read/write. + * WRR, RDSR2, and RDCR are used on chips with a more limited set of control/ + * status registers. + * + * WRR is somewhat peculiar. It shares the same opcode as JEDEC_WRSR, and if + * given one data byte (following the opcode) it acts the same way. If it's + * given two data bytes, the first data byte overwrites status register 1 + * and the second data byte overwrites config register 1. + */ +#define CMD_WRR 0x01 +#define CMD_WRDI 0x04 +#define CMD_RDSR2 0x07 /* note: read SR1 with JEDEC RDSR opcode */ +#define CMD_RDCR 0x35 +#define CMD_RDAR 0x65 +#define CMD_WRAR 0x71 + +/* TODO: For now, commands which use an address assume 24-bit addressing */ +#define CMD_WRR_LEN 3 +#define CMD_WRDI_LEN 1 +#define CMD_RDAR_LEN 4 +#define CMD_WRAR_LEN 5 + +#define CMD_RSTEN 0x66 +#define CMD_RST 0x99 + +#define CR1NV_ADDR 0x000002 +#define CR1_BPNV_O (1 << 3) +#define CR1_TBPROT_O (1 << 5) +#define CR3NV_ADDR 0x000004 +#define CR3NV_20H_NV (1 << 3) + +/* See "Embedded Algorithm Performance Tables for additional timing specs. */ +#define T_W 145 * 1000 /* NV register write time (145ms) */ +#define T_RPH 35 /* Reset pulse hold time (35us) */ +#define S25FS_T_SE 145 * 1000 /* Sector Erase Time (145ms) */ +#define S25FL_T_SE 130 * 1000 /* Sector Erase Time (130ms) */ + +static int s25f_legacy_software_reset(const struct flashctx *flash) +{ + struct spi_command cmds[] = { + { + .writecnt = 1, + .writearr = (const uint8_t[]){ CMD_RSTEN }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 1, + .writearr = (const uint8_t[]){ 0xf0 }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 0, + .writearr = NULL, + .readcnt = 0, + .readarr = NULL, + }}; + + int result = spi_send_multicommand(flash, cmds); + if (result) { + msg_cerr("%s failed during command execution\n", __func__); + return result; + } + + /* Allow time for reset command to execute. The datasheet specifies + * Trph = 35us, double that to be safe. */ + programmer_delay(T_RPH * 2); + + return 0; +} + +/* "Legacy software reset" is disabled by default on S25FS, use this instead. */ +static int s25fs_software_reset(struct flashctx *flash) +{ + struct spi_command cmds[] = { + { + .writecnt = 1, + .writearr = (const uint8_t[]){ CMD_RSTEN }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 1, + .writearr = (const uint8_t[]){ CMD_RST }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 0, + .writearr = NULL, + .readcnt = 0, + .readarr = NULL, + }}; + + int result = spi_send_multicommand(flash, cmds); + if (result) { + msg_cerr("%s failed during command execution\n", __func__); + return result; + } + + /* Allow time for reset command to execute. Double tRPH to be safe. */ + programmer_delay(T_RPH * 2); + + return 0; +} + +static int s25f_poll_status(const struct flashctx *flash) +{ + uint8_t tmp = spi_read_status_register(flash); + + while (tmp & SPI_SR_WIP) { + /* + * The WIP bit on S25F chips remains set to 1 if erase or + * programming errors occur, so we must check for those + * errors here. If an error is encountered, do a software + * reset to clear WIP and other volatile bits, otherwise + * the chip will be unresponsive to further commands. + */ + if (tmp & SPI_SR_ERA_ERR) { + msg_cerr("Erase error occurred\n"); + s25f_legacy_software_reset(flash); + return -1; + } + + if (tmp & (1 << 6)) { + msg_cerr("Programming error occurred\n"); + s25f_legacy_software_reset(flash); + return -1; + } + + programmer_delay(1000 * 10); + tmp = spi_read_status_register(flash); + } + + return 0; +} + +/* "Read Any Register" instruction only supported on S25FS */ +static int s25fs_read_cr(const struct flashctx *flash, uint32_t addr) +{ + uint8_t cfg; + /* By default, 8 dummy cycles are necessary for variable-latency + commands such as RDAR (see CR2NV[3:0]). */ + uint8_t read_cr_cmd[] = { + CMD_RDAR, + (addr >> 16) & 0xff, + (addr >> 8) & 0xff, + (addr & 0xff), + 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, + }; + + int result = spi_send_command(flash, sizeof(read_cr_cmd), 1, read_cr_cmd, &cfg); + if (result) { + msg_cerr("%s failed during command execution at address 0x%x\n", + __func__, addr); + return -1; + } + + return cfg; +} + +/* "Write Any Register" instruction only supported on S25FS */ +static int s25fs_write_cr(const struct flashctx *flash, + uint32_t addr, uint8_t data) +{ + struct spi_command cmds[] = { + { + .writecnt = JEDEC_WREN_OUTSIZE, + .writearr = (const uint8_t[]){ JEDEC_WREN }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = CMD_WRAR_LEN, + .writearr = (const uint8_t[]){ + CMD_WRAR, + (addr >> 16) & 0xff, + (addr >> 8) & 0xff, + (addr & 0xff), + data + }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 0, + .writearr = NULL, + .readcnt = 0, + .readarr = NULL, + }}; + + int result = spi_send_multicommand(flash, cmds); + if (result) { + msg_cerr("%s failed during command execution at address 0x%x\n", + __func__, addr); + return -1; + } + + programmer_delay(T_W); + return s25f_poll_status(flash); +} + +static int s25fs_restore_cr3nv(struct flashctx *flash, uint8_t cfg) +{ + int ret = 0; + + msg_cdbg("Restoring CR3NV value to 0x%02x\n", cfg); + ret |= s25fs_write_cr(flash, CR3NV_ADDR, cfg); + ret |= s25fs_software_reset(flash); + return ret; +} + +int s25fs_block_erase_d8(struct flashctx *flash, + uint32_t addr, uint32_t blocklen) +{ + static int cr3nv_checked = 0; + + struct spi_command erase_cmds[] = { + { + .writecnt = JEDEC_WREN_OUTSIZE, + .writearr = (const uint8_t[]){ JEDEC_WREN }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = JEDEC_BE_D8_OUTSIZE, + .writearr = (const uint8_t[]){ + JEDEC_BE_D8, + (addr >> 16) & 0xff, + (addr >> 8) & 0xff, + (addr & 0xff) + }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 0, + .writearr = NULL, + .readcnt = 0, + .readarr = NULL, + }}; + + /* Check if hybrid sector architecture is in use and, if so, + * switch to uniform sectors. */ + if (!cr3nv_checked) { + uint8_t cfg = s25fs_read_cr(flash, CR3NV_ADDR); + if (!(cfg & CR3NV_20H_NV)) { + s25fs_write_cr(flash, CR3NV_ADDR, cfg | CR3NV_20H_NV); + s25fs_software_reset(flash); + + cfg = s25fs_read_cr(flash, CR3NV_ADDR); + if (!(cfg & CR3NV_20H_NV)) { + msg_cerr("%s: Unable to enable uniform " + "block sizes.\n", __func__); + return 1; + } + + msg_cdbg("\n%s: CR3NV updated (0x%02x -> 0x%02x)\n", + __func__, cfg, + s25fs_read_cr(flash, CR3NV_ADDR)); + /* Restore CR3V when flashrom exits */ + register_chip_restore(s25fs_restore_cr3nv, flash, cfg); + } + + cr3nv_checked = 1; + } + + int result = spi_send_multicommand(flash, erase_cmds); + if (result) { + msg_cerr("%s failed during command execution at address 0x%x\n", + __func__, addr); + return result; + } + + programmer_delay(S25FS_T_SE); + return s25f_poll_status(flash); +} + +int s25fl_block_erase(struct flashctx *flash, + uint32_t addr, uint32_t blocklen) +{ + struct spi_command erase_cmds[] = { + { + .writecnt = JEDEC_WREN_OUTSIZE, + .writearr = (const uint8_t[]){ + JEDEC_WREN + }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = JEDEC_BE_DC_OUTSIZE, + .writearr = (const uint8_t[]){ + JEDEC_BE_DC, + (addr >> 24) & 0xff, + (addr >> 16) & 0xff, + (addr >> 8) & 0xff, + (addr & 0xff) + }, + .readcnt = 0, + .readarr = NULL, + }, { + .writecnt = 0, + .readcnt = 0, + } + }; + + int result = spi_send_multicommand(flash, erase_cmds); + if (result) { + msg_cerr("%s failed during command execution at address 0x%x\n", + __func__, addr); + return result; + } + + programmer_delay(S25FL_T_SE); + return s25f_poll_status(flash); +} + + +int probe_spi_big_spansion(struct flashctx *flash) +{ + uint8_t cmd = JEDEC_RDID; + uint8_t dev_id[6]; /* We care only about 6 first bytes */ + + if (spi_send_command(flash, sizeof(cmd), sizeof(dev_id), &cmd, dev_id)) + return 0; + + msg_gdbg("Read id bytes: "); + for (size_t i = 0; i < sizeof(dev_id); i++) + msg_gdbg(" 0x%02x", dev_id[i]); + msg_gdbg(".\n"); + + /* + * The structure of the RDID output is as follows: + * + * offset value meaning + * 00h 01h Manufacturer ID for Spansion + * 01h 20h 128 Mb capacity + * 01h 02h 256 Mb capacity + * 02h 18h 128 Mb capacity + * 02h 19h 256 Mb capacity + * 03h 4Dh Full size of the RDID output (ignored) + * 04h 00h FS: 256-kB physical sectors + * 04h 01h FS: 64-kB physical sectors + * 04h 00h FL: 256-kB physical sectors + * 04h 01h FL: Mix of 64-kB and 4KB overlayed sectors + * 05h 80h FL family + * 05h 81h FS family + * + * Need to use bytes 1, 2, 4, and 5 to properly identify one of eight + * possible chips: + * + * 2 types * 2 possible sizes * 2 possible sector layouts + * + */ + + uint32_t model_id = + dev_id[1] << 24 | + dev_id[2] << 16 | + dev_id[4] << 8 | + dev_id[5] << 0; + + if (dev_id[0] == flash->chip->manufacture_id && model_id == flash->chip->model_id) + return 1; + + return 0; +} diff --git a/spi.h b/spi.h index c1ca46a21..09da5795c 100644 --- a/spi.h +++ b/spi.h @@ -111,6 +111,11 @@ #define JEDEC_BE_D7_OUTSIZE 0x04 #define JEDEC_BE_D7_INSIZE 0x00 +/* Block Erase 0xdc is supported by Spansion chips, takes 4 byte address */ +#define JEDEC_BE_DC 0xdc +#define JEDEC_BE_DC_OUTSIZE 0x05 +#define JEDEC_BE_DC_INSIZE 0x00 + /* Sector Erase 0x20 is supported by Macronix/SST chips. */ #define JEDEC_SE 0x20 #define JEDEC_SE_OUTSIZE 0x04 @@ -129,6 +134,7 @@ /* Status Register Bits */ #define SPI_SR_WIP (0x01 << 0) #define SPI_SR_WEL (0x01 << 1) +#define SPI_SR_ERA_ERR (0x01 << 5) #define SPI_SR_AAI (0x01 << 6) /* Write Status Enable */