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The purpose of this note is to review the formulas for BR(P → `+`′−) decays in general weak
effective theory (WET), keeping an eye on the subtleties such as signs and CP asymmetries, and
carefully following the contemporary conventions as employed in, e.g., flavio.

The WET is defined by the Langrangian

LWET(5) = LQCD+QED(νL`, e, d, u, s, µ, c, τ, b) + Leff , (1)

the non-renormalizable part of which reads

Leff = −Heff =

OA=O†A∑
A

CAOA +

OB 6=O†B∑
B

(
CBOB + C∗BO

†
B

)
. (2)

The effective operators encode both SM weak interactions and new physics (NP). We assume that NP
relevant for P 0 → `+`′− resides in the semileptonic operators which are usually cast in the following
form:

O9 qq′``′ = N
(
q′LγµqL

) (
`′γµ`

)
O′9 qq′``′ = N

(
q′RγµqR

) (
`′γµ`

)
(3a)

O10 qq′``′ = N
(
q′LγµqL

) (
`′γµγ5`

)
O′10 qq′``′ = N

(
q′RγµqR

) (
`′γµγ5`

)
(3b)

OS qq′``′ = N ζ
(
q′LqR

) (
`′`
)

O′S qq′``′ = N ζ
(
q′RqL

) (
`′`
)

(3c)

OP qq′``′ = N ζ
(
q′LqR

) (
`′γ5`

)
O′P qq′``′ = N ζ

(
q′RqL

) (
`′γ5`

)
(3d)

The normalization coefficients N and N ζ differ among various papers. In general, they can be {operatorBasis}
complex, which will turn out to be a bit cumbersome for the K0

L,S decays. We assume ζ ∈ R.

As the hadronic elements for the pseudoscalar mesons P = q′q read {hadronic˙elements}

〈0| q′γµq |P (k)〉 = 0, 〈0| q′γµγ5q |P (k)〉 = ifPk
µ, (4a)

〈0| q′q |P (k)〉 = 0, 〈0| q′γ5q |P (k)〉 = −ifP
m2
P

mq +mq′
≡ −ifPmP , (4b)

only the combinations

C∆X qq′``′ = CX qq′``′ − C ′X qq′``′ (5) {–defC-C’˝}{–defC-C’˝}

matter. As ψ1(γµ)γ5ψ2
C−→ +ψ2(γµ)γ5ψ1 and pseudoscalar mesons are C-even, there are no extra

phases or signs for the antiparticles in the relations (4).
The operators in Eqns. (3) are all non-hermitean (provided q 6= q′). Since {hc-of-bilinears}(

ψγµχ
)†

= +χγµψ,
(
ψγµγ5χ

)†
= +χγµγ5ψ, (6a)(

ψχ
)†

= +χψ,
(
ψγ5χ

)†
= −χγ5ψ, (6b)
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the operator O∆S qq′``′ = OS qq′``′ −O′S qq′``′ spits an extra minus sign under hermitean conjugation
while the other relevant operators, O∆9,∆10,∆P in obvious notation, do not. In turn, hermiticity of the
effective Hamiltonian implies the following relations among the relevant Wilson coefficients: {C-hc}

N ∗C∆9 qq′``′
∗ = +NC∆9 q′q`′` , N ∗C∆10 qq′``′

∗ = +NC∆10 q′q`′` , (7a)

N ∗C∆S qq′``′
∗ = −NC∆S q′q`′` , N ∗C∆P qq′``′

∗ = +NC∆P q′q`′` . (7b)

In flavio, the Wilson coefficients of the sd``′, bs``′ and bd``′ types are defined directly while those
of the ds``′, sb``′ and db``′ kinds can be obtained by means of the above relations. For example,
the part of effective Hamiltonian relevant for leptonic decays of Bs and B̄s reads

−HBs,B̄s→``′
eff =

∑
`,`′

[
− N

2
C∆9 bs``′ (sγµγ5b)

(
`′γµ`

)
− N

2

∗
C ∗∆9 bs``′

(
bγµγ5s

) (
`γµ`′

)
− N

2
C∆10 bs``′ (sγµγ5b)

(
`′γµγ5`

)
− N

2

∗
C ∗∆10 bs``′

(
bγµγ5s

) (
`γµγ5`

′)
+
ζN
2
C∆S bs``′ (sγ5b)

(
`′`
)
− ζN

2

∗
C ∗∆S bs``′

(
bγ5s

) (
``′
)

+
ζN
2
C∆P bs``′ (sγ5b)

(
`′γ5`

)
+
ζN
2

∗
C ∗∆P bs``′ (sγ5s)

(
`γ5`

′) ].
(8) {–Ham˙bsll˝}{–Ham˙bsll˝}

The covariant S-matrix element for the decay of the weak eigenstate P̄ → `+1 `
−
2 , where P̄ (qq̄′) =

K̄0(sd̄), B̄0(bd̄) or B̄s(bs̄), takes the form

MP̄→`+1 `
−
2

= −N
2
fP u(p2)

[
mPS qq′`1`2 +mPP qq′`1`2γ5

]
v(p1) (9) {–amplitude-Pbar12˝}{–amplitude-Pbar12˝}

with {SP-def}

mP S qq′`1`2 = (m2 −m1)C∆9 qq′`1`2 +mP ζC∆S qq′`1`2 , (10a) {–S˝}{–S˝}

mPP qq′`1`2 = (m2 +m1)C∆10 qq′`1`2 +mP ζC∆P qq′`1`2 . (10b) {–P˝}{–P˝}

The prefactor mP multiplying S and P is a mere convention (used in flavio or Refs. [1, 2] but not
in [3]). For P (q′q̄) = K0(ds̄), B0(db̄) or Bs(sb̄), the matrix elements read

MP→`+1 `
−
2

= −N
2

∗
fP mP u(p2)

[
− S∗qq′`2`1 + P∗qq′`2`1γ5

]
v(p1) . (11) {–amplitude-P12˝}{–amplitude-P12˝}

Notice that the lepton index swap in S applies also to the lepton mass difference in the first term of
Eq. (10a).

1 Instantaneous B-meson decays

The B0 and Bs mesons usually decay before the first oscillation. To some approximation, the oscilla-
tions can therefore be neglected and one can effectively consider the decay of the weak eigenstates. A
more precise treatment will be discussed in Section 3.

From Eq. (9) or (11), one can derive, using the standard trace techniques,

BR(Bs → `−1 `
+
2 ) = BR(B̄s → `+1 `

−
2 ) = (12) {–BR(Bs-¿l1l2)˝}{–BR(Bs-¿l1l2)˝}

= τBs

|N |2

32π

√
λ(m2

Bs
,m2

1,m
2
2)

mBs

f2
Bs

[(
m2
Bs
−(m1+m2)2

)
|S bs`1`2 |

2 +
(
m2
Bs
−(m1−m2)2

)
|P bs`1`2 |

2
]

with λ(a2, b2, c2) = [a2− (b− c)2][a2− (b+ c)2]. The prediction is CP -symmetric regardless of possible
complex phases of the Wilson coefficients.

Comparison with literature: The relevant equations in Ref. [3], cited in the flavio source
code, is flawed by two subtle mistakes. It uses

N =
4GF√

2
VtbV

∗
ts

e2

(4π)2
=
GFα√

2π
VtbV

∗
ts =

GFα√
2π
λtbs (13) {–Normalization-Wilson-bsll˝}{–Normalization-Wilson-bsll˝}
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and ζ [3] = 1 in the calculations but claims ζ = (4π)2/g2 in their eq. (3)[3]. Furthermore, the WCs

defined in their eq. (3)[3], which can be related to the flavio conventions as C
[3](3)
X = CX bs`2`1 , are

important for the B̄s → `−1 `
+
2 decays and for the conjugated mode Bs → `+1 `

−
2 , but eq. (5)[3] uses

them for Bs → `−1 `
+
2 . In other words, the RHS of (5)[3] in fact applies to Bs → `+1 `

−
2 but the LHS

reads BR(Bs → `−1 `
+
2 ). The discussion under (6)[3], which mentions solely the C∆9-proportional term,

indicates that the authors had not fully understood this subtlety. Apart from these issues, Eq. (12)
agrees with (5)[3].

The flavio implementation properly takes into account different (pseudo)scalar normalization
coefficients (ζflavio = mb, ζ

[3] = 1, ignores the typo in (3)[3]). Unfortunately, flavio adopts the

incorrect formula in (5)[3] and employs S,P bs`1`2 for predicting Bs → `+1 `
−
2 . This error is unimportant

at the moment as the flavio methods only yield predictions for the sum of both final states. Neglecting
lighter masses, this sum is driven by

BR(Bs → `±1 `
∓
2 ) ∝ |S bs`1`2 |

2 + |S bs`2`1 |
2 + |P bs`1`2 |

2 + |P bs`2`1 |
2 . (14) {–Bl1l2sum˝}{–Bl1l2sum˝}

Considering the special case `1 = `2, Eq. (12) simplifies to the form which can be found, e.g., in
Ref. [1], where the normalization convention differs only by a overall minus sign in N from Eq. (13).

2 Decays of neutral kaons

A general but awkwardly cast formula for BR(K0
L → `+`′−) can be found also in Ref. [4]. Rather that

adopting it, we modify our previous result to the case of kaons.
Experimentally studied neutral kaons are far from the weak basis. Neglecting the indirect CP

violation, the relations between weak and mass eigenstates read

|K0
L〉 =

|K0〉+ |K̄0〉√
2

, |K0
S 〉 =

|K0〉 − |K̄0〉√
2

. (15)

Accordingly, one obtains

MK0
L,S→`

+
1 `
−
2

= −1

2
fK0 u(p1)

[
SL,S`1`2

+ PL,S`1`2
γ5

]
v(p2), (16) {–amp-KLS˝}{–amp-KLS˝}

where

SL,S`1`2
=
−N ∗S∗sd`2`1 ±NS sd`1`2√

2
, PL,S`1`2

=
N ∗P∗sd`2`1 ±NP sd`1`2√

2
. (17) {–PandS-KLS˝}{–PandS-KLS˝}

Recall that we define the relevant effective operators as ∼ (dΓs)(`2Γ′`1), while those with the (s̄d)
qurak flavour are obtained by hermitean conjugation. The BR can be be readily obtained in direct
analogy with Eq. (12):

BR(K0
L,S → `+1 `

−
2 ) =

τK0
L,S

32π

√
λ

m2
K0

m3
K0f

2
K0

×
[(

1− (m1 +m2)2

m2
K0

) ∣∣∣SL,S`1`2

∣∣∣2 +

(
1− (m1 −m2)2

m2
K0

) ∣∣∣PL,S`1`2

∣∣∣2] (18) {–BR(KLS-¿l1l2)˝}{–BR(KLS-¿l1l2)˝}

LFV decays

Notice that, as far as we neglect the indirect CPV in K0, we have
∣∣∣SL,Seµ

∣∣∣ =
∣∣∣SL,Sµe

∣∣∣ and
∣∣∣PL,Seµ

∣∣∣ =
∣∣∣PL,Sµe

∣∣∣,
which leads to

BR(K0
L,S → e+µ−) = BR(K0

L,S → e−µ+). (19)
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Thus, the prediction for the sum of the two final states is, in the case of K0
L , proportional to

BR(K0
L → e±µ∓) ∝ 2

|N |2

(∣∣∣∣−N ∗S∗sdeµ +NS sdµe√
2

∣∣∣∣2 +

∣∣∣∣N ∗P∗sdeµ +NP sdµe√
2

∣∣∣∣2
)

= |S sdeµ|2 + |S sdµe|2 + |P sdeµ|2 + |P sdµe|2 − 2Re

[
N 2

|N |2
(S sdµeS sdeµ + P sdµeP sdeµ)

]
. (20) {–KL-¿emumue˝}{–KL-¿emumue˝}

Notably enough, this structure differs from that in Eq. (14) by the last term. For K0
S , this last term

simply changes sign.

LF conserving decays and long distance contributions

For `1 = `2 = `, Eq. (18) simplifies to

BR(K0
L,S → `+`−) =

τK0
L,S

β`m
3
K0f

2
K0

32π

[
β2
`

∣∣∣SL,S``

∣∣∣2 +
∣∣∣PL,S``

∣∣∣2] (21)

with β` =
√
λ(m2

K0 ,m
2
` ,m

2
` )/m

2
K0 =

√
1− 4m2

`/m
2
K0 , and the expressions in (17) reduce to

{shortD-S,P-KLS-¿ll}

SL`` = i
√

2 Im (NS sd``) , PL`` =
√

2Re (NP sd``) , (22a) {–shortD-S,P-K0L-¿ll˝}{–shortD-S,P-K0L-¿ll˝}

SK
0
S

`` = −
√

2 Re (NS sd``) , PK
0
S

`` = −i
√

2 Im (NP sd``) . (22b) {–shortD-S,P-K0S-¿ll˝}{–shortD-S,P-K0S-¿ll˝}

For LF conserving decays, the SM brings a long-distance (LD) contribution, consisting in a γγ
intermediate state, which can not be encoded in the effective operators in Eqns. (3).

We will adopt the LD amplitudes from Ref. [2]. Their EFT conventions are summarized here:

and will be denoted by the referencing super-/subscript whenever confusion might arise. For example,

N [2] = 1, ζ [2] = ms and, denoting C
[2]
X − C̃

[2]
X ≡ C

[2]
∆X ,

C
[2]
∆A = +N ∗C∗∆10 sd`` C

[2]
∆S = −N ∗C∗∆S sd`` C

[2]
∆P = +N ∗C∗∆P sd`` . (23)

Cf. Eq. (7) for the signs in the above equation. The LD contributions can be accounted for by the
substituting

|PL,S`` |
2 −→ 2|A[2]

L,S |
2 , |SL,S`` |

2 −→ 2|B[2]
L,S |

2 (24)

where [2] {AB-SL}

A
[2]
S = Im

(
msmK0 C

[2]
∆P +

2mµ

mK0

C
[2]
∆A

)
= − Im (NP sd``) (25a)

B
[2]
S =

2G2
Fm

2
Wm`

π2mK
B`
Sγγ − Re

(
msmK0C

[2]
∆S

)
=

2G2
Fm

2
Wm`

π2mK
B`
Sγγ + Re (NS sd``) (25b)

A
[2]
L =

2G2
Fm

2
Wm`

π2mK
A`Lγγ − Re

(
msmK0C

[2]
∆P +

2mµ

mK0

C
[2]
∆A

)
=

2G2
Fm

2
Wm`

π2mK
A`Lγγ − Re (NP sd``) (25c)

B
[2]
L = Im

(
msmK0C

[2]
∆S

)
= + ImS sd`` (25d)

On each line, the first equality is adopted form [2] while the second step is a translation to our notation.
The whole point of going to such a detailed comparison is to keep track of the relative sign between
the short- and long-distance amplitudes.
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Ref. [2] enumerates the LD contributions for the case ` = µ: {SP˙LD}

2G2
Fm

2
Wmµ

π2mK
Bµ
Sγγ = (−2.65 + 1.14i)× 10−11GeV−2 (26a)

2G2
Fm

2
Wmµ

π2mK
AµLγγ = ± (0.54− 3.96i)× 10−11GeV−2 (26b)

from which the values of BSγγ , ALγγ alone can be easily derived, if desired. Notice that the sign of
the latter is not known.

Flavio

The flavio basis adopts

ζ = ms = ζ [2] , N = N · ξt ≡
(
GFα√

2π

)
· (VtsV ∗td) . (27)

Within this convention, one can cast

BS = N

[
2G2

Fm
2
Wm`

Nπ2mK
B`
Sγγ + Re (ξt S sd``)

]
= N

[
2m`

mK sin2 θw
B`
Sγγ + Re (ξt S sd``)

]
(28) {–flavio-amplitudes-eff˝}{–flavio-amplitudes-eff˝}

and similarly for AL. Concerning the implementation, the weak-eigenstate amplitudes ξt(P,S) qq′``′

from Eqs. (10a) and (10b) are calculated by amplitudes weak eigst, while the amplitudes for K0
L,S ,

normalized as
√

2ξt (P,S)L,S`1`2 , are obtained by amplitudes. The amplitudes LD yield the first term
within the bracket in (28) etc. The effective amplitudes (AL,S , BL,S) in (25), as adopted from [2], are
rephased compared to (22), which is, of course, physically irrelevant. Nevertheless, to comply with
those different conventions, amplitudes eff subtracts the amplitudes from amplitudes LD in the
proposed implementation of flavio.

Note that the current version of flavio uses the numerical values of AµLγγ , B
µ
Sγγ as they follow

from Eqs. (26) also for the electron channel; I don’t know how important the differences are.

3 Time-dependent LFV B decays
{sec:B-time-dep}

Nothing in there yet.
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