
Before you start thinking about the structure of your programs, the frameworks, languages and
paradigms is to understand what problem it is that your project is trying to solve

Talk about a problem you had and how you solved that with code - relatable to other people

Then ask the big questions:
What tech stack am I gonna use-

What database -

What backend structure am I gonna implement-

What is my frontend going to look like-

What are the main components that my project is going to need-

"Often when you're building a web application or an app of any sort you're going to have to do some
type of long running process - the idea behind this app is to have an AI generated starting plan which
you can follow "

Problem
Monday, 2 October 2023 22:10

 New Section 1 Page 1

Main idea overview:

Develop a series of services that enable a fellow programmer to store spontaneous coding
ideas, assign them a category and then retrieve one at random from a particular category
when kickstarting a new personal project

-

Main Services:

Project Service= to create and view project categories (acts like a project catalogue)

Fetch service= can fetch/retrieve a project idea under a certain category

Inventory Service= can check if project from a particular category is available or not

Notification Service= stateless service with no database that sends notifications to users

Whenever a "Retrieve" command is placed, the Fetch Service is going to synchronously
communicate with the Inventory Service to check whether a project idea from the category
requested is available or not

After the inventory has been checked the Fetch Service is going to asynchronously communicate
with the Notification Service to deliver the project skeleton to the coder

Coder's bucket list
Tuesday, 26 September 2023 22:06

 New Section 1 Page 2

Project Service talks to MongoDB
Fetch Service talks to MySQL
Inventory Service talks to MySQL

Solution Architecture
Tuesday, 26 September 2023 22:38

 New Section 1 Page 3

MVC DESIGN PATTERN

It helps organising the code in a scalable and maintainable way -

REPOSITORY

Role= encapsulates the storage, retrieval and search behaviour which emulates a collection of
objects

-

Responsibilities= communicates with the database and performs CRUD operations, acts as
middleman between database and service layer

-

Class annotation (Spring): @Repository -

SERVICE

Role= hosts the business logic -

Responsibilities= Controls the transaction of data between repo and controller, communicates
with other services and repositories

-

Class annotation (Spring): @Service-

CONTROLLER:

Controller= handles incoming HTTP requests, invoking appropriate action and returning the
HTTP response

-

Responsibilities= Interacts with service layer to perform the operations and send back the
response, delegates the business logic responsibility to service layer

-

I.e. intercepts incoming requests, modifies them to the internal structure of the data, sends
the data to the Service layer for further processing

-

Class annotation (Spring): @RestController-

DTO (Data Transfer Object):

Role: Object that caries data between processes - passes data form the client to the server and
vice versa

-

Responsibility: Holds the data, does not contain any business logic- it is used for transferring
data between layers and can be serialized for persistence or message passing

-

Flow of control:

Controller receives the HTTP request and processes it1.
Controller calls appropriate method in Service layer2.
Service layer handles the business logic and may communicate with Repository layer for CRUD
operations

3.

Data retrieved from the database is often put in DTOs and sent back through the layers4.
Controller send the response (usually a DTO back to the client)5.

Model View Controller
Tuesday, 26 September 2023 23:08

 New Section 1 Page 4

What are Microservices?

Basics

A blueprint that improves a codebases' scalability-

Depending on the application it can improve a monolith architecture by breaking down
the codebase into multiple components (can be easier to maintain and manage)

-

Microservices
Tuesday, 26 September 2023 22:22

 New Section 1 Page 5

= application development framework for Java

Spring Framework => Dependency injection container with a couple of convenience layers such as db
access, proxies, Aspect-Oriented Programming, RPC and web mvc framework

Spring Boot = built on top of Spring Framework -> provides an easy way to configure and run web
applications

ApplicationContext - central interface of a Spring framework application that is used for providing
configuration information to the application (ex. Bean factory methods for accessing application
components)

Beans - objects that form the backbone of application - object that is instantiated and managed by
Spring IoC container (Inversion of Control- dependencies are defined without creating them)

Profiles- a way to group and activate a set of configuration with a single profile parameter

Spring Framework
Tuesday, 26 September 2023 22:23

 New Section 1 Page 6

Essential directories:

src = contains all the source code and resources (Java files, configuration files, property files, XML files etc.), as
well as source code and resources for tests

-

target = Maven places the output of the build - compiled bytecode, JAR files, WAR files, documentation etc. -it can
be regenerated by building the project again

-

pom.xml (project object model)= it is an XML file that contains info about the project and configuration details
used by Maven to build the project

-

It contains:
Project Coordinates -

Dependencies-

Plugins-

Properties= contains properties that can be referenced within the POM file-

Profiles= specifies build profiles for different build environments -

Repositories= specifies if Maven should search for dependencies -

Build= build configuration-

Maven
Tuesday, 26 September 2023 22:23

 New Section 1 Page 7

Synch= make an HTTP request to the Fetch Service and then the Fetch Service makes an HTTP
request to the Inventory Service - one service awaits for the others response

Async= files the request but doesn't wait for it - this can be enabled by the event driven
architecture - when fetch performed successfully triggers an event (FetchSuccessEvent)- we can
place this event object as a message inside the Kafka broker and our Notification Service which is the
consumer will consume this message and process this message accordingly

Synchronous and Asynchronous Comm
Tuesday, 26 September 2023 22:37

 New Section 1 Page 8

In order to see how they all work together - we need to dockerize all the services a tool called docker
compose

Docker
Tuesday, 26 September 2023 22:39

 New Section 1 Page 9

In a cloud environment there can't be dedicated IP addresses

There can be multiple instances of the same microservice and each instance can have a dynamic IP
address- how will an external microservice that wishes to communicate with the developed
microservice know which of those instances to call

Service Discovery Pattern entails using a server (called Discovery Server)- which stores all the
information about our microservices- the service name as well as all the IP addresses of the
instances

When using the discovery server the microservices will at first try to register with the Discovery
Server by making a request. Upon receiving these requests the Discovery server will add the entries
of these services into its local copy (registry).

Example

Microservice 1 and 2 have registered all their instances with the Discovery Server. When registering
an instance the client receives a copy of the registry to be stored- if for some reason the Discovery
server is not available the client will have its own local copy.

M1 will first make a call to the Discovery Server asking where to find M2. The Discovery Server will
then reply with the IP address of M2 and then M1 will know where to find M2.

This way one ca avoid hardcoding the url of the M2 service.

Service Discovery
Friday, 29 September 2023 20:32

 New Section 1 Page 10

Before implementing the API gateway:
If user wants to access one of the microservices it tries to call an arbitrary
port where the microservice is running on- this would be fine in a local dev
environment but would not work in a production code

-

Microservices can have multiple instances and
application can run on different ports- we can't hardcode
the ports

Solution is to introduce a component at the start of the architectural landscape called an
API gateway which is responsible for routing the client requests to the corresponding
services

API gateway acts like an entry point- user calls API gateway without based on Request
Headers - the gateway can be configured to do the routing accordingly

API gateway can address some additional concerns- Authentication, Security, Load
Balancing, SSL Termination

Authentication= if you want to make sure that all requests are authenticated you can
configure that in API gateway - it can contact the authorisation server (if that is the
authorisation method of choice)

Load balancer= if you have multiple instances of microservices and the user makes a
request to the product service - it will choose the instance to fulfil it and it will send the
response back to the user

SSL termination= if user makes a call to an external service-HTTPS scheme by following
TLS protocol- so if user calls the API gateway from the outside with the TLS protocol, the
API gateway which is already part of the microservices network doesn't require HTTPS
when calling the other microservices (internal communication) so it can perform HTTP
communication- SSL connection will be terminated at the API gateway level

API Gateway
Sunday, 1 October 2023 14:21

 New Section 1 Page 11

Used when we want to have resilient communication between our services

Synchronous communication can introduce problems
The called service may be unavailable -

Remote service calls can be slow - if something goes wrong in the called service- a
performance issue or a database issue- that can slow your API calls

-

When encountering these issue we want a resilient system- we don't want our request to terminate
abruptly

Circuit breaker pattern is a set of states:

By default if communication between services is working fine - CIRCUIT BREAKER CLOSED -

If called microservice has an issue - CIRCUIT BREAKER OPEN (communication will not be
allowed for a certain amount of time)- during this period it can either throw an error message
or it can execute some fallback logic

-

After a certain amount of time of CB being in OPEN state- the state will change to HALF OPEN-
it will check if requests are going through or not and change state accordingly

-

Resilience4J can help with implementation- alternative to Netflix Hystrix

Circuit Breaker
Sunday, 1 October 2023 20:54

 New Section 1 Page 12

How can we track down issue- one solution is logs but in a production ready application where
services receive thousands of logs it is not plausible to understand these problems through logs

Distributed tracing helps us track a request from start to finish- if request failed at any point of time
wwe can understand why it failed

User wishes to fetch an idea from his/her/their stash- this request first reaches the API gateway and
after that the API gateway will proxy the request to the Fetch service makes a request to the
Inventory service

To be able to track the request all the way to the Inventory service we need some kind of
mechanism to trace it - traceID and spanID

traceID= unique identifier which identifies the request that comes into the system

spanID= the number of trips the request is going to take inside the system - for each "stop" there is a
unique identifier

By having both traces and spans we can trace the whole request lifecycle in our services and we can
also understand if at all the service is responding slowly or if it's having some performance issues

For a spring project- use Spring Cloud Sleuth = distributed tracing framework to generate the span id
and trace id whenever we receive a request

In order to visualize the journey of the request- use Zipkin

Because a circuit breaker is used the request as a whole is fragmented - so different thread ids for
what is seemingly a single request

Distributed Tracing
Tuesday, 3 October 2023 20:06

 New Section 1 Page 13

When do we do it?1.

Class A
Class B

Upon creation of class A object (i.e. in the constructor) we instantiate an object of class B.

Why do we do it?2.

When testing the application if we were to create an instance of class A in a test, it would also create
an instance of class B. If a class B method would go to a DB to get some data and then retrieve - if
the db is down then we couldn't test that. This can make our code very difficult to test.

Mockito- which allows us to mock objects- we wouldn't be able to use it to mock the class A object
in this format.

We are also creating a lot of objects which are going to be stored in the heap and you don't
necessarily know when they will be garbage collected.

ADDTIONALLY- we might want the class B objects to be Singletons.

How do we do it?3.

We rely on other frameworks for object creation instead of creating them ourselves (using "new"
keyword/operator).

Example of frameworks: Spring, Guice, Dagger.

The frameworks take care of managing these objects and allow us to inject them in our code.

In Spring if we annotate a class as @Service the object is automatically created as a Singleton. This
means that if we choose to inject it in multiple classes it would simply use the same instance.

More on the terminology and additional aspects of Dependency Injection4.

Dependency = another object that your class needs to function

Injection = dependency is pushed into the class form the outside (i.e. you shouldn’t instantiate the
dependency using the "new" operator form inside of the class) - you treat the dependency as a
constructor parameter

Dependency injection decouples your classes construction from the construction of its
dependencies.

Dependency Inversion Principle= code should depend upon abstractions

Dependency Injection
Sunday, 5 November 2023 14:30

 New Section 1 Page 14

It makes the code cleaner, easier to modify and reuse.

 New Section 1 Page 15

TDD= software paradigm
Requirements are reworked into specific test cases to ensure full functionality - you write the tests
first and then code in the requirement

Unit testing
= used to verify the smallest piece of testable software

It is important to constantly question the value a unit test provides versus the cost it has in
maintenance or the amount it constrains your implementation.

Component testing
= used to verify that the different parts of a service work as intended by isolating third-party code
and other services

We use mocks to replace external services and in memory db to replace external datastore

Components in microservices are the services themselves

Integration testing

= used to verify communication paths between services (mainly used to catch interface defects) or
data stores

Ex.
Gateway Testing - verifies if the interface to the external microservices is fully functional
Persistence Testing - verifies if the external datastore works (if you can connect to it, retrieve/ save
the data, and if the schema returned is the same as what we expect)

JUNIT- allows us to do automated testing (rather than using Postman or the console)

H2- in memory Java db

Mockito - testing framework used for creation of mock objects

Mock objects- objects that mimic the behaviour of real objects in controlled ways (integrates well
with Spring)

JsonPath - query language for JSON and lets you extract specific bits of a JSON document (use it to
verify responses from REST API)

AssertJ - assertion library for assert statements (tests a predicate if it's true or false based on the
output of program)

Hamcrest - assertion framework for writing "matcher" objects

WireMock - mimics the behavior of an HTTP API and capture the HTTP requests sent to that API -
allows us to stay productive when an API we depend on doesn't exist or isn't complete

Testcontainers- Java library that supports Junit tests provides throwaway instances of anything that

Testing (TDD)
Monday, 18 December 2023 13:43

 New Section 1 Page 16

Testcontainers- Java library that supports Junit tests provides throwaway instances of anything that
can be run in a docker container

 New Section 1 Page 17

Spring Boot App will make use of the Actuator endpoint which will expose all the metrics of our
application

Prometheus software will poll the SBA for every X seconds and store it inside the in-memory db

Prometheus will act like a datasource for Grafana which provides a UI dashboard- Grafana also polls
Prometheus

Grafana and Prometheus
Sunday, 28 January 2024 15:49

 New Section 1 Page 18

