
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com

Cisco Systems, Inc.
Corporate Headquarters

Tel:
800 553-NETS (6387)
408 526-4000

Fax: 408 526-4100

Cisco IOS Programmer’s Guide/
Architecture Reference

Software Release 12.0
Fifth Edition
February 1999

Text Part Number: 78-2051-05



THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT 
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE 
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR 
APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION 
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE T
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A 
digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the 
equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used 
in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is 
likely to cause harmful interference, in which case users will be required to correct the interference at their own expense. 

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency 
energy. If it is not installed in accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This equipment 
has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These 
specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that 
interference will not occur in a particular installation. 

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or 
Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference 
to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment 
or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of 
the following measures:

• Turn the television or radio antenna until the interference stops.

• Move the equipment to one side or the other of the television or radio.

• Move the equipment farther away from the television or radio.

• Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio 
are on circuits controlled by different circuit breakers or fuses.) 

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product. 

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of 
UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of Ca lifornia. 

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE 
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED 
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL 
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR 
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Access Registrar, AccessPath, Any to Any, AtmDirector, CCDA, CCDE, CCDP, CCIE, CCNA, CCNP, CCSI, CD-PAC, the Cisco logo, Cisco Certified 
Internetwork Expert logo, CiscoLink, the Cisco Management Connection logo, the Cisco NetWorks logo, the Cisco Powered Network logo, Cisco Systems 
Capital, the Cisco Systems Capital logo, Cisco Systems Networking Academy, the Cisco Technologies logo, ControlStream, Fast Step, FireRunner, 
Gigastack, IGX, JumpStart, Kernel Proxy, MGX, Natural Network Viewer, NetSonar, Network Registrar, Packet, PIX, Point and Click Internetworking, 
Policy Builder, Precept, RouteStream, Secure Script, Serviceway, SlideCast, SMARTnet, StreamView, The Cell, TrafficDirector, TransPath, ViewRunner, 
VirtualStream, Visionway, VlanDirector, Workgroup Director, and Workgroup Stack are trademarks; Changing the Way We Work, Live, Play, and Learn, 
Empowering the Internet Generation, The Internet Economy, and The New Internet Economy are service marks; and Asist, BPX, Catalyst, Cisco, Cisco 
IOS, the Cisco IOS logo, Cisco Systems, the Cisco Systems logo, the Cisco Systems Cisco Press logo, Enterprise/Solver, EtherChannel, EtherSwitch, 
FastHub, FastLink, FastPAD, FastSwitch, IOS, IP/TV, IPX, LightStream, LightSwitch, MICA, NetRanger, Registrar, StrataView Plus, Stratm, Telerouter, 
and VCO are registered trademarks of Cisco Systems, Inc. in the U.S. and certain other countries. All other trademarks mentioned in this document are the 
property of their respective owners. (9903R)

Cisco IOS Programmer’s Guide/Architecture Reference
Fifth Edition February 1999
Release 12.0



Fourth Edition December 1997, Release 11.3
Third Edition September 1996
Second Edition February 1996
First Edition July 1995

Copyright © 1995-2000, Cisco Systems, Inc.
All rights reserved. Printed in USA.
9801R

Writers/Reviewers: Scott Mackie, David Hampton, David Stine, David Katz, Rob Widmer, Bob Albrightson, Steven Lin, Bob Stewart, Kevin Herbert, 
Francis Bruneault, Paul Traina, Mani Bandi, Eric Decker, Srihari Ramachandra, Greg Stovall, Steve Preissman, Sandra Durham, Andr ew McRae, Jenny 
Yuan, Aviva Garrett, Deborah G. Bennett, John Walker, Kelly Morse Johnson, William May, Tim Iverson, Ken Moberg, Kristen Marie Robins, Susan 
Purcell
Editors: Jane Phillips, Betsy Fitch
Production: Brenda DePaolis





Change History
Changes in the Fifth Edition (February 1999)
The following changes have been made in the fifth edition of this manual. These changes correspond 
to Cisco IOS Release 12.0. 

Chapter Change

Overview New section: “Scalability Changes.” (May 1998)

File System New chapter. (June 1998)

Scheduler Added the following new sections: “Important Coding Guidelines,” “if_onesec Registry 
Removed,” “Event Driven Route Adjustment Message,” “API for Keepalive and Other 
Periodic Intervals.” and “FYI: Backup System Changes.” (June 1998)

Writing, Testing, and Publishing 
MIBs

Appended Cisco IOS Technical Note #2, Testing and Publishing a MIB, to the end of this 
chapter. Changed the title from “Writing MIBs” to “Writing, Testing, and Publishing MIBs.” 
(May 1998)

Interfaces and Drivers In the section, “Scalability Changes,” added “Modular Interface Naming and Numbering.” 
(December 1997)

Incorporated Cisco IOS Technical Note #6, “Using IDB Subblocks” in the section “IDB 
Terminology” (August 1998). Incorporated Cisco IOS Technical Note #7, “Subblock and VFT 
Infrastructure Changes” in the section “Subblock and VFT Support in Release 12.0” (January 
1999).

FYI: See the new chapter, “Extensible Plugin Driver API” in Cisco IOS Device Drivers: 
Fundamentals of Architecture and Code. (August 1998)

Memory Management New section, “Virtual Memory.” (September 1998) Additions to table describing the Memory 
Pool Classes. (Novermber 1998)

System Initialization New section: “Enhanced High System Availability (EHSA).” (September 1998)

Debugging and Error Logging In the section “Configure the Cisco IOS Software to Generate a Core File,” added information 
about two new commands. One writes core files to flash: exception flash. One saves 
information across reboots: memory sanity. (August 1998) 

Command-Line Parser In the section “Process “No” Commands,” added information that commands must be 
explicitly added to the Config tree for the “no” prefix to be recognized. (September 1999)

Part 7: Other Useful Information New part. Contains the 4 new chapters listed below. (October 1998)

Scalable Process Implementation New chapter. Was Cisco IOS Technical Note #5. (October 1998)

Backup System New chapter. (August 1998)

Verifying Cisco IOS Modular 
Images

New chapter. Was Cisco IOS Technical Note #4. (October 1998)

Writing DDTS Release-Note 
Enclosures

New chapter. Was Cisco IOS Technical Note #3. (October 1998)
 Change History v



Note The optional interrupt service routine (ISR) interface is not documented in this manual. See the 
functional specification, ENG-17683.

Changes in the Fourth Edition (December 1997)
The following changes have been made in the fourth edition of the Cisco IOS Programmer’
Guide/Architecture Reference. These changes correspond to Cisco IOS Release 11.3.

Chapter Change

Socket Interface New chapter. (November 1996)

Revised the table of functions for new and revised functions, and to add macros. For details on 
changes to APIs, see the preface to the Cisco IOS API Reference. (November 1997)

Timer Services A paragraph was added at the end of the section “Operation of Managed Timers.” 
(November 1996)

A paragraph was added to the end of the section “Initialize Managed Timers.” 
(November 1996)

In the section “Example: Managed Timers,” the code in the example was changed. 
(November 1996)

A paragraph was added to the sections "Guidelines for Allocating Memory "on page15 and 
"Stop a Managed Timer "on page 1 2 . (November 1997)

Strings and Character Output The %CC format descriptor was added to the section “Format Time Strings.” 
(November 1996)

In Table 16-4, a typographical error was fixed in the third row, first column. The correct format 
codes are TD and Td, not TD and Tc. (November 1996)

Writing, Testing, and Publishing 
MIBs

Updated RFCs to the current RFC numbers. (January 1997)

In the”Textual Conventions” section, added new textual conventions. (January 1997)

Rewrote the “Establish a New MIB” section, changing the procedure from CVS to ClearCase. 
(January 1997)

Rewrote the “Compile a MIB” section. This section includes documentation for the new MIB 
compiler. (January 1997)

Writing Drivers That Interface 
with the Cisco I OS Software

Removed this obsolete chapter. See instead the new manual on the subject: “Cisco IOS 
Device Drivers: Fundamentals of Architecture and Code.”

Interfaces and Drivers In the section “Scalability Changes,” added information about using subblocks and lists to 
improve the scalability of features that need to access IDBs. (December 1997)

In the section “Scalability Changes,” documented the change of MAX_INTERFACES from a 
global to a per-platform value (Maximum Interfaces Constant No Longer a 
Global Value). Provided example of the new way to define a structure and allocate 
space. (December 1997)

Interprocess Communications 
(IPC) Services

Corrected and expanded the information in this chapter. Change bars indicate new or revised 
material. (December 1997)

Registries and Services Made clarifications to the descriptions of the roles of the registry files.

Added subsections on 11.3 compiler changes and their effects on the registry files.

Added a section on the placement of xxx_registry.o in makefiles,

Added a section on the ‘show registry’ support.

(December 1997)

IF-MIB New chapter. (December 1997)
vi Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Changes in the Third Edition (September 1996)
The following changes have been made in the third edition of the Cisco Internetwork Operating 
System Programmer’s Guide. These changes correspond to Cisco IOS Release 11.2. 

Older Version of the Scheduler Expanded information about the obsolete function cfork() to clarify how it set the priority of 
the process that was being created. (December 1997)

Writing, Testing, and Publishing 
MIBs

Changed this chapter from an appendix into a chapter, “Writing, Testing, and Publishing 
MIBs.” (December 1997)

Part 6 New part. Includes the chapters “Command-Line Parser,” “Writing, Testing, and Publishing 
MIBs,” and “IF-MIB.” (December 1997)

Title Added the phrase “Architecture Reference” to the title: Cisco IOS Programmer’
Guide/Architecture Reference. (December 1997)

Chapter Change

Scheduler The section “Change the Value of a Watched Boolean” has been changed to the following:

Set the Value of a Watched Boolean

Setting the value of a managed boolean to TRUE moves all processes watching this variable 
onto their appropriate processor ready queue if they are not already there. To do this, use the 
process_set_boolean()  function: 

void process_set_boolean(watched_boolean * wb, boolean value); 

Once the process has been processed, the value of the managed boolean should be set back to 
FALSE.

Memory Management In the section “List of Region Classes,” the REGION_CLASS_PCIMEM  region class has been 
added. This class is for PCI bus memory, which visible to all devices on the PCI buses in a 
platform. It is an optional class.

In the section “List of Memory Pool Classes,” the MEMPOOL_CLASS_PCIMEM  memory class 
has been added. This class is for PCI memory, which is present on some platforms. It is an 
optional class.

The section “Lock and Return Memory” has been added:

When there are multiple users of a block of memory (such as multiple processes), it often 
becomes necessary to lock a block so that it is not freed until every user has signalled that they 
are finished with it. Each block of memory has a reference count associated with it for this 
purpose. When a block is allocated, it has a reference count (or refcount) of 1. To increment 
the refcount for a block of memory, use themem_lock() function:

void mem_lock(void *memory);

To attempt to return a block of memory, use the free() function. All allocated memory can 
be returned using free().

void free(void *memory);

If free() is called with a block that has a refcount of 1, the block is returned to the memory 
pool from which it was created. If the refcount is greater than 1, free() decrements 
refcount and returns without doing anything further to the memory block. This mechanism 
allows any of the potential users of the memory block to be responsible for returning it without 
risking a memory leak. In this regard, free() is the logical equivalent of mem_unlock() 
when using locked blocks of memory.

The section “Example: Lock Memory” has been added.

Chapter Change
 Change History vii



The default threshold for the MEMPOOL_CLASS_LOCAL  pool class in the section “Set the 
Low-Memory Threshold” was incorrect. The section was corrected to the following:

The low-memory threshold is triggered when the amount of free memory in a pool drops 
below a specified amount. The default threshold for the MEMPOOL_CLASS_LOCAL  memory 
pool class is 96 KB. Other memory pool classes have no default thresholds. To set or change 
the low-memory threshold, use the mempool_set_fragment_threshold()  function:

void mempool_set_fragment_threshold(mempool_class class, ulong size); 

The default threshold for the MEMPOOL_CLASS_LOCAL  pool class in the section “Set the 
Fragment Threshold” was incorrect. The section was corrected to the following:

The fragment threshold is triggered when the size of the largest block free in a memory pool is 
smaller than a specified amount. The default threshold for the MEMPOOL_CLASS_LOCAL  
memory pool class is 32 KB. Other memory pool classes have no default thresholds. To set or 
change the fragment threshold, call the mempool_set_low_threshold()  function:

void mempool_set_low_threshold(mempool_class class, ulong size); 

In the section “Create a Memory Chunk,” a description of the chunk pool flags was added.

The section “Lock a Memory Chunk” was added:

If the chunk pool was created with the CHUNK_FLAGS_LOCKABLE  flag set, every element in the 
chunk pool has a reference count associated with it that can be incremented by the 
chunk_lock() function:

boolean chunk_lock(chunk_type *chunk, void*element);

The locking of chunk elements with chunk_lock() is exactly analogous to the mem_lock() 
function for data blocks allocated viamalloc(), and the same examples and warnings apply.

Platform-Specific Support In the section “Platform-Specific Strings,” the strings 
PLATFORM_STRING_HARDWARE_REWORK  and PLATFORM_STRING_LAST_RESET  have been 
added.

In the section “Platform-Specific Values,” the value PLATFORM_VALUE_LOG_BUFFER_SIZE  
has been added.

ANSI C Library New chapter. The “ANSI C Library” chapter in the Cisco IOS API Reference describes the 
ANSI C library functions supported by the Cisco IOS software.

Subsystems The subsystem class, SUBSYS_CLASS_REGISTR , has been added.

Registries and Services Major portions of the registries sections have been rewritten. The registry_create()  
function has been added.

Timer Services The text in the section “Stop a Managed Timer” has been modified to the following:

To stop a managed timer, use the mgd_timer_stop()  function. This function can be used for 
both leaf and parent timers. If the timer is a parent, this function recursively stops all the 
children of this parent. This is useful for such operations as shutting down a process, because it 
is not necessary to find all the running timers. This function can be called regardless of 
whether the timer is already running, and it can be called from interrupt routines. If the timer is 
not running, this function does nothing. 

void mgd_timer_stop(mgd_timer *timer);

A stopped timer is completely unlinked from the managed timer tree, so it is safe to free the 
memory containing the timer

Debugging and Error Logging The section “Example: Trace Buffer Leaks” was added.

Chapter Change
viii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Changes in the Second Edition (February 1996)
The following changes have been made in the second edition of the Cisco Internetwork Operating 
System Programmer’s Guide. These changes correspond to Cisco IOS Release 11.1.

Binary Trees In the section “Initialize a Wrapped AVL Tree,” the syntax of the wavl_init() function was 
corrected to the following:

To initialize a WAVL tree, use the wavl_init() function. In this function, you pass the 
wavl_handle you want to initialize, the number of AVL trees you want under this wrapped 
AVL tree, and a comparison routing for each of the AVL trees. You must call this function 
before calling any other wrapped AVL function. 

boolean wavl_init(wavl_handle *handle, 
void *(*findblock)(wavl_node_type *), ...); 

Writing Cisco IOS Code: Style 
Issues

New chapter.

CPU Profiling New chapter.

Chapter Change

System Initialization New chapter.

Scheduler Descriptions of new process queueing functions were added in the “Enqueue Data for a 
Process” section.

The “Manage Sets of Scheduler Objects” section was added to describe the new functions 
process_pop_event_list()  and process_push_event_list() .

Pools, Buffers, and Particles Chapter was renamed from “Buffer Management.”

Description of Particles and Particle Pools was added.

Some functions were renamed.

Interfaces and Drivers Added inline functions in the section “Manipulate IDB Subblocks.” 

Added the section “Use IDB Helper Functions.” 

Interprocess Communications 
(IPC) Services

New chapter.

Subsystems Added the section “Tips for Creating a Subsystem.”

Timer Services Added 64-bit timers.

Strings and Character Output Updated the timestamp print() format codes to add support for 64-bit timers.

Debugging and Error Logging New chapter.

Binary Trees Expanded the section “AVL Trees.”

Added the section “Manipulate Radix Trees.”

Switching New chapter.

Writing Drivers That Interface 
with the Cisco IOS Software

New chapter.

Porting Cisco IOS Software to a 
New Platform

New chapter.

Writing, Testing, and Publishing 
MIBs

New chapter.

Cisco IOS Software Organization New chapter.

Glossary New chapter.

Chapter Change
 Change History ix



x Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL

 C O N T E N T S  C O N T E N T S
Change History

Changes in the Fifth Edition (February 1999) v

Changes in the Fourth Edition (December 1997) vi

Changes in the Third Edition (September 1996) vii

Changes in the Second Edition (February 1996) ix

Figures xxxvii

Tables xxxix

About This Manual xliii

Document Objectives xliii

Audience xliii

Document Organization xliii

Document Conventions xlv

PART 1 Overview

Chapter 1 Overview 1-1

1.1 Cisco IOS Software Components 1 -1

1.2 Scalability Chan g es1-1
1.2.1 Subblock and Lists 1-1
1.2.2 Extensible Plugin Driver API 1 -2
1.2.3 Event-Driven Scheduling1- 2
1.2.4 Other Scalability Change s1-2

1.3 Kernel Service s1-2
1.3.1 Scheduler1- 2
1.3.2 Memory Management 1-3
1.3.3 Pools, Buffers, and Particles1- 3
1.3.4 Interfaces and Drive rs1-4
1.3.5 Platform-Specific Suppor t1-4
1.3.6 Socket Interfac e1-4
1.3.7 Interprocess Communications (IPC) Servic es1-4
1.3.8 ANSI C Librar y1-4

1.4 Kernel Support Services 1 -4
1.4.1 Subsystems 1 -5
1.4.2 Registries and Services 1 -5
1.4.3 Timer Services and Time-of-Day Services 1-5
1.4.4 Strings and Character Output 1-6
1.4.5 Exception Handl ing1-6
1.4.6 Debugging and Error Logging1- 6

1.5 Network Services 1 -6
1.5.1 Binary Tree s1-6
1.5.2 Queues and List s1-7
Contents xi



 CISCO CONFIDENTIAL
1.5.3 Switching 1 -7

1.6 Hardware-Specific Desig n1-7
1.6.1 Porting Cisco IOS Software to a New P latform 1 -7

1.7 Network Service and Protocols 1 -7

1.8 Management Services 1-9
1.8.1 Command-Line Parser 1 -9
1.8.2 Writing, Testing, and Publishing MIBs 1-9
1.8.3 IF-MIB 1-9

Chapter 2 System Initialization 2-1

2.1 Overview: System Initializat ion2-1

2.2 Basic Initializa tion2-1
2.2.1 Initialization by the RO M Monitor2-1
2.2.2 Bootstrap a Cisco IOS Imag e2-2

2.2.2.1 Bootstrap a Cisco IOS Image from RO M2-2
2.2.2.2 Bootstrap a Cisco IOS Image from a Network 2-2
2.2.2.3 Bootstrap a Cisco IOS Image from Flash Memor y2-3

2.2.3 Allow the Cisco IOS Image to Take Control of the Platform 2 -3
2.2.4 Fundamental Initializat ion2-4

2.3 Cisco IOS Initialization Proce ss2-6

2.4 Enhanced High System Availability (EHSA )2-7

2.5 Overview 2-7
2.5.1 Master-Slave Communications 2-7
2.5.2 Health Monitoring 2-7
2.5.3 Slave Access and Information Requirements 2 -8

2.5.3.1 File System 2-8
2.5.3.2 Boot Parameters 2-8
2.5.3.3 Time 2-8
2.5.3.4 Future Projects 2-9
2.5.3.5 Version Compatibility 2-9
2.5.3.6 Auto Sync 2-9
2.5.3.7 Slave Console 2-10
2.5.3.8 Slave Message Logging on Master 2-10
2.5.3.9 Seamless Software Upgrade s2-10
2.5.3.10 Mac Addresses 2-10

2.5.4 Basic Flow and Operation 2-10
2.5.4.1 Basic Slave Operation 2-10
2.5.4.2 Initialization 2-11
2.5.4.3 Interaction with the Boot Loader Image 2-11

2.6 Implementation Guide 2-11
2.6.1 Initializing EHSA 2-12

2.6.1.1 SUBSYS_CLASS_EHSA 2-13
2.6.2 EHSA APIs 2-13

2.6.2.1 Actions on Status -State Transitions 2-14
2.6.2.2 Using ehsa_event() to Trigger State Transitions 2-14

2.6.3 Examples 2-15
xii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
2.6.3.1 IPC Setup 2-16
2.6.3.2 Determining Primary/Secondary Status 2-16
2.6.3.3 Platform Initialization of EHSA Information and Vectors 2 -17

2.6.4 The Secondary Background Proces s2-17
2.6.5 The Primary Background Proces s2-17
2.6.6 Changes in the Initialization Sequence 2 -18

2.7 Common EHSA CLI 2-19
2.7.1 Platforms Currently Represented 2-20
2.7.2 General Redundancy (EHSA) CLI Syntax 2-20

2.7.2.1 Redundancy Configuration 2-20
2.7.2.2 Redundancy Display 2-20
2.7.2.3 Redundancy Operations 2-20

2.7.3 Santa (6400) Redundancy CLI 2-21

2.8 EHSA Crash Handlin g2-21
2.8.1 Backgro und2-21
2.8.2 What happens when a Primary crashes? 2 -22
2.8.3 What happens when a Secondary crashes?2- 23
2.8.4 Summary of Routines and Code Addit ions2-23

PART 2 Kernel Services

Chapter 3 Scheduler 3-1

3.1 Scalability Changes 3 -1
3.1.1 Important Coding Guidelines 3-1
3.1.2 if_onesec Registry Remov ed3-2
3.1.3 Event Driven Route Adjustment Message 3 -3
3.1.4 API for Keepalive and Other Periodic Interva ls3-3

3.1.4.1 New Implementatio n3-4
3.1.4.2 Setting the Periodic Interval 3-5
3.1.4.3 Setting Keepalive Frames 3-6
3.1.4.4 Hardware IDB Field Name Changes 3 -6

3.1.5 FYI: Backup System Changes 3 -6

3.2 Processes: Overview 3-6
3.2.1 How a Process Is Create d3-7
3.2.2 How a Process Stops 3-7
3.2.3 How the Scheduler Executes a Process 3-7
3.2.4 Process States 3-7
3.2.5 Scheduler Messages3- 8

3.3 Queues and Process Priorit ies3-8
3.3.1 Scheduler Queues3- 8

3.3.1.1 Ready Queu es3-8
3.3.1.2 Idle Queue 3-9
3.3.1.3 Dead Queu e3-9
3.3.1.4 Moving Processes between Queue s3-9

3.3.2 Process Prioriti es3-9
3.3.3 Operation of Scheduler Queues3-10

3.4 Manage Process es3-12
Contents xiii



 CISCO CONFIDENTIAL
3.4.1 Create a Proces s3-12
3.4.1.1 Create a Process: Exampl e3-12

3.4.2 Enqueue Data for a Proces s3-12
3.4.3 Dequeue Data from a Process 3-13
3.4.4 Register a Process for Notification on a Time r3-13
3.4.5 Set and Retrieve Information about a Process3-13
3.4.6 Send a Message to a Process 3 -14
3.4.7 Retrieve Messages for a Proces s3-14
3.4.8 Determine Whether a Process Exist s3-14
3.4.9 Suspend a Process 3-14
3.4.10 Wake Up a Proces s3-15
3.4.11 Delay a Proces s3-16

3.4.11.1 Delay a Process: Exampl e3-16
3.4.12 Destroy a Proce ss3-16

3.5 Scheduler Objects: Overview 3 -16

3.6 Manage Queues 3-17
3.6.1 Queue: Definiti on3-17
3.6.2 Create a Watched Queu e3-17
3.6.3 Modify the Queue Minor Type 3 -17
3.6.4 Register a Process for Notification on a Watched Queu e3-17
3.6.5 Enqueue an Item onto a Watched Queue 3-17
3.6.6 Dequeue an Item from a Watched Queue 3-18
3.6.7 Locate an Item on the Qu eue3-18
3.6.8 Determine the Size of a Watched Queu e3-18
3.6.9 Resize a Watched Que ue3-18
3.6.10 Determine Whether a Queue is Full or Empt y3-18
3.6.11 Delete a Watched Queu e3-18

3.7 Manage Boolea ns3-19
3.7.1 Boolean: Definit ion3-19
3.7.2 Create a Watched Bool ean3-19
3.7.3 Modify the Boolean Minor Type 3 -19
3.7.4 Set the Value of a Watched Boolean 3-19
3.7.5 Retrieve the Value of a Watched Boolean 3-19
3.7.6 Register a Process for Notification on a Watched Boolea n3-19
3.7.7 Delete a Watched Bool ean3-20

3.8 Manage Semaphores3- 20
3.8.1 Semaphore: Definition 3 -20
3.8.2 Create a Watched Semaphore 3-20
3.8.3 Modify the Semaphore Minor Type3-20
3.8.4 Lock and Unlock a Semaphore3- 20
3.8.5 Register a Process for Notification on a Watched Semaphor e3-21
3.8.6 Delete a Watched Semaphore 3-21

3.9 Manage Bit Fields 3-21
3.9.1 Bit Fields: Definiti on3-21
3.9.2 Create a Watched Bit Fiel d3-21
3.9.3 Modify the Bit Field Minor Type3- 22
3.9.4 Register a Process for Notification on a Watched Bit Fie ld3-22
3.9.5 Retrieve the Value of a Watched Bit Fiel d3-22
xiv Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
3.9.6 Set Bits in a Watched Bit Fiel d3-22
3.9.7 Clear Bits in a Watched Bit Fie ld3-22
3.9.8 Delete a Watched Bit Fiel d3-22

3.10 Manage Sets of Scheduler Objects3- 23

3.11 Scheduler: Example Code 3 -23

Chapter 4 Memory Management 4 -1

4.1 Overview: Memory Management 4 -1
4.1.1 Regions and the Region Manager4-1
4.1.2 Memory Pools, Memory Pool Manager, and Free Lists 4-1
4.1.3 Chunk Manager 4-1
4.1.4 Relationship between Regions, Memory Pools, and Chunks 4 -2

4.2 Regions 4 -2
4.2.1 Regions: Definition 4-2
4.2.2 Region Classes: Definitio n4-3
4.2.3 Region Hierarchies: Definitio n4-3
4.2.4 Create a Regio n4-4

4.2.4.1 Create a Region: Example 4-4
4.2.5 Set a Region’s Class 4-4

4.2.5.1 List of Region Classes 4-5
4.2.6 Set Media Access Attribute s4-5

4.2.6.1 List of Media Access Attribute s4-6
4.2.6.2 Example: Media Access Attribut es4-6

4.2.7 Establish Region Hierarchy 4-6
4.2.7.1 Region Hierarchy Types4-6
4.2.7.2 Region Hierarchy Example4- 7

4.2.8 Establish an Alias Region 4-7
4.2.8.1 Example: Establish an Alias Region 4-7

4.2.9 Set Inheritance Attributes 4 -8
4.2.9.1 List of Region Inheritance Flags 4-8

4.2.10 Search through Memory Regions 4-8
4.2.10.1 Example: Search through Memory Regions by Address4-9
4.2.10.2 Example: Search through Memory Regions by All Attributes4-9

4.2.11 Determine Whether a Region Class Exists 4 -9
4.2.12 Determine a Region’s Si ze4-9

4.2.12.1 Example: Determine a Region’s Si ze4-10
4.2.13 Retrieve a Region’s Attributes 4 -10

4.3 Memory Pools 4 -11
4.3.1 Overview: Memory Pools4- 11
4.3.2 Free Lists: Overvie w4-11
4.3.3 Create a Memory Pool 4-12

4.3.3.1 Example: Create a Memory Pool 4-12
4.3.4 Add Regions to a Memory Poo l4-12
4.3.5 Set a Memory Pool’s Class4- 12

4.3.5.1 Mandatory Memory Pool Classes4- 12
4.3.5.2 Aliasable Memory Pool Classe s4-13
4.3.5.3 List of Memory Pool Classe s4-13

4.3.6 Alias Memory Pool s4-13
Contents xv



 CISCO CONFIDENTIAL
4.3.6.1 Example: Alias Memory Pools 4 -13
4.3.7 Create Alternate Memory Pools 4 -14

4.3.7.1 Example: Create Alternate Memory Pools4- 14
4.3.8 Allocate Memor y4-14

4.3.8.1 Allocate Unaligned Memor y4-14
4.3.8.2 Allocate Aligned Memo ry4-14
4.3.8.3 Comparison of Memory Allocation Functions 4-15
4.3.8.4 Guidelines for Allocating Memo ry4-15
4.3.8.5 Example: Allocate Memor y4-17

4.3.9 Return Memory 4-17
4.3.10 Lock and Return Memory 4 -17

4.3.10.1 Example: Lock Memory 4-17
4.3.11 Add Free List Size s4-18

4.3.11.1 Example: Add Free List Size s4-19
4.3.12 Specify Low-Memory Actions 4-19

4.3.12.1 Set the Low-Memory Threshol d4-19
4.3.12.2 Set the Fragment Threshol d4-19
4.3.12.3 Determine Whether Memory Is Low 4-19

4.3.13 Search through Memory Pools4- 20
4.3.13.1 Example: Search through Memory Pools by Memory Pool Address4- 20
4.3.13.2 Example: Search through Memory Pools by Memory Pool Class4-2 0

4.3.14 Retrieve Statistics about a Memory Pool 4-20

4.4 Chunk Manager 4-20
4.4.1 Overview: Chunk Manager4- 20
4.4.2 Guidelines for Using the Chunk Manager 4 -21
4.4.3 Create a Memory Chunk 4-21

4.4.3.1 Example: Create a Memory Chunk 4-22
4.4.4 Allocate and Return a Memory Chunk Element 4 -22

4.4.4.1 Example: Allocate a Memory Chun k4-22
4.4.5 Lock a Memory Chunk 4-22
4.4.6 Destroy a Memory Chu n k4-23

4.5 Memory Management Examples 4-23
4.5.1 Determine Amount of Memory Available 4-23

4.6 Virtual Memory 4 -24
4.6.1 Introduction to V M4-24

4.6.1.1 The Paging Game: Rules 4-25
4.6.1.2 The Paging Game: Notes 4-25

4.6.2 Overview of Cisco IOS VM 4-25
4.6.2.1 Requirement s4-26
4.6.2.2 Benefits and Cos ts4-26

4.6.3 Engineering Effort 4 -26
4.6.4 VM Rules 4-27
4.6.5 VM Primer 4-28

4.6.5.1 Virtual Addresses vs. Physical Addresses4- 28
4.6.5.2 What is an “address interval” ?4-28
4.6.5.3 Advice on Using VM4- 29

4.6.6 Porting VM to a Platform 4-29
4.6.7 Wish List 4-30
4.6.8 Style Consideratio n s4-31
xvi Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
4.6.9 Basic VM Terms and Concept s4-32

Chapter 5 Pools, Buffers, and Particle s5-1

5.1 Buffer Management: Overvie w5-1

5.2 Generic Pool Management 5 -1
5.2.1 Pool Structure 5 -2
5.2.2 Pool Groups and Size 5-2
5.2.3 Static and Dynamic Pools: Definitio n5-2
5.2.4 Permanent and Temporary Items: Definition 5 -2
5.2.5 Create a Pool 5-3
5.2.6 Adjust a Pool 5 -4

5.3 Pool Caches 5-4
5.3.1 Overview: Pool Caches 5 -4
5.3.2 Structure of a Pool with a Cac he5-4
5.3.3 Add a Pool Cache 5 -5
5.3.4 Fill a Pool Cach e5-6
5.3.5 Destroy a Cac he5-6

5.4 Buffer Structure 5-6
5.4.1 Buffer Header s5-6
5.4.2 Buffer Data Blocks 5-6

5.4.2.1 Memory Organization within a Data Block 5-7

5.5 Buffer Pool s5-8
5.5.1 Overview: Buffer Pools 5 -8
5.5.2 Public and Private Buffer Pools: Definition 5 -8
5.5.3 Create a Public Buffer Pool 5 -8

5.5.3.1 Example: Create a Public Buffer P ool5-8
5.5.4 Create a Private Buffer Pool 5-8

5.5.4.1 Example: Create a Private Buffer Po ol5-9
5.5.5 Obtain a Buffer from a Public Buffe r Pool5-9

5.5.5.1 Example: Obtain a Buffer from a Public Buff er Pool5-9
5.5.6 Obtain a Buffer from a Private Buffer  Pool5-9
5.5.7 Lock a Buffer 5-10
5.5.8 Return a Buffer to a Pool 5-10

5.5.8.1 Guidelines for Returning a Buff er5-10
5.5.9 Duplicate a Buffe r5-10

5.5.9.1 Overview: Duplicate a Buf fer5-10
5.5.9.2 Duplicate a Buffer Onl y5-11
5.5.9.3 Duplicate a Buffer and Its Cont ext5-11
5.5.9.4 Duplicate and Recenter a Buffer and Its C ontext5-12
5.5.9.5 Comparison of Buffer Duplication with and without  Recentering5-12

5.5.10 Find a Buffer Po o l5-13
5.5.11 Increase the Size of a Buf fer5-13

5.6 Buffer Cache s5-13
5.6.1 Create a Buffer Ca che5-13

5.6.1.1 Example: Create and Fill a Buffer Ca che5-13
5.6.2 Remove Buffers from a Buffer Cach e5-14

5.7 Manipulate Buffers on the Input Queue of an Interface 5-14
Contents xvii



 CISCO CONFIDENTIAL
5.7.1 Add a Buffer to the Input Queue of an Interfac e5-14
5.7.2 Move a Buffer to the Input Queue of Another Interfa ce5-14
5.7.3 Remove a Buffer from the Input Queue of an Interf ace5-14

5.8 Particles 5-15
5.8.1 Overview: Particles 5 -15
5.8.2 Particle Structure 5-15

5.9 Particle Pool s5-16
5.9.1 Create a Particle Po ol5-16
5.9.2 Create a Particle Cac he5-16
5.9.3 Obtain a Particle from a Particle Pool 5 -17
5.9.4 Return a Particle to a Pool5- 17
5.9.5 Add a Particle to the Buffer Header 5-17
5.9.6 Remove a Particle from the Buffer Head er5-17
5.9.7 Coalesce Buffers Containing Particle s5-17

Chapter 6 Interfaces and Dri vers6-1

6.1 Interfaces: Overv iew6-1

6.2 Interfaces: Historical Backgroun d6-1
6.2.1 Growth of the IDB 6-1
6.2.2 Proliferation of Application Variables 6-1
6.2.3 Proliferation of Interf aces6-2

6.3 Scalability Changes 6-2
6.3.1 Subblocks and Private Lists6- 2
6.3.2 Maximum Interfaces Constant No Longer a Global Val ue6-3
6.3.3 Modular Interface Naming and Numbering 6-4

6.3.3.1 Design 6-4
6.3.3.2 Creating Interface Names 6-4
6.3.3.3 Parsing the IDB Naming and Numbering System6- 5
6.3.3.4 How to Add This for a Platform 6-6
6.3.3.5 Generic Support 6-6
6.3.3.6 Platform-Specific Support 6-6
6.3.3.7 Other Information 6-6
6.3.3.8 Testing 6-6
6.3.3.9 Still To Be Done 6-7

6.3.4 Extensible Plugin Driver API 6-7
6.3.5 Other Scalability Changes 6-7

6.4 IDB Terminology6- 7
6.4.1 Hardware and Software IDBs 6 -7
6.4.2 IDB Subblock 6-7

6.5 Subblock Identifier 6-8

6.6 Types of Subblocks 6-8

6.7 Which Type of Subblock to Use 6-9
6.7.1 Example: Creating a Subblock 6-9
6.7.2 Example: Retrieving a Subblock 6-10
6.7.3 Common Subblock Header 6-10

6.7.3.1 Private IDB List 6-11
xviii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
6.8 Subblock and VFT Support in Release 12.0 6 -11
6.8.1 Implementation Details 6-11
6.8.2 Migration Path6- 13

6.8.2.1 Migration Example 6 -13
6.8.2.2 Migrating Data from IDB to Subblock 6 -13
6.8.2.3 Comparison of Subblocks and Private IDB Lists 6 -14

6.9 Manipulate IDBs 6 -14
6.9.1 Create an ID B6-14
6.9.2 Link an IDB 6 -16
6.9.3 Iterate over a List of IDB s6-16
6.9.4 Delete an ID B6-16

6.10 Manipulate IDB Subblocks 6 -16
6.10.1 Subblocks Types6- 16
6.10.2 Subblock Function Table 6-17
6.10.3 Add an IDB Subblock6- 17
6.10.4 Return a Pointer to an IDB Subblock 6-17
6.10.5 Traverse a List of Subblock s6-18
6.10.6 Traverse Subblocks on an IDB 6 -18
6.10.7 Release an IDB Subbloc k6-18
6.10.8 Delete an IDB Subblock 6-19

6.11 Manipulate a Private List of IDBs 6-19
6.11.1 Create a Private List of IDB s6-19
6.11.2 Add an IDB to a Private List 6 -20
6.11.3 Iterate a List of Private IDBs 6-20
6.11.4 Remove an IDB from a Private List 6-20
6.11.5 Delete a Private List of IDB s6-20

6.12 Use IDB Helper Functions6- 20
6.12.1 Apply a Function over a Private IDB List6-20
6.12.2 Test an Interface for a Propert y6-21

6.13 Encapsulate a Pack et6-21

6.14 Enqueue, Dequeue, and Transmit a Packet 6 -21

Chapter 7 Platform-Specific Supp ort7-1

7.1 Platform-Specific Initialization: Ove rview7-1

7.2 Fundamental Initializat ion7-2
7.2.1 Example: Fundamental Initializat ion7-2

7.3 Memory Initializa tion7-2
7.3.1 Example: Memory Initializa tion7-3

7.4 Exception Initializ ation7-4
7.4.1 Example: Exception Initial ization7-4

7.5 Interface and Line Initial ization7-4
7.5.1 Example: Interface Initiali zation7-5
7.5.2 Example: Line Initializati on7-7

7.6 Platform-Specific Strings 7-7
7.6.1 Examples: Platform-Specific Strings 7 -8
Contents xix



 CISCO CONFIDENTIAL
7.7 Platform-Specific Value s7-9
7.7.1 Examples: Platform-Specific Values 7-11

Chapter 8 Interprocess Communications (IPC) Service s8-1

8.1 Overview: IPC Services 8 -1

8.2 Operational Environment8-2

8.3 IPC Communication: Overview 8-2

8.4 IPC Terminology 8-3
8.4.1 Entity: Definiti on8-3
8.4.2 Message: Definiti on8-3
8.4.3 Port Terminology8- 3

8.4.3.1 Port 8-3
8.4.3.2 Port Name 8-3
8.4.3.3 Multicast Po rts8-3

8.4.4 Port Identifier: Definiti on8-3
8.4.5 Seat Terminology8- 4

8.4.5.1 Seat 8-4
8.4.5.2 Seat Manager 8-4

8.4.6 Zone Terminology 8 -4
8.4.6.1 Zone 8 -4
8.4.6.2 Zone Manager 8 -4

8.5 Port Naming Services8- 4
8.5.1 Port Name Resolutio n8-5
8.5.2 Port Name Syntax 8 -5

8.5.2.1 Example: Port Name Syntax 8 -5
8.5.2.2 Reserved Port Names 8-5

8.6 IPC Message Format 8-6

8.7 IPC Processing: Overview 8-7

8.8 Manipulate the Seat Table 8 -7
8.8.1 Seat Table: Descriptio n8-7
8.8.2 Create a Sea t8-8
8.8.3 Get Information about a Seat 8-8
8.8.4 Reset a Seat 8-8

8.9 Manipulate the Port Table 8 -8
8.9.1 Port Table: Descriptio n8-8
8.9.2 Create a Por t8-9
8.9.3 Register a Port 8-9
8.9.4 Open a Port 8-9
8.9.5 Find a Por t8-10
8.9.6 Close a Port 8-10
8.9.7 Remove a Port 8-10

8.10 Manipulate the Message Retransmission Tabl e8-11
8.10.1 Message Retransmission Table: Descriptio n8-11

8.11 Send IPC Messages 8 -11
8.11.1 Allocate a Mess age8-11
xx Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
8.11.2 Send a Message8- 11
8.11.3 Return a Message to the IPC System 8-12

8.12 Simulate RPCs 8-12

8.13 Write an IPC Appli cation8-12
8.13.1 Create a Por t8-13
8.13.2 Open a Connection to the Port 8-13
8.13.3 Send a Message8- 13

8.13.3.1 Send a Message in Blocking Mode8- 13
8.13.3.2 Send a Message in Nonblocking Mode8-14

8.14 Implementing IPCs on the RSP Platform 8-14
8.14.1 IPC CiscoBus Driver: Overview 8-15
8.14.2 IPC Setup Procedur e8-15

8.14.2.1 Discovery Phase8- 15
8.14.2.2 Initialization P hase8-16
8.14.2.3 Registration Phase 8 -17

8.14.3 Invoke the IPC Setup Procedure8- 17
8.14.4 Microcode Reload Handl ing8-18
8.14.5 Implementation of the IPC CiscoBus Interfa ce8-18

8.14.5.1 Transmit Path 8-18
8.14.5.2 Receive Pat h8-18

8.14.6 IPC Name Service 8 -18

Chapter 9 File System 9-1

9.1 Overview 9-1
9.1.1 Application Level API 9-1
9.1.2 Classes of File Syste ms9-2
9.1.3 File System Typ es9-2
9.1.4 File System Featur es9-2
9.1.5 File System Flag s9-3

9.2 Accessing File System s9-3

9.3 Implementing Simple File System s9-3
9.3.1 A Trivial IFS/File Syste m9-3

9.3.1.1 Defining a File System 9-3
9.3.1.2 Defining a File 9-4
9.3.1.3 Example 1 - Reading a File 9-5
9.3.1.4 Example 2 - A More Complex Rea d9-7
9.3.1.5 Example 3 - Writing a Fil e9-7

9.3.2 Other Features 9-11
9.3.2.1 Directories 9-11
9.3.2.2 Timestamps 9-12

9.4 Implementing Complete File System s9-12
9.4.1 IFS/File System A PI9-12
9.4.2 Common Data Structures 9-14
9.4.3 Implementatio n9-15

9.5 Additional File System Hooks9- 17
9.5.1 Copy Prompt Hoo k9-17
9.5.2 Copy Behavior Hoo k9-17
Contents xxi



 CISCO CONFIDENTIAL
9.5.3 “Show Flash” Hook9-1 8

9.6 Reference s9-18

Chapter 10 Socket Interfac e10-1

Chapter 11 ANSI C Library 11-1

PART 3 Kernel Support Services

Chapter 12 Subsystem s12-1

12.1 Overview: Subsystems12- 1
12.1.1 Subsystem Classes 1 2 -1
12.1.2 How to Choose a Subsystem Class 12-1

12.2 Subsystem Properties 1 2-2
12.2.1 Subsystem Property Definition s12-2

12.2.1.1 Subsystem Property Definitions: Example s12-2
12.2.2 Sequencing Property12 -2
12.2.3 Requirements Proper ty12-3
12.2.4 Error Messages 12-3

12.3 Define a Subsyst em12-3
12.3.1 Examples: Define a Subsystem 12-4

12.4 Fill In the Subsystem Structure 12-5

12.5 Tips for Creating a Subsys tem12-5
12.5.1 Create a New Subsyst em12-5
12.5.2 Rework System Processe s12-8
12.5.3 Reexamine Header File Dependencie s12-8
12.5.4 Use New IDB Subblocks to Store Private Variables 12-8

Chapter 13 Registries and Service s13-1

13.1 Overview: Registries and Services 1 3 -1

13.2 Registry Compiler: Descripti on13-1

13.3 Registry Files 13-2

13.4 Registry Compilation Proce ss13-2
13.4.1 11.3 Changes13 -2

13.4.1.1 registry.c 13-3
13.4.1.2 registry.h 13-3
13.4.1.3 Static and dynamic registri es:13-3
13.4.1.4 Generated Cod e13-3

13.5 .reg File Metalanguage 13-3
13.5.1 Example: .reg File Format 13-5

13.6 .h File Contents 1 3 -6

13.7 .c File Conten ts13-7

13.8 Placement of xxx_registry.o in makefil es13-7
xxii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
13.9 Services: Overview 13-8

13.10Types of Services 13-8

13.11 'show registry' Suppor t13-8

13.12Manipulate List Services 13-9
13.12.1Define a List Servic e13-9

13.12.1.1Example: Define a List Service 1 3 -9
13.12.1.2Example: Add To a List Service 13-10
13.12.1.3Example: Invoke a List Service 1 3-10

13.13Manipulate Pid_list Servic es13-10
13.13.1Define a Pid_list Serv ice13-10

13.13.1.1Example: Define a Pid_list Service13- 11
13.13.1.2Example: Add To a Pid_list Service 1 3 -11
13.13.1.3Example: Invoke a Pid_list Service 1 3 -12

13.14Manipulate Case Services 1 3 -12
13.14.1Define a Case Service 13-12

13.14.1.1Example: Define a Case Service 13-13
13.14.1.2Example: Add a Case Service 13-13
13.14.1.3Example: Add a Default Case Functio n13-13
13.14.1.4Example: Invoke a Case Service 1 3 -14

13.15Manipulate Retval Services 13-14

13.16Manipulate Loop Services13-14
13.16.1Define a Loop Service 13-14

13.16.1.1Example: Define a Loop Service 1 3 -15
13.16.1.2Example: Add To a Loop Service 13-15
13.16.1.3Example: Invoke a Loop Service13- 16

13.17Manipulate Stub Services 13-16
13.17.1Define a Stub Servic e13-16

13.17.1.1Example: Define a Stub Service13- 17
13.17.1.2Example: Add To a Stub Service 13-17
13.17.1.3Example: Invoke a Stub Service13- 17

13.18Manipulate Value Services 1 3 -17
13.18.1Define a Value Service 13-18

13.18.1.1Example: Define a Value Service 13-18
13.18.1.2Example: Add To a Value Servic e13-18
13.18.1.3Example: Add a Default Val ue13-19
13.18.1.4Example: Invoke a Value Service 1 3 -19

Chapter 14 Time-of-Day Servic es14-1

14.1 Overview: Time-of-Day Service s14-1
14.1.1 Epoch: Definition 1 4 -1
14.1.2 Time Formats 14-1

14.1.2.1 clock_epoch Structure14- 1
14.1.2.2 UNIX Forma t14-2
14.1.2.3 timeval Structur e14-2

14.1.3 System Clock: Descriptio n14-2
14.1.4 Time Zone s14-2
Contents xxiii



 CISCO CONFIDENTIAL
14.1.5 Network Time Protocol 1 4 -3
14.1.6 Hardware Calendar 1 4 -3

14.2 Get the Current Tim e14-3

14.3 Test for Summer Tim e14-4

14.4 Convert between Time Formats 14-4

14.5 Set the System Clock 14-4

14.6 Determine Validity of System Clock Time 14-4

14.7 Format Time String s14-6

Chapter 15 Timer Services 15-1

15.1 Overview: Timer Services 1 5 -1
15.1.1 System Clock 15-1
15.1.2 Implementing Application-Level Function s15-2
15.1.3 Timer Jitt er15-2

15.2 Timer States 15-2

15.3 Passive Timers 1 5 -2
15.3.1 Passive Timers in the Future 1 5 -3

15.3.1.1 Operation of Passive Timers in the Future15 -3
15.3.1.2 Start a Passive Timer in the Future 1 5 -3
15.3.1.3 Set the Expiration for a Passive Timer15 -3
15.3.1.4 Stop a Passive Timer in the Futu re15-4
15.3.1.5 Determine the State of Passive Timers in the Future 15-4
15.3.1.6 Guidelines for Using the SLEEPING and AWAKE Macros in Releases Prior to 
Release 11.1 1 5 -4
15.3.1.7 Guidelines for Using the XSLEEPING and XAWAKE Macros in Releases Prior to 
Release 11.1 1 5 -5
15.3.1.8 Guidelines for Avoiding Timer Ambiguity15- 5
15.3.1.9 Determine the Earlier of Two Timers 15-5
15.3.1.10Compare Passive Timers in the Futur e15-5
15.3.1.11Update Passive Timers in the Future 15-5
15.3.1.12Use One Timer Value to Compute Another15- 6
15.3.1.13Example: Passive Timers in the Futur e15-6

15.3.2 Passive Timers in the Past15 -7
15.3.2.1 Determine the Current Time 15-7
15.3.2.2 Copy a Timestamp 15-7
15.3.2.3 Determine the Elapsed Time 15-7
15.3.2.4 Determine Whether a Time Is within a Rang e15-8
15.3.2.5 Example: Passive Timers in the Past15- 8

15.3.3 Compare Timestamps 15-8

15.4 Managed Timers 15-9
15.4.1 Overview: Managed Timers 1 5 -9
15.4.2 Type and Context Values 15-9
15.4.3 Recursive Managed Timer s15-9
15.4.4 Operation of Managed Timers 1 5 -9
15.4.5 mgd_timer Data Structur e15-10
15.4.6 Guidelines for Using Managed Timers 1 5 -10
xxiv Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
15.4.7 Initialize Managed Time rs15-10
15.4.8 Determine Initialization Status of a Managed Ti mer15-11
15.4.9 Modify the Timer Type 15-11
15.4.10Modify the Timer Context15 -11
15.4.11Start a Leaf Time r15-11
15.4.12Increase the Delay of a Leaf Tim er15-12
15.4.13Set a Leaf Timer’s Expiration 15-12
15.4.14Stop a Managed Timer 1 5-12
15.4.15Determine the State of a Managed Timer 15-13
15.4.16Esoteric Managed Timer Functions 15-13

15.4.16.1Link and Delink Timer Tree s15-13
15.4.16.2Set Extended Context 1 5 -13
15.4.16.3Create Fenced Timer s15-14
15.4.16.4Convert Timers 15-14
15.4.16.5Traverse a Tree of Managed Timer s15-14

15.4.17Example: Managed Timers 15-15

15.5 Choose Which Type of Timer to Us e15-17

15.6 Determine System Uptim e15-17

Chapter 16 Strings and Character Outp ut16-1

16.1 Print Strings 1 6 -1
16.1.1 Print a String to the Connected Terminal 16-1
16.1.2 Print a Debugging String 16-1
16.1.3 Print a String into a Buffer 16-1
16.1.4 Format Time String s16-2

16.1.4.1 Examples: Format Time Strings 1 6 -2
16.1.5 Format Timestamps 16-3

16.1.5.1 Examples: Format Timestamps 16-3
16.1.6 Format AppleTalk Address es16-4

16.1.6.1 %a Format Code 1 6-4
16.1.6.2 %A Format Code 1 6 -5

16.1.7 Format Banyan VINES Addresses16- 7
16.1.7.1 %z Format Code 1 6-7
16.1.7.2 %Z Format Code 1 6-8

Chapter 17 Exception Handl ing17-1

17.1 Overview: Exception Handling 1 7 -1

17.2 List of Exceptio n s17-1

17.3 Register an Exception Handl er17-2
17.3.1 Register a One-Time Handle r17-2

17.3.1.1 Example: Register a One-Time Handle r17-2
17.3.2 Register a Permanent Handler 17-3

17.3.2.1 Example: Register a Permanent Handler 17-3

17.4 Cause Exceptions 17-3
17.4.1 Example: Cause Exceptions 17-4
Contents xxv



 CISCO CONFIDENTIAL
Chapter 18 Debugging and Error L ogging18-1

18.1 Debug CPU Exceptions 18-1
18.1.1 Use Core Files to Debug CPU Exceptions 18-1

18.1.1.1 Configure the Cisco IOS Software to Generate a Core Fi le18-2
18.1.1.2 Analyze a Core F ile18-3

18.1.2 Debug with the ROM Monitor 18-3
18.1.3 Debug with GDB 18-4

18.1.3.1 Debug in GDB Kernel Mode 18-4
18.1.3.2 Debug in GDB Process Mo de18-4

18.2 Debug with buginf() and the debug Comma nd18-5
18.2.1 Debug Critical Code Sections 1 8-5

18.3 Debug Using Compile-Time Conditionals 18-5
18.3.1 Trace Buffer L eaks18-6

18.3.1.1 Example: Trace Buffer Lea ks18-6

PART 4 Network Services

Chapter 19 Binary Trees19 -1

19.1 Overview: Binary Trees 19-1
19.1.1 Red-Black (RB) Trees 1 9-2
19.1.2 AVL Tr ees19-2
19.1.3 Radix Tree s19-2

19.2 Manipulate RB Trees 19-2
19.2.1 Initialize an RB T ree19-2
19.2.2 Insert a Node into an RB Tre e19-3
19.2.3 Search an RB Tree 19-3
19.2.4 Apply a Function to an RB Tree Node 1 9 -3
19.2.5 Retrieve Information about an RB Tre e19-3
19.2.6 Print the Nodes in an RB Tr ee19-4
19.2.7 Protect a Node in an RB Tree 19-4
19.2.8 Place a Node on the Tree’s Internal Free L ist19-4
19.2.9 Remove an RB Tree 19-4

19.3 AVL Tr ees19-4
19.3.1 Manipulate Raw AVL Tre es19-5

19.3.1.1 Initialize an AV L Tree19-5
19.3.1.2 Insert a Node into an AVL T ree19-5
19.3.1.3 Traverse an AVL Tr ee19-6
19.3.1.4 Search an AVL Tr ee19-6
19.3.1.5 Remove a Node from an AVL Tre e19-6
19.3.1.6 Free AVL Tree Reso u rces19-6

19.3.2 Manipulate Wrapped AVL Trees 19-6
19.3.2.1 Initialize a Wrapped AVL  Tree19-6
19.3.2.2 Insert a Node into a Wrapped VL Tree 19-7
19.3.2.3 Traverse a Wrapped AVL Tr ee19-7
19.3.2.4 Search a Wrapped AVL T ree19-7
19.3.2.5 Remove a Node from a WAVL Tre e19-7
19.3.2.6 Reset Pointers 19-8
xxvi Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
19.3.2.7 Free WAVL Tree Resourc es19-8

19.4 Manipulate Radix Trees 19-8
19.4.1 Initialize a Radix T ree19-8
19.4.2 Insert a Node into a Radix Tre e19-8
19.4.3 Traverse a Radix Tre e19-8
19.4.4 Search for a Node in a Radix Tree 1 9 -9
19.4.5 Mark Parent Nodes in a Radix Tree19 -9
19.4.6 Delete a Node from a Radix Tre e19-9

Chapter 20 Queues and L ists20-1

20.1 Overview: Queues and Lists20- 1
20.1.1 Singly Linked Lists (Queue s)20-1
20.1.2 Doubly Linked Lists20 -2

20.2 Manipulate Queues 2 0 -2
20.2.1 Initialize a Qu eue20-2
20.2.2 Determine the State of a Queue 20-3
20.2.3 Determine Whether an Item Is on a Queue 2 0 -3

20.3 Manipulate Direct Queues 2 0 -3
20.3.1 Manipulate Unprotected Direct Queues 2 0-3

20.3.1.1 Add an Item to a Queue 20-3
20.3.1.2 Remove an Item from a Queue 20-4
20.3.1.3 Examples: Manipulate Unprotected Direct Queues 2 0 -4

20.3.2 Manipulate Protected Direct Queue s20-5
20.3.2.1 Add an Item to a Queue 20-5
20.3.2.2 Remove an Item from a Queue 20-5
20.3.2.3 Example: Manipulate Protected Direct Queues 20-5

20.4 Manipulate Indirect Queues 2 0 -6
20.4.1 Add an Item to a Queue 20-6
20.4.2 Change the Size of a Queue 20-6
20.4.3 Iterate over Each Item in a Que ue20-6
20.4.4 Remove an Item from a Queue 20-6
20.4.5 Examples: Manipulate Indirect Queue s20-7

20.5 Manipulate Simple Doubly Linked Lists20- 8
20.5.1 Add an Item to a Doubly Linked List20- 8
20.5.2 Remove an Item from a Doubly Linked Lis t20-8
20.5.3 Example: Manipulate Doubly Linked Lists20- 8

20.6 Manipulate Doubly Linked Lists with the List Manager20- 9
20.6.1 Overview: List Manager 2 0 -9
20.6.2 Create a Lis t20-9
20.6.3 Modify an Existing Lis t20-9
20.6.4 Add an Item to a List 20-9
20.6.5 Move an Item to Another List 2 0 -10
20.6.6 Remove an Item from a List 20-10
20.6.7 Change the Behavior of List Action Vectors 20-10
20.6.8 Retrieve the Behavior of List Action Vectors 20-11
20.6.9 Display the Contents of a List 20-11
20.6.10Destroy a List 2 0 -11
Contents xxvii



 CISCO CONFIDENTIAL
20.6.11Examples: Manipulate Doubly Linked Lists with the List Manager20-11

Chapter 21 Switching 21-1

21.1 Overview: Switching 2 1 -1
21.1.1 Slow Switching 2 1 -1
21.1.2 Fast Switching 2 1-2
21.1.3 Autonomous Switchin g21-2
21.1.4 Silicon Switching 21-2

21.2 Fast Switching 2 1-2
21.2.1 Hardware Architectur e21-2

21.2.1.1 MCI/CiscoBus Architectur e21-2
21.2.1.2 Shared-Memory Architectu re21-8

21.2.2 Software Architectur e21-10
21.2.2.1 Full Matri x21-10
21.2.2.2 Unique Routine s21-11

PART 5 Hardware-Specific Design

Chapter 22 Porting Cisco IOS Software to a Ne wPlatfo r m22-1

22.1 Portability Issue s22-1
22.1.1 Byte Order 22-2

22.1.1.1 Unions 2 2 -2
22.1.1.2 Bit Fields 22-3
22.1.1.3 Bit Operatio ns22-4
22.1.1.4 Typecastin g22-4
22.1.1.5 Character Constants 22-4

22.1.2 Data Alignmen t22-4
22.1.3 Data Size 22-5
22.1.4 C Pitfal ls22-5

22.1.4.1 Enum Types22 -5
22.1.5 Other Portability Iss ues22-5

22.1.5.1 Performance 22-5
22.1.5.2 Stack Usage and Stack Grow t h22-6
22.1.5.3 Compliance with Encapsulations 22-6

22.2 Cisco’s Implementation of Portabilit y22-7
22.2.1 Inline Assembler 22-7
22.2.2 Header File s22-8
22.2.3 Byte-Order Functio n s22-8
22.2.4 Endian #defines22- 8
22.2.5 GET and PUT Macro s22-9
22.2.6 Canonical Functio ns22-9

PART 6 Management Services

Chapter 23 Command-Line Pars er23-1

23.1 Overview: Parser 2 3-1
xxviii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
23.1.1 Traversing the Parse Tree 23-1
23.1.2 Transition Structure 23-2

23.2 Build Parse Tree s23-3
23.2.1 Construction of Parse Tre es23-3

23.2.1.1 Example: Construction of Parse Tre es23-3
23.2.2 Parse a Keyword Toke n23-4

23.2.2.1 Example: Parse a Keyword Token 2 3 -5
23.2.3 Parse a Number Token 2 3 -6

23.2.3.1 Example: Parse a Number Token 2 3 -7
23.2.4 Parse a Keyword-Number Combinatio n23-8

23.2.4.1 Examples: Parse a Keyword-Number Combination 23-8
23.2.5 Parse Optional Keywords 2 3 -8
23.2.6 Parse Mixed String and Nonstring Tokens23-9

23.2.6.1 Example: Parse Mixed String and Nonstring Tokens23-10
23.2.7 Process “No” Command s23-10

23.2.7.1 csb->sense 23-11
23.2.7.2 Example: Process “No” Comma nds23-11

23.2.8 Nonvolatile Output Generati on23-12

23.3 Link Parse Trees 2 3-12
23.3.1 Example: Link Parse Trees 2 3-12

23.4 Manipulate CSB Objects 23-13
23.4.1 Overview: CSB Objects 23-13
23.4.2 Examples of CSB Objects 23-15

23.5 Add Commands Dynamically 23-15
23.5.1 Create a Link Point 23-15

23.5.1.1 Example: Create a Link Point 23-15
23.5.2 Register a Link Point with the Parser 2 3 -16

23.5.2.1 Example: Register a Link Point with the Parser23- 16
23.5.3 Display Registered Link Points23 -16
23.5.4 Link Commands to a Link Point23- 16

23.5.4.1 Example: Link Commands to a Link Point23- 16
23.5.5 Create Link Exit Points 23-17

23.5.5.1 Example: Create Link Exit Points 23-17

23.6 Manipulate Parser Modes23-18
23.6.1 Add a Parser Mode23- 18

23.6.1.1 Example: Add a Parser Mode23- 18
23.6.2 Add an Alias to a Mode23- 18

23.6.2.1 Example: Add an Alias to a Mode23- 18

Chapter 24 Writing, Testing, and Publishing  MIBs24-1

24.1 SNMP Overview 24-1
24.1.1 Internet Network Management Framework: Definition 2 4 -2
24.1.2 MIB: Definitio n24-2
24.1.3 ASN.1: Definiti on24-2
24.1.4 SMI: Definiti on24-2
24.1.5 Transport Protocol s24-3
24.1.6 SNMP Faci lities24-3
24.1.7 Asynchronous Notifications 24-3
Contents xxix



 CISCO CONFIDENTIAL
24.2 MIB Concepts 2 4 -3
24.2.1 MIB: Overview 2 4 -3
24.2.2 Standard and Enterprise MIBs 2 4 -4
24.2.3 MIB-I and MIB-II 24-4
24.2.4 Agent Implementatio ns24-4
24.2.5 MIB Objects 24-4

24.2.5.1 Object: Defini tion24-4
24.2.5.2 Lexicographic Ordering of Objec ts24-5
24.2.5.3 Object Identifier: Definiti on24-5

24.2.6 SNMP Conceptual Tables 24-6
24.2.6.1 SNMP Conceptual Tables: Definitio n24-6
24.2.6.2 Simple SNMP Conceptual Tables 24-6
24.2.6.3 Complex SNMP Conceptual Tabl es24-7
24.2.6.4 Coding Index Objects 24-7
24.2.6.5 Tables Inside of Tables 24-7

24.3 SMI Overview 24-8
24.3.1 Primitive Data and Application Type s24-8
24.3.2 Textual Conventions 2 4-9

24.4 MIB Life Cycle 2 4 -10

24.5 Design a MI B24-10
24.5.1 MIB Design: Overview24 -10
24.5.2 SNMP Application Consideratio n s24-11
24.5.3 MIB Design Phases24- 11

24.5.3.1 Design the MIB Content 2 4-12
24.5.3.2 Design the Notificati ons24-12
24.5.3.3 Design the MIB Organizatio n24-13

24.5.4 Check for Existing MIB Implementation s24-13
24.5.5 Ensure MIB Compliance 24-14
24.5.6 Follow MIB Conventio ns24-14

24.5.6.1 Assigned Numbers 2 4 -14
24.5.6.2 Conventions for Writing MI B s24-15

24.5.7 MIB Compilers 24-20
24.5.7.1 Function of MIB Compilers24 -20
24.5.7.2 Available Compile rs24-20
24.5.7.3 Invoke the MIB Compiler24- 20

24.5.8 Agent Development 2 4 -21
24.5.9 Cisco Internal MIB Design Support 2 4 -21

24.6 MIB Development Process: Overview 2 4 -21

24.7 Establish a New MIB 24-21

24.8 Compile a MIB 24-24
24.8.1 Which MIB or MIBs to Compile 2 4-25
24.8.2 Which Groups to Compil e24-25
24.8.3 Where to Place Files Generated by the MIB Com piler24-25
24.8.4 Makefile Rules for Compiling MIBs 2 4 -25
24.8.5 Invoke the MIB Compiler24- 26
24.8.6 What the MIB Compiler Does 24-27
24.8.7 Output from the MIB Compile r24-27
24.8.8 Compile a MIB: Examples 24-28
xxx Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
24.9 Observe Modularit y24-29
24.9.1 Subsystem 2 4 -29
24.9.2 Instrumentatio n24-29

24.10Implement MIB Objects 24-30
24.10.1GCC Warnings 2 4 -30
24.10.2Validati on24-30
24.10.3k_get Routines 2 4 -31
24.10.4k_set Routines 2 4 -31

24.11Implement SNMP Asynchronous Notificati ons24-31
24.11.1Decide Where to Place SNMP Notificatio n  Code24-32
24.11.2Define the Notificat ion24-32
24.11.3Control the Notifica tion24-32
24.11.4Generate the Notificati on24-35

24.12Test a MIB 24-36
24.12.1Test an Objec t24-37
24.12.2Test a Notificat ion24-37
24.12.3Tools for Testing a MIB24- 37

24.12.3.1Command-Line Tool s24-37
24.12.3.2X Windows Tools24- 38
24.12.3.3Notification  Tools24-38

24.12.4SNMP Operations 24-39
24.12.5Object Functio ns24-39

24.13Release a MIB 24-39
24.13.1Release MIB Cod e24-39
24.13.2Release MIB File s24-40

24.14Maintain a MIB 24-40
24.14.1Use MIB Versions24 -40

24.15Testing and Publishing a MI B24-42

24.16Create or Update a MIB Workspa ce24-42

24.17Test a MIB 24-43

24.18Analyze Test Resul ts24-44

24.19Determine Whether You Have an SNMPv1 or SNMPv2 MIB24- 44

24.20Generate an SNMPv1 Version of an SNMPv2 MIB 24-45

24.21Use Make Directly to Generate a MI B24-45
24.21.1Use Make Directly to Generate an SNMPv2 MIB24- 45
24.21.2Use Make Directly to Generate an SNMPv1 MIB24- 46

24.21.2.1Example: Use Make to Generate an SNMPv1 M IB24-46

24.22Publish a MIB 2 4 -46
24.22.1Prerequisites for Publishing a MIB 2 4-46

24.23MIB-Related Files24 -47
24.23.1File Locati ons24-47
24.23.2MIB Repository and Worksp ace24-47
24.23.3Files in the MIB Repository and Work space24-47
24.23.4Directory Layout for MIB Repository and Workspace 2 4 -48
Contents xxxi



 CISCO CONFIDENTIAL
Chapter 25 IF-MIB 25-1

25.1 Supporting Subinterfaces in IF-MI B25-1
25.1.1 Tables 25-1
25.1.2 API 25-1

25.1.2.1 snmp/ifmib_registry.re g25-2
25.1.2.2 snmp/ifmibapi.[ch] 25-2
25.1.2.3 h/snmp_interfac e.h25-2
25.1.2.4 ifType 2 5 -2

25.2 Adding Support to Register or Deregister Sublayer s25-2
25.2.1 Adding to Service Points 25-2
25.2.2 Registering a Sublayer25- 4
25.2.3 Deregistering a Sublayer25- 4
25.2.4 Modifying the ifRcvAddressTable25-5
25.2.5 Modifying the ifStackTable 2 5-5
25.2.6 Sparse Table Support 25-5

25.3 Sample Implementation: Frame Relay Sublayers25- 5
25.3.1 Adding Service Points: Frame Relay 25-5
25.3.2 Registering a Sublayer: Frame Relay25- 6
25.3.3 Deregistering a Sublayer: Frame Relay25- 6

25.4 Link Up/Down Trap Support25- 6

PART 7 Other Useful Information

Chapter 26 Scalable Process Implementatio n26-1

26.1 Introduction 26-1

26.2 The Typical Scenari o26-1
26.2.1 Specific Problems 26-2

26.2.1.1 CPU Utiliza tion26-2
26.2.1.2 Excessive Protocol Traff ic26-3
26.2.1.3 Adjacency Failur es26-3
26.2.1.4 Brittle Networks 2 6-3
26.2.1.5 Random Squirrely Failure s26-3
26.2.1.6 Pathological Process Interact ion26-3

26.3 Addressing the Problems26- 3
26.3.1 Process Structure 26-4
26.3.2 Stability through Rate Control 2 6 -5
26.3.3 Avoiding Receive Buffer Starvation 26-6
26.3.4 Avoiding Infinite Transmit Queues and Stale Information26- 7
26.3.5 Complexity versus Efficiency 26-7

26.4 Conclusio n26-8

Chapter 27 Backup System 27-1

27.1 Overview 27-1
27.1.1 Operation 27-1
27.1.2 Configuring Interfac es27-2
xxxii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
27.1.3 Specifying the Standby Interfa ce27-2
27.1.4 Specifying Backup Dela ys27-2
27.1.5 Specifying Backup Loads, Main Interface s Only27-3
27.1.6 Notes On Operatio n27-3

27.2 Description of Changes 2 7-4

Chapter 28 Verifying Cisco IOS Modular Images 28-1

28.1 What is a Modular Imag e?28-1

28.2 Why Create Modular Image s?28-1

28.3 Types of Modularity Checks 28-2

28.4 Modularity Targets 28-2

28.5 Build Modular Images for a Single Platfor m28-2
28.5.1 Build All Modular Images for a Single Platfor m28-2
28.5.2 Build a Specific Modular Image for a Single Plat form28-3

28.6 Build Modular Images for All Platfor ms28-3

28.7 Check Modularity with the sys/scripts/connect Script 28-4

28.8 Modularity Checking Done by the Nightly Build s28-4

Chapter 29 Writing DDTS Release-Note Enclosu r es29-1

29.1 What Is a Release-Note Enclosure 29-1

29.2 How Customers See Release-Note Enclosure s29-1

29.3 Who Writes Release-Note Enclosu res29-2

29.4 When Do Release-Note Enclosures Get Writt en29-2

29.5 Writing Release-Note Enclosure s29-2
29.5.1 Naming a Release-Note Enclosure 2 9 -2
29.5.2 Writing Guidelines 29-2

29.5.2.1 Conditions Under Which the Problem Occurs 29-3
29.5.2.2 Symptoms 29-3
29.5.2.3 Workaround 2 9 -3

29.5.3 Writing Style 29-3
29.5.4 Text Formatting Guidel ines29-5

29.5.4.1 Character Formatting Guide lines29-5
29.5.4.2 Other Formatting Guideli nes29-6

29.5.5 Guidelines for Using $$IGNORE in Release-Note Enclosure s29-6
29.5.6 Sample Release-Note Enclosures 29-6

29.6 Writing DDTS Headli nes29-7

29.7 Getting H elp29-9

Appendixes

Appendix A Writing Cisco IOS Code: Style Issu esA-1

A.1 Purpose of This Chapter A-1
Contents xxxiii



 CISCO CONFIDENTIAL
A.1.1 Coding Conventions: Something for Everyone to Protest A-1
A.1.2 Definitions A-2
A.1.3 What This Appendix Addresses A-2
A.1.4 What This Appendix Does Not Address A-2

A.2 Design Issues  A-2
A.2.1 Do Not Use Conditional Compilation for Platform-Specific Code A-3
A.2.2 Plan Your Feature as a Subsystem A-3
A.2.3 Do Not Overload Existing or System Registries A-4
A.2.4 Don’t Be a Stub Slob; Use Registries A-4
A.2.5 Don’t Hog the Chip A-4

A.3 Using C in the Cisco IOS Source Code A-5
A.3.1 Use ANSI C A-5
A.3.2 Fifty Ways to Shoot Yourself in the Foot A-6

A.4 Presentation of the Cisco IOS Source Code  A-9
A.4.1 Specific Code Formatting Issues A-9
A.4.2 Some Comments about Comments A-11

A.5 Variable and Storage Persistence, Scope, and Naming A-11

A.6 Coding for Reliability A-12

A.7 Coding for Performance A-13
A.7.1 Performance of Algorithms and Data Structures A-14
A.7.2 Performance Resulting from Use and Abuse of the Cisco IOS Infrastructure A-15
A.7.3 Instruction-level Performance A-15

A.7.3.1Helping GCC Turn Glop into Gold A-15
A.7.3.2Not All Memories Are Golden A-17

Appendix B Cisco IOS Software Organization B-1

B.1 Description of the Cisco IOS Subsystems B-1

B.2 Description of the IP Subsystems B-11
B.2.1 IP Host Subsystem B-11
B.2.2 IP Routing Subsystem B-14
B.2.3 IP Services Subsystem B-15

B.3 Description of the Cisco IOS Kernel Subsystems B-15
B.3.1 Scheduler Subsystem B-15
B.3.2 Chain Subsystem B-16
B.3.3 Media Subsystem B-16
B.3.4 Parser Subsystem B-16
B.3.5 Core TTY Subsystem B-17
B.3.6 Core Router Subsystem B-17
B.3.7 Core Memory Management, Logging, and Print Subsystem B-18
B.3.8 Core Time Services and Timer Subsystem B-18
B.3.9 Core Modular Subsystem B-19
B.3.10 Miscellaneous Subsystems B-19

Appendix C CPU Profiling C-1

C.1 Overview: CPU Profiling C-1

C.2 How CPU Profiling Works C-1
xxxiv Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
C.2.1 Define Profile Blocks C-1
C.2.2 Profile Block Bins C-1
C.2.3 Tracking Ticks C-2
C.2.4 Overhead C-2
C.2.5 Special Modes C-2

C.3 Caveats about Using CPU Profiling C-2

C.4 Use the CPU Profiler C-3

C.5 Configure the Profiler C-3
C.5.1 Create a Profile Block and Enable Profiling C-3
C.5.2 Delete a Profile Block C-4
C.5.3 Stop Profiling C-4
C.5.4 Restart Profiling C-4
C.5.5 Zero Profile Blocks C-4
C.5.6 Enable Task and Interrupt Modes C-4
C.5.7 Disable Task and Interrupt Modes C-4
C.5.8 Enable CPUHOG Profiling C-5
C.5.9 Display Profiling Information C-5

C.6 Process the Profiler Output C-5

Appendix D Older Version of the Schedu lerD-1

D.1 How a Process Stops D-1

D.2 Queues and Process Priorities D-1
D.2.1 Scheduler Queues D-1

D.2.1.1Comparison of New and Old Scheduler Queues D-2
D.2.1.2Compatibility Queues D-2
D.2.1.3Idle Queue D-2

D.2.2 Operation of Scheduler Queues D-2
D.2.2.1Overall Scheduler Queue Operation D-3
D.2.2.2Critical-Priority Scheduler Queue Operation D-4
D.2.2.3High-Priority Scheduler Queue Operation D-4
D.2.2.4Medium- and Low-Priority Scheduler Queue Operation D-6

D.3 Functions in the Old Scheduler D-8

D.4 cfork() (obsolete) D-8

D.5 edisms() (obsolete) D-10

D.6 process_is_high_priority() (obsolete) D-11

D.7 process_set_priority() (obsolete) D-11

D.8 s_tohigh() (obsolete) D-12

D.9 s_tolow() (obsolete) D-13

Appendix E Glossar yE-1

Index
Contents xxxv



 CISCO CONFIDENTIAL
xxxvi Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
 Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



CISCO CONFIDENTIAL
Figures
Figure 1-1 Cisco IOS Network Services and Protocols 1 -8

Figure 2-1 Cisco IOS Fundamental Initialization Sequence 2-5

Figure 2-2 System Initialization Seque nce2-6

Figure 3-1 Overall Scheduler Queue Operation 3-11

Figure 4-1 Regions, Memory Pools, and Chunks 4-2

Figure 4-2 Region Classes 4 -3

Figure 4-3 Region Hierarchy 4 -3

Figure 4-4 main and iomem Region Hierarchy4-7

Figure 5-1 Structure of a Pool 5-2

Figure 5-2 Structure of Pool with a Cache 5-5

Figure 5-3 Packet Structure 5-6

Figure 5-4 Memory Organization within a Data Block 5-7

Figure 5-5 Comparing the pak_copy() and pak_copy_and_recenter() Functio n s5-12

Figure 5-6 Particle Structure 5-15

Figure 5-7 Chain of Particles 5-16

Figure 7-1 Developer Hooks for Platform Support 7 -2

Figure 8-1 IPC Message System Interfaces 8-1

Figure 8-2 IPC Message Format 8-6

Figure 8-3 IPC Processing 8-7

Figure 8-4 IPC Application Stru cture8-19

Figure 15-1 Timer States 15-2

Figure 15-2 Sample Managed Timer Tree Structure 15-15

Figure 20-1 Direct Queues 20-1

Figure 20-2 Indirect Queues 20-2

Figure 23-1 Traversing the Parse Tree 23-2

Figure 23-2 Transition Diagram for Parsing a Keyword 23-6

Figure 24-1 Internet Network Management Framework Model 24-2
Figures xxxvii



 CISCO CONFIDENTIAL
Figure 24-2 MIB Object Identifiers 24-6

Figure D-1 New and Old Scheduler QueuesD-2

Figure D-2 Overall Scheduler Queue Operation D-3

Figure D-3 Critical-Priority Scheduler Queue Operation D-4

Figure D-4 High-Priority Scheduler Queue Operation D-5

Figure D-5 Medium- and Low-Priority Scheduler Queue Operation D-7
xxxviii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



CISCO CONFIDENTIAL

Tables
Table 2-1 EHSA Functio n s2-13

Table 2-2 EHSA State Meanin gs2-14

Table 3-1 New API Functions for Keepalive Frames and Other Periodic Intervals3- 4

Table 3-2 Hardware IDB Field-Name Changes 3 -6

Table 3-3 Process States 3-7

Table 3-4 Set and Retrieve Information about a Process3-13

Table 3-5 Functions for Suspending Processes3-14

Table 4-1 Region Classes 4-5

Table 4-2 Region Media Access Attributes 4-6

Table 4-3 Region Hierarchy Types 4-6

Table 4-4 Region Inheritance Flags 4-8

Table 4-5 Set and Retrieve Information about a Region’s Attributes4-10

Table 4-6 Memory Pool Classes 4-13

Table 4-7 malloc() Family of Functions 4-15

Table 4-8 Chunk Pool Flags 4-21

Table 4-9 Mathematical Notations in VM Code 4-31

Table 5-1 Pool Item Vectors 5-3

Table 5-2 Pool Cache Item Vector s5-5

Table 7-1 Platform Strings 7-8

Table 7-2 Platform Values 7-9

Table 8-1 IPC Communication Services Environments 8-2

Table 8-2 Reserved Port Names 8-6

Table 10-1 Cisco IOS Socket Functions and Ma cros10-1

Table 13-1 Registry Files 13-2

Table 14-1 Functions to Get the Current Time from the System Clock 14-3

Table 14-2 Functions for Converting between Different Time Formats 14-4
Tables xxxix



CISCO CONFIDENTIAL
Table 15-1 Macros to Determine the State of Passive Timers in the Future 15-4

Table 15-2 Functions to Determine the State of Managed Timers15 -13

Table 16-1 Time-String Descriptor Formats 16-2

Table 16-2 %C and %CC Descriptor Modifiers 16-2

Table 16-3 printf() Modifiers for Timestam ps16-3

Table 16-4 print() Format Codes for Timestam ps16-3

Table 16-5 Examples of Formatting Timestamps 16-4

Table 16-6 Examples of Timestamp Output 1 6-4

Table 16-7 printf() %a Conversion Flags 16-4

Table 16-8 Examples of Using the printf() %a Conversion Flags 16-5

Table 16-9 printf() %A Conversion Flags 16-6

Table 16-10 Examples of Using the printf() %A Conversion Flags 16-7

Table 16-11 printf() %z Conversion Flags 16-7

Table 16-12 printf() %Z Conversion Flags 16-8

Table 17-1 Exception Signa ls17-1

Table 18-1 ROM Monitor Debugging Command 18-3

Table 19-1 Functions for Searching an RB Tree 19-3

Table 19-2 Functions for Retrieving Information about an RB Tree 1 9-3

Table 19-3 Functions for Traversing a Radix Tree 19-8

Table 20-1 Macros for Determining the State of a Queue 20-3

Table 20-2 List Action Vector Default Behavio r20-10

Table 23-1 Macros for Parsing Keywords 23-4

Table 23-2 Flags for Specifying Privilege Level When Parsing Keywords 2 3 -5

Table 23-3 Flags for Specifying Other Options When Parsing Keywords 2 3 -5

Table 23-4 Macros for Parsing Numbers 23-6

Table 23-5 Data Type and Number of Stored CSB Objects 23-13

Table 24-1 MIB Compiler Script Options 24-26

Table 24-2 MIB Compiler Script Options Supported for Backwards Compat ibility24-27

Table 24-3 MIB Repository and Workspace Directory Layout 24-48

Table 24-4 makefile Structure 24-49

Table 29-1 Character Formatting Strings 29-5

Table B-1 Cisco IOS LAN Protocol Subsystems B-1

Table B-2 Cisco IOS WAN Protocol Subsystems B-4

Table B-3 Cisco IOS Bridging Subsystems B-5
xl Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



CISCO CONFIDENTIAL
Table B-4 Cisco IOS Communications Server Subsystems B-5

Table B-5 Cisco IOS Utilities Subsystems B-6

Table B-6 Cisco IOS Driver Subsystems B-6

Table B-7 Cisco IOS Network Management Subsystems B-7

Table B-8 Cisco IOS VLAN Subsystems B-7

Table B-9 Cisco IOS Kernel Subsystems B-7

Table B-10 Cisco IOS IBM Subsystems B-7

Table B-11 Cisco IOS Library Utility Subsystems B-8

Table B-12 Cisco IOS ANSI Library Subsystems (Release 11.2 only) B-9

Table B-13 Cisco IOS Cisco Library Subsystems (Release 11.2 only) B-10

Table B-14 IP Host Subsystem Object File sB-12

Table B-15 Cisco IOS IP Routing Subsystem Object Files B-14

Table B-16 Cisco IOS IP Services Subsystem Object Files B-15

Table B-17 Scheduler Subsystem Object Files B-15

Table B-18 Chain Subsystem Object Files B-16

Table B-19 Media Subsystem Object Files B-16

Table B-20 Parser Subsystem Object Files B-16

Table B-21 Core TTY Subsystem Object Files B-17

Table B-22 Core Router Subsystem Object Files B-17

Table B-23 Core Memory Management, Logging, and Print Subsystem Object Files B-18

Table B-24 Core Time Services and Timer Subsystem Object Files B-18

Table B-25 Core Modular Subsystem Object Files B-19

Table B-26 Miscellaneous Core Subsystem Object Files B-19

Table D-1 Comparison between Old and New Scheduler Functions D-8
Tables xli



CISCO CONFIDENTIAL
xlii Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



CISCO CONFIDENTIAL
About This Manual
This section discusses the objectives, audience, organization, and conventions of this publication. 

Document Objectives
This publication provides an overview of the structure and design of the Cisco Internetwork 
Operating System (Cisco IOS) development code and it describes the tasks necessary to write code 
for the Cisco IOS code elements. It does not provide function syntax descriptions. Therefore you 
must use this publication in conjunction with the Cisco IOS API Reference publication. This 
publication has documented Releases 11.0, 11.1, 11.2, 11.3, and 12.0 of the Cisco IOS software.

This edition focuses on the changes in the current release, 12.0. In this release and the prior one, 11.3, 
emphasis was placed on enhancing the modularity and scalability of the IOS software to make it 
more flexible in accommodating frequent updates and many interfaces. In the first part of Chapte r1, 
“Overview,” these enhancements are summarized.

Audience
This publication is intended for Cisco internal development and test engineers, including new 
engineers and engineers at companies acquired by Cisco, such as LightStream, Newport, and 
Kalpana. This publication is also intended for Cisco internal porting engineers, who are porting the 
Cisco IOS software to third-party hardware and software products.

Document Organization
This publication is divided into seven main parts. Each part comprises chapters describing related 
functions of the Cisco IOS software. The organization of parts and chapters in this publication 
matches the organization of parts and chapters in the Cisco IOS API Reference, except that the 
reference publication does not contain appendixes. The parts in this publication are as follows: 

• Part 1, “Overview,” gives an overview of the Cisco IOS code. The chapters in this part describe 
the following:

— “Overview,” which describes the Cisco IOS components and summarizes thescalability 
enhancements in Releases 11.3 and 12.0

— “System Initialization,” which describes the initialization tasks performed by the Cisco IOS 
software when a platform is powered on or reset
 About This Manual xliii



 CISCO CONFIDENTIAL
• Part 2, “Kernel Services,” describes the services provided by the Cisco IOS kernel. The chapters 
in this part describe the following services:

— “Scheduler,” which creates ready queues for processes and schedules processes for 
execution

— “Memory Management,” which you use to define memory regions, memory pools, free lists, 
and add support for virtual memory (in Release 12.0 and after)

— “Pools, Buffers, and Particles,” which describes the buffer support for sending, receiving, 
and forwarding packets to and from network devices 

— “Interfaces and Drivers,” which discusses the interface descriptor block (IDB), the structure 
that describes the hardware and software view of an interface. The corresponding chapter in 
the Cisco IOS API Reference manual contains reference pages (man pages) for the IDB. For 
a discussion of the Extensible Plugin Driver API, available in Release 12.0, see Cisco IOS 
Device Drivers: Fundamentals of Architecture and Code.

— “Platform-Specific Support,” which describes the programming interface and developer 
hooks for handling platform-specific initialization issues, and for obtaining platform-specific 
strings and values

— “Socket Interface,” which describes the Cisco IOS socket interface implementation

— “Interprocess Communications (IPC) Services,” which describes Cisco IOS IPC services

— “ANSI C Library,” which describes the ANSI C library functions supported by the Cisco 
IOS software

• Part 3, “Kernel-Support Services,” describes Cisco IOS services that are provided in support of 
the basic kernel services. The chapters in this part describe the following kernel-support services:

— “Subsystems,” which describes how the Cisco IOS code is organized into hierarchical 
modules

— “Registries and Services,” which permit subsystems to install or register callback functions, 
discrete values, or process IDs for a service provided by the kernel or other modules

— “Timer Services,” which support periodic processes, timeouts, and delay measurements

— “Time-of-Day Services,” which describes the Cisco IOS software time-of-day clock 

— “Strings and Character Output,” which describes how to print strings and debugging 
messages

— “Exception Handling” for the Cisco IOS software

— “Debugging and Error Logging,” which describes the Cisco IOS software debugging 
mechanisms 

• Part 4, “Network Services,” describes network services provided by the Cisco IOS software. The 
chapters in this part describe the following network services:

— “Binary Trees,” which are used by the Cisco IOS software for storage and keyed retrieval 
data structures

— “Queues and Lists,” which allow you to manipulate linked lists of data structures

— “Switching,” which describes the various routing and switching designs in the Cisco IOS 
code

• Part 5, “Hardware-Specific Design,” describes how to customize the Cisco IOS software for the 
specific software on which it runs:
xliv Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
— “Porting Cisco IOS Software to a NewPl atform,” which provides guidelines for writing 
Cisco IOS code that is portable to different types of CPUs

• Part 6, “Management Services,” describes how to manage a Cisco IOS network:

— “Command-Line Parser,” which describes the interface between the user and the Cisco IOS 
kernel

— “Writing, Testing, and Publishing MIBs,” which provides an overview of SNMP and MIBs 
and describes a general procedure for establishing a new MIB, attempting in the process to 
answer questions commonly asked by MIB developers and to address mistakes commonly 
made by developers

— “IF-MIB,” which explains how to support subinterfaces in the interfaces group MIB-II

• Part 7, “Other Useful Information,” contains chapters that describe information that does not 
“slot” into the other six parts but nonetheless is important:

— “Scalable Process Implementation,” which addresses shortcomings in the Cisco IOS kernel 
code that interfere with developing scalable processes and describes ways to avoid these 
shortcomings

— “Backup System,” which is an overview of the redundant network connectivity scheme, as 
modified for Release 12.0

— “Verifying Cisco IOS Modular Images,” which explains how to verify Cisco IOS source 
code modularity, a modular image being a collection of linked object files that contain no 
unresolved references

— “Writing DDTS Release-Note Enclosures,” which provides guidelines for writing the text in 
which you report a problem in DDTS to customers

• Several appendixes provide the supplemental information:

— “Writing Cisco IOS Code: Style Issues,” which documents how to write Cisco I OS code, 
addresses the issues and conventions of the Cisco IOS software group.

— “Cisco IOS Software Organization,” which lists the subsystems in the Cisco IOS Release 
11.1 software

— “CPU Profiling,” which describes a low-overhead method of CPU profiling that allows you 
to determine what the CPU spends its time doing

— “Older Version of the Scheduler,” which describes the features and API functions that were 
peculiar to the scheduler prior to Release 11.0

— “Glossary,” which defines some terms related to the Cisco IOS software

— Inde

Document Conventions
Software and hardware documentation uses the following conventions:

• The symbol ^ represents the Control key. 

For example, the key combinations ^D and Ctrl-D mean hold down the Control key while you 
press the D key. Keys are indicated in capitals, but are not case sensitive.

• A string is defined as a nonquoted set of characters. 

For example, when setting up a community string for SNMP to “public,” do not use quotes 
around the string, or the string will include the quotation marks.
 About This Manual xlv



 CISCO CONFIDENTIAL
Command descriptions use these conventions:

• Vertical bars ( | ) separate alternative, mutually exclusive elements. 

• Square brackets ( []) indicate optional elements.

• Braces ( {}) indicate a required choice.

• Braces within square brackets ( [{}]) indicate a required choice within an optional element.

• Boldface indicates commands and keywords that are entered literally as shown.

• Italics indicate arguments for which you supply values; in contexts that do not allow italics, 
arguments are enclosed in angle brackets (< >).

Function prototype and macro descriptions, and C language keywords and code use these 
conventions:

• Text is in screen font.

• Italics indicate parameters for which you supply values; in contexts that do not allow italics, 
arguments are enclosed in angle brackets (< >).

Command examples use these conventions:

• Examples that contain system prompts denote interactive sessions, indicating that the user enters 
commands at the prompt. The system prompt indicates the current command mode. For example, 
the prompt router(config)# indicates global configuration mode.

• Terminal sessions and information the system displays are in screen font.

• Information you enter is in boldface screen font.

• Nonprinting characters, such as passwords, are in angle brackets (< >).

• Default responses to system prompts are in square brackets ([ ]).

• Exclamation points (!) at the beginning of a line indicate a comment line. They are also displayed 
by the router for certain processes. 

Note Means reader take note. Notes contain helpful suggestions or references to materials not 
contained in this manual.

Caution Means reader be careful. In this situation, you might do something that could result in equipment 
damage or loss of data.
xlvi Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  1
Overview





C H A P T E R

 CISCO CONFIDENTIAL

Overview
1

Overview
Moreover...they that weave networks, shall be confounded. Isaiah 18:9

1.1   Cisco IOS Software Components

The facilities and services available to application programmers writing code for platforms running 
Cisco IOS internetworking software can be divided into the following broad areas:

• Kernel Support Services

• Network Services

• Hardware-Specific Design

• Network Service and Protocols

• Management Services

This chapter provides an overview of each component listed above after giving an overview of the 
scalability changes in Releases 11.3 and 12.0.

1.2   Scalability Changes

The following changes were made to increase the Cisco IOS software’s scalability:

• Subblock and Lists

• Extensible Plugin Driver API

• Event-Driven Scheduling

• Other Scalability Changes

1.2.1   Subblock and Lists 
With Release 11.3, the policy has been to add no new fields to the interface descriptor block (IDB), 
the data structure that anchors interface state information. Instead, when adding a new interface, or 
adding a feature or option for an interface, a subblock has been used.

The use of subblocks has reduced the frequency with which all current IDBs need to be traversed. 
This frequency has been further reduced through the use of private, subblock-specific lists. For a 
discussion of subblocks and lists, see “Subblocks and Private Lists” in Chapter 6.
1-1



 CISCO CONFIDENTIAL
1.2.2   Extensible Plugin Driver API
On the 7200, C3600, and VIP platforms, the drivers that reside on a port adapter can share resources 
by creating a plugin driver. Details are documented in the “Extensible Plugin Driver API” chapter 
of Cisco IOS Device Drivers: Fundamentals of Architecture and Code.

1.2.3   Event-Driven Scheduling
Forms of polling that were not required by large numbers of programs have been replaced with 
event-driven methodology. The replacements have increased performance in all but one case. They 
have changed the way that you set keepalive frames and other periodic intervals and could hav
affected the way that you should handle route adjustment messages. See the section “Scalability 
Changes” in Chapter 3 , “Scheduler.”

1.2.4   Other Scalability Changes

1.3   Kernel Services

The Cisco IOS kernel provides support for lightweight processes, memory resource management, 
exception handlers, buffer management, and other low-level and key services for an embedded 
platform. Processes respond to commands entered at terminals and perform tasks for users.

1.3.1   Scheduler
The scheduler used by the Cisco IOS kernel is simple, event-driven, and nonpreemptive. A process 
in Cisco IOS terminology is roughly equivalent to a thread in other operating systems. Processes are 
run until they manually relinquish the processor. They can be one of four different priorities—low, 
medium, high or critical). The priority of a process affects how often the scheduler considers it for 
CPU time. Because the scheduler is nonpreemptive, badly behaved low-priority processes can 
prevent critical processes from running.

The Cisco IOS software provides a variety of primitives for signaling that a process should awaken, 
including semaphores, timers, signal flags, work queues, and simple booleans. These primitives can 
be used in any combination, and a process can have several possible sources of events. 

Processes can be created and destroyed at any point in time. Each process has its own stack, the size 
of which is specified when the process is created. 

Change Documentation

Modular Interface Naming and Numbering Chapter 6, “Interfaces and Drivers”

Maximum Interfaces Constant No Longer a Global 
Value

Chapter 6, “Interfaces and Drivers”

Enhanced High System Availability (EHSA) Chapter 2, “System Initialization”

Interrupt Service Routine (ISR) API ENG-17683, “Cisco IOS Interrupt Service 
Routing API for All Platforms” (11/04/97)
1-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Memory Management

 CISCO CONFIDENTIAL
1.3.2   Memory Management
The Cisco IOS kernel expects its applications to run in an unmanaged memory environment. There 
is no support for providing user- and kernel-space memory regions, and no memory management is 
performed on process context switches. 

Each platform has a distinct memory map that can include platform-specific memory areas to 
improve that platform’s performance. The Cisco IOS kernel needs to know about as much of the 
platform’s memory map as possible. The memory map is provided to the Cisco IOS kernel by the 
creation of regions. These are simply blocks of memory defined by a start address, a size, and 
memory and usage attributes. The platform-independent code then can use regions to derive memory 
map information without needing to know about platform specifics.

Memory pool support is provided to allow heap management and allocation of memory. Because a 
platform can have a variety of memory areas—such as local, shared, and fast—the memory pool 
support allows a variety of pools to be created to supply users of these various memory areas. 
Memory pools can manage discrete and disjoint regions of memory, allowing efficient usage of 
sparse and limited memory maps. The memory pools allow standard malloc() and free() 
operations to occur on the designated areas of memory.

1.3.3   Pools, Buffers, and Particles
Support for the handling and management network datagrams is integral to the Cisco IOS kernel. A 
buffer in the Cisco IOS software consists of two blocks of memory: a header block with context on 
the contents of a buffer and the data block, which holds the actual frame data. For simplicity, buffers 
are assumed to have contiguous data areas. In addition, buffers come only in a fixed range of data 
areas sizes and are managed by buffer pools.

Buffer pools hold a free list of identically sized buffers, all with the same memory attributes. Two 
different types of buffer pools can exist in the system: public and private.

Public buffer pools are created by default and are based on general media MTU and datagram sizes. 
They contain buffers with data areas that range from 100 bytes to 18 kilobytes in length. These buffer 
pools are available for all applications to use. Applications can dynamically grow and shrink the 
number of buffers available from public buffer pools to accommodate the demands of buffer usage.

Private buffer pools can be created by network drivers to manage specialized buffers for an interface. 
This allows drivers with particular memory alignment or size constraints to be accommodated 
cleanly.

The Cisco IOS software provides specialized primitives to allow applications to copy, trim, and 
adjust buffers. 

The majority of the Cisco IOS protocol and application code assumes that the frame data presented 
to it are contiguous. The default buffer managed by the pool code has a contiguous area of memory 
for the frame data. In order to permit drivers to support scatter-DMA, the Cisco IOS software also 
allows frame data to be composed of individual blocks called particles. The use of particles is 
currently the exception rather than the rule in the Cisco IOS code base; before using particles in any 
code, seek design advice from senior Cisco IOS engineers. 
Overview 1-3



 CISCO CONFIDENTIAL
1.3.4   Interfaces and Drivers
One of the fundamental data structures in the Cisco IOS software is the interface descriptor block 
(IDB). The IDB is split into a hardware descriptor, which describes an interface’s physical channel, 
and a software descriptor, which describes an end point to which packets should be routed. A 
hardware IDB always has one software IDB associated with it. Additional software IDBs can be 
associated with a hardware IDB. This allows support of features such as subinterfaces and DLCIs.

Private lists of IDBs allow router feature code to create and maintain a list of IDBs that is a list of 
only those IDBs that have the feature in question enabled. This allows searches of IDBs to scale 
efficiently as the number of interfaces for a platform grows.

Protocols and drivers can attach information to hardware and software IDBs using the Cisco IOS 
subblock support. This support allows the attachment of data structures to an IDB without the IDB 
data structures needing to have explicit reciprocal knowledge about the attachment. Because the IDB    
structures are used throughout the Cisco IOS software, this method of transparently attaching 
structures allows information to be associated with an interface without other protocols and drivers 
being affected by the addition.

1.3.5   Platform-Specific Support
Much of the Cisco IOS kernel is generic. However, platforms impose peculiarities on kernel 
components such as system initialization, memory pool definition, and user interface displays. To 
allow platforms to be supported with the minimal amount of change in the generic code, the Cisco 
IOS software provides a platform API for platforms to hook themselves into. This interface is used 
by the kernel to obtain information such as the platform and vendor names, and the serial number of 
the chassis. The platform API also provides the hooks that the platform support code uses to declare 
memory regions, memory pools, and TTY devices to the Cisco IOS kernel.

1.3.6   Socket Interface
This Cisco IOS socket interface implements a subset of the standard UNIX socket functions. The 
Cisco IOS functions perform identically or almost identically to their counterparts in the standard 
UNIX socket library.

1.3.7   Interprocess Communications (IPC) Services
The Cisco IOS Interprocess Communications (IPC) services provide a communication infrastructure 
so that modules in a distributed system can easily interact with each other.

1.3.8   ANSI C Librar
Starting with Release 11.2, the Cisco IOS software is formalizing its use of ANSI C library 
functions. The “ANSI C Library” chapter in the Cisco IOS API Reference describes these library 
functions.

1.4   Kernel Support Services

The Cisco IOS kernel provides features and facilities that allow applications to be added to the 
system image with minimal impact to other elements in the system. It also provides support for many 
commonly expected application services, such as printf() and string manipulation libraries.
1-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Subsystems

 CISCO CONFIDENTIAL
1.4.1   Subsystems
Subsystems allow the full image that is run on a platform to be pieced together from a palette of 
building blocks, many of which may be optional. This allows images to be constructed by selecting 
the pieces that are required without having to worry about linker dependencies.

All subsystems are declared by a subsystem header. Each subsystem has one header that provides all 
the information about the subsystem. The kernel uses the information in the header to initialize and 
install the subsystem into the system image. Each subsystem header is identified by a 64-bit “magic” 
number. All subsystems headers reside in the data segment of an image and are located automatically 
via their magic number when the system starts.

The main components of the header are the following:

• An entry point, which is called to initialize the subsystem

• A subsystem class specification, which indicates roughly when the subsystem should be called 
during platform initialization

• A set of properties that dictate dependencies of the subsystem. A requirements dependency 
allows subsystems to declare other subsystems on which they absolutely depend. If those 
subsystems are not found, the subsystem is not started. A sequence property allows intraclass 
initialization order to be specified. For example, if subsystem A must start before subsystem B 
and they are both of the same subsystem class, this information is specified in B’s sequence 
property.

1.4.2   Registries and Services
Registries are primarily used by the Cisco IOS kernel to manage function vector tables. However, 
rather than just managing the vector jump address, they also allow the calling sequence to be 
specified. This also allows the context of the function vector invocation to be abstracted. The intent 
is that, although the applications that add to the service hooks can change, the code invoking the 
registry service does not need to change.

A service is a particular instance of associated function vectors, processes, or values with a particular 
invocation characteristic. A registry is a collection of associated services. The characteristic of a 
service dictates the calling sequence used. A case service, for example, emulates a case statement in 
C and matches a function vector to a specified value. A loop service calls all the function vectors 
registered for a service upon invocation.

Applications usually register functions with the system services at run time, often via the relevant 
subsystem initialization routine. After that, services can be invoked by any section of code. 

1.4.3   Timer Services and Time-of-Day Services
The Cisco IOS software provides timer services for timing simple periodic events, performing 
duration timing, and so on. Timers can track time to the limits of the system clock accuracy, which 
is currently 4 milliseconds.

The Cisco IOS timer services implement the application-level functions by manipulating timestamps 
through a set of basic system calls. Typically, when a timer is set to expire at some point in the future, 
the system calculates the epoch (that is, the absolute time) of the expiration, and then the value of 
the system clock is watched until the expiration epoch is reached. 

There are two types of timers: passive timers and managed timers.
Overview 1-5



 CISCO CONFIDENTIAL
Passive timers act by checking the system clock and noting either the time as is or the time after 
adding a delay value. The noted value is then examined periodically, either by polling or when 
triggered by an event.

Managed timers are groups of timers that run together. They can be arranged hierarchically so that 
only the timer at the highest level needs to be tested for completion rather than having to test all 
individual timers.

The Cisco IOS software also provides a rich set of time-of-day services. It contains a software 
time-of-day clock that can be interrogated and manipulated in various ways. Time can be 
manipulated and displayed in three formats.

1.4.4   Strings and Character Output
The Cisco IOS software provides functions for printing strings and debugging messages. Some of 
these functions are identical in many ways to the ANSI C functions of the same name. However, 
minor changes have been made to them to support Cisco IOS software-specific needs.

1.4.5   Exception Handling
The Cisco IOS system provides a limited form of exception handling that can be used by processes. 
This exception handling was originally designed to provide an easy method for processes to catch 
hardware exceptions, but it has been extended to provide limited software signaling. In no way is the 
Cisco IOS exception handling intended as a general-purpose signaling mechanism, as there are 
simple message passing and IPC primitives provided.

1.4.6   Debugging and Error Logging
The Cisco IOS software provides several debugging mechanisms for development engineers and 
support personnel. These include core file generation, a simple ROM-based debugger, a client 
debugging stub for host-based debuggers, formatted output routines for high-level tracing, and 
compile-time options to include additional tracing and logging.

1.5   Network Service

The Cisco IOS software provides various features that support network services, including support 
for binary trees and for queues and lists.

1.5.1   Binary Trees
The Cisco IOS software provides several data structures and utilities in generic libraries that allow 
you to store and retrieve large amounts of information quickly based on a keyed lookup. The 
Cisco IOS software provides three implementations of binary trees: Red-Black (RB) trees, AVL 
trees, and radix trees.

The Cisco IOS implementation of RB trees is a threaded tree. That is, once you find a node using a 
keyed search of the data structure, the only operation necessary to find the next higher or lower node 
in key order in the data structure is to follow a linked list. A variation on the RB tree—called interval 
trees—is also implemented in the same library as the RB tree. Interval trees are used when the key 
for an entry has an attribute of width or range.
1-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Queues and Lists

 CISCO CONFIDENTIAL
AVL trees, named for Adel’son-Vel’skii and Landis, are balanced search trees. Balance is maintained 
in an AVL tree by use of rotations; as many as O(log n) rotations may be required after an insertion 
in order to maintain the balance of the tree. 

1.5.2   Queues and Lists
The Cisco IOS software provides a variety of functions for manipulating linked lists of data 
structures. These functions support singly linked lists (sometimes also called queues) and doubly 
linked lists. 

The functions for singly linked lists allow items can be added and removed from any position in the 
list. Data items can be on one or more queues simultaneously.

The Cisco IOS software provides support for simple doubly linked lists and for the list manager, 
which is a fully developed set of functions for manipulating doubly linked lists. Using the list 
manager, you can place the same item on multiple data structures.

1.5.3   Switching
The Cisco IOS software supports four different classes of switching: 

• Slow switching (also known as routing). This class of switching is present in all routers.

• Fast switching. This class of switching is present in all routers.

• Autonomous switching. This class of switching is present only in routers with a ciscoBus, 
CxBus, or CyBus controller.

• Silicon switching. This class of switching is present only in routers with an SSE card.

1.6   Hardware-Specific Design

Various portions of the Cisco IOS software must be customized for the specific hardware on which 
it runs.

1.6.1   Porting Cisco IOS Software to a NewPlat form
One advantage of programs written in the C language is that they can be ported to a wide range of 
platforms. However, software in C can be written so that it is not portable to other platforms. This is 
true of parts of the Cisco IOS code, which assume a certain type of microprocessor. 

1.7   Network Service and Protocols

Figur e1-1 shows a high-level overview of the network services and protocols available to run on top 
of the Cisco IOS software base. The left side of the diagram shows many of the routed protocols and 
their related routing protocols. Although these routed protocols allow many internals hooks to their 
routing protocols, the interface between the protocols and the rest of the Cisco IOS system for frame 
transmission and reception is actually relatively straightforward.

To transmit frames, the protocols use the relevant encapsulation modules—shown on the right side 
of the diagram—to add a media encapsulation. The encapsulation is specified by either the interface 
driver or via a user interface command. After the outgoing frame has been successfully encapsulated, 
Overview 1-7



 CISCO CONFIDENTIAL
it can be enqueued on the outgoing interface queue for final transmission. The default enqueuing 
behavior for the outgoing queues is a simple FIFO, but if a specialized queuing algorithm is specified 
for the outgoing interface—such as priority or custom queuing—the frame is evaluated and 
enqueued using the rules for that queuing algorithm. The drivers—shown at the bottom of the 
figure—dequeue the next frame for transmission when they have space on their outgoing queues.

Frame reception is demultiplexed through a central incoming handler supplied with frames from the 
drivers. Each protocol registers a handler with the central demultiplexer and is called when a frame 
for that protocol is received.

Many protocols implement support for fast switching, which uses a cache of encapsulations that is 
built automatically from previous outgoing frames to quickly switch datagrams to an output 
interface. The fast-switching cache is populated by the encapsulation routines used by the protocols 
to send frames. 

Autonomous and SSE switching are higher performance switching methods used by higher 
performance Cisco platforms. These switching methods also build various caches from the 
encapsulations of previous outgoing datagrams.

Figure 1-1 Cisco IOS Network Services and Protocols

PIM
EGP
BGP
IGRP
OSPF
IP EIGRP
IP ISIS
RIP

RIP
NLSP
IPX EIGRP

AURP
RTMP
AT EIGRP

ISIS
ISO IGRP

RIP

IP

IPX

AppleTalk

CLNS

VINES
DECnet
XNS
Apollo

Network Services
Queue
Management

Priority
Custom

Encapsulation

IP
IPX
AppleTalk
CLNS
VINES
DECnet
XNS
Frame Relay
Bridging

Fast
Switching 

SSE

IP
IPX
CLNS
Bridging

Autonomous
IP
IPX
CLNS

Lance
ND64570
MK5025
TMS380
BSI
AM79C970
M32

EIP
FIP
TRIP
FSIP
MIP
CIP
AIP
HIP

MCI
SBE16
STR

Tunnel
Lex
Loopback
Null

GRE
EON
DVMRP
MacIP
Cayman
NOS
AURP

Ethernet
FDDI
Token Ring
ATM

HDLC
SMDS
Frame Relay
PPP
X.25
LAPB

SDLC
LLC
STUN S

38
16
1-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Management Services

 CISCO CONFIDENTIAL
1.8   Management Services

The Cisco IOS software provides facilities for network management from the command line and 
management applications.

1.8.1   Command-Line Parser
The Cisco IOS command-line parser is a finite state machine described by a series of macros that 
define the sequence of a command’s tokens. Each macro defines a node in the state diagram of a 
command. This definition includes a pointer to the node to process if the current node matches the 
command-line input and an alternate node to process regardless of whether the current node is 
accepted. Optional parameters and keywords are indicated by alternate states in the parse tree. A 
macro exists for every type of object that can be parsed, such as keywords, integers, addresses, and 
string text.

1.8.2   Writing, Testing, and Publishing MIBs
The Simple Network Management Protocol (SNMP) supplies an interface for programming the 
management of network devices. It is the network-based access method to network devices used by 
Cisco's network management applications and those developed by third parties. “SNMP” is the 
commonly used name for the Internet-Standard Network Management Framework. This framework 
is a product of the Internet Engineering Task Force (IETF).

Cisco has supported SNMP version 1 (SNMPv1) for some years. As of Cisco IOS Release 10.2, 
Cisco implements a bilingual SNMP agent, which supports SNMPv1, SNMPv2. A primary 
component of SNMP is the Management Information Base (MIB), which defines data for 
observation and control and asynchronous notifications. Cisco implements several standard and 
enterprise MIBs.

Additional information about SNMP at Cisco is available at Cisco SNMP, and about MIBs at Cisco 
at SNMP MIB. If you are just starting to work with MIBs, off-the-shelf books are another good 
source of general information.

1.8.3   IF-MIB
With the addition of the IF-MIB (RFC 2233), the Cisco IOS software can now support subinterfaces 
in the interfaces group of MIB-II. To provide support for these new subinterfaces, you need to 
understand how to use the following components in registering or deregistering sublayers:

• Four key IF-MIB tables

— ifTable

— ifXTable

— ifStackTable

— ifRcvAddressTable

• Subiabtype data structure

The h/snmp_interface.h  file contains the subiabtype data structure. Be sure that you study and 
understand this structure. It is the one that you use to pass information across the IF-MIB API.

• Functions in the IF-MIB API.
Overview 1-9



 CISCO CONFIDENTIAL
A series of files holds the support for registering, updating, and deregistering subinterfaces in the 
IF-MIB: snmp/ifmib_registry.reg, snmp/ifmibapi.[ch], h/snmp_interface.h, and the 
ifType file.
1-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

System Initialization
2

System Initialization
2.1   Overview: System Initialization

Each time a platform is powered on or reset, the Cisco IOS code performs a startup sequence of 
initialization tasks before the platform can begin routing and participating in network traffic 
transactions. 

System initialization is divided into several sequential sections, each controlled by a particular piece 
of Cisco IOS code or a supporting item such as the ROM monitor. This chapter first describes the 
initialization sections, then describes the Enhanced High System Availability (EHSA) API, which 
was added in Release 12.0. 

EHSA is a two-processor redundancy system: one takes over when the other dies or crashes. The 
EHSA section starts with an Overview that points out things to consider when designing EHSA 
support for your platform. It continues with an Implementation Guide that provides sample code and 
EHSA CLI syntax. The last section, EHSA Crash Handling gives a step-by-step description of what 
occurs when a processor crashes and specifies the information and functionality needed in platform 
code to handle a crash.

2.2   Basic Initialization

Basic initialization of a platform occurs after the platform is powered on or reset and before the 
Cisco IOS code initializes. Basic initialization consists of the following processes: 

• Initialization by the ROM Monitor

• Bootstrap a Cisco IOS Image

• Allow the Cisco IOS Image to Take Control of the Platform

• Fundamental Initialization

2.2.1   Initialization by the ROM Monitor
Currently, each Cisco-proprietary platform running Cisco IOS software has a ROM monitor in it. 
The ROM monitor is responsible for initializing the platform so that it can launch the C iscoIOS 
software.

When a platform is powered on, the ROM monitor performs the following initialization steps:

1 Performs error checking for the hardware and verifies that the system is healthy. 
2-1



 CISCO CONFIDENTIAL
2 Sizes and initializes memory to a known state. Initializing memory to a known state is required 
in order for parity to be enabled on systems where the DRAM is parity-checked for errors. 

Note that the ROM monitor does not initialize interfaces at this point, because it has knowledge 
only of the most basic hardware aspects of a platform.

3 What happens next depends on the settings of the configuration register. This register controls 
many aspects of platform bootstrapping. The actual form of the register varies from platform to 
platform. Many of the newer Cisco platforms store the configuration register settings in 
NVRAM; some older platforms use a DIP switch.

If the configuration register is set not to autostart (bootstrap mode), the ROM monitor stops at its 
command-line interface and does not proceed further without user intervention. 

If the configuration register is set to autoboot, the ROM monitor continues and attempts to 
bootstrap a Cisco IOS image.

2.2.2   Bootstrap a Cisco IOS Image
How the ROM monitor attempts to bootstrap a Cisco IOS image depends on the platform. The 
following scenarios are used to bootstrap an image: 

• Bootstrap a Cisco IOS Image from ROM

• Bootstrap a Cisco IOS Image from a Network

• Bootstrap a Cisco IOS Image from Flash Memory

2.2.2.1   Bootstrap a Cisco IOS Image from ROM 
Many older Cisco platforms run the Cisco IOS image from ROM. On these platforms, both the ROM 
monitor and a full version of a Cisco IOS image are programmed into the same set of ROMs, which 
is then installed in the platform. For example, both the CSC/4 and the original IGS can boot this way. 
When the platform is powered up, the ROM monitor dispatches directly into its companion copy of 
the Cisco IOS image—once the image is initialized—and runs the Cisco IOS image directly from 
ROM. 

Bootstrapping a Cisco IOS image from ROM is the simplest form of booting. However, it is not a 
viable method for newer Cisco platforms because of the massive growth in image sizes and the 
serviceability aspects of upgrading code.

2.2.2.2   Bootstrap a Cisco IOS Image from a Network
A common method of booting a Cisco IOS image is to load a copy of the image over the network 
from a TFTP host. This is done by using an intermediate bootstrap. 

The Cisco IOS software is structured so that it can act as a bootstrap to load another version of code. 
This allows the combination of the ROM monitor and a copy of a Cisco IOS image to load any other 
version of the Cisco IOS software. 

The copy of the Cisco IOS software that is used as the bootstrap can come from one of two places:

• ROM—This bootstrap can either be a full version of a Cisco IOS image or an abridged version 
without routing called a boot image. The image resides in the same ROM set as the ROM monitor. 
Upgrading the bootstrap involves changing the ROM and can be laborious.
2-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Allow the Cisco IOS Image to Take Control of the Platform

 CISCO CONFIDENTIAL
• Bootflash—This bootstrap is an abridged boot image in a separate bank of Flash called bootflash. 
Newer Cisco platforms use this bootstrap method to avoid having to manually upgrade the 
bootstrap so that it recognizes new interfaces. This method requires the newer ROM monitors, 
which use the BOOT variable to determine their bootstrap program.

Bootstrapping a Cisco IOS image from the network occurs as follows:

1 The platform requests bootstrapping from the network. This request can occur from two places:

— ROM monitor command line. In this case, the command line is available to t he CiscoIOS 
software image for parsing.

— System configuration (usually in NVRAM). In this case, the image name and host (if 
specified) are available from the configuration file.

2 The bootstrap attempts to load the Cisco IOS image onto the platform. The bootstrap grabs the 
remaining DRAM in the system and copies the image into it. Therefore, the bootstrap memory 
footprint should be kept as small as possible. 

3 Once the image is loaded, the bootstrap terminates itself, returning control of the system to the 
ROM monitor. 

4 If the image is compressed, the ROM monitor decompresses it. 

5 The image is then relocated to its proper position in memory.

6 The system is restarted and executes the newly loaded copy of the Cisco IOS image.

2.2.2.3   Bootstrap a Cisco IOS Image from Flash Memory
Loading a Cisco IOS image from the network can be error-prone because of network and equipment 
outages. Many Cisco platforms provide support for Flash memory, which allows images to be copied 
and stored locally. 

The sequence for booting from Flash memory is roughly the same as that for booting from the 
network, with the image being copied from local Flash memory rather than loaded over the network. 
However, there are a few differences. On newer platforms with bootflash, the ROM monitor must 
know how to access the Flash memory in order to load the bootstrap. On these platforms, full 
Cisco IOS images can be loaded directly from Flash memory without needing an intermediate 
bootstrap. On older platforms, a copy of the Cisco IOS software must be used to bootstrap the 
platform because the ROM monitor on these platforms knows nothing about the Flash memory 
present.

2.2.3   Allow the Cisco IOS Image to Take Control of the Platform
The entry point to the Cisco IOS image, which is usually called by the ROM monitor, allows the 
image to take control of the platform and begin executing. Each platform has a small section of code 
that handles the transition from ROM monitor to Cisco IOS image and is responsible for satisfying 
the platform-specific and image-specific needs of the system. 

The following sequence of events occurs at the entry point to the Cisco IOS image:

1 What the code at the entry point does first depends on the platform on which the image is loaded.

— For 680x0-based platforms, which have no MMU support, no initialization of a virtual to 
physical memory table is required. 
System Initialization 2-3



 CISCO CONFIDENTIAL
— R4600-based platforms rely on the MIPS translation lookaside buffer (TLB) mechanism to 
build their address maps. As a consequence, the first thing that the R4600-based images do 
is construct the TLB table to use for that platform. (This table must be position independent.) 
Once this is done, normal addresses can be used and the execution path returns to the same 
one that the 680x0-based platforms use. 

2 The generic code that follows the entry point first enables the basic GNU debugger (GDB) 
support for debugging. 

3 What happens next depends on where the data segment for the image is located with respect to 
the text segment. 

— For images that are running from ROM or directly from a Flash bank, the data segment must 
be copied into DRAM so that it can be modified by a running system. 

— For images that are running from DRAM, no relocation is required.

Once bootstrapping for the Cisco IOS image is complete, the fundamental initialization of the 
Cisco IOS software image can proceed.

2.2.4   Fundamental Initialization 
When a Cisco IOS image is launched, the initialization sequence illustrated in  Figure2-1 is executed 
before the scheduler is started and processes begin to run. 
2-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Fundamental Initialization

 CISCO CONFIDENTIAL
Figure 2-1 Cisco IOS Fundamental Initialization Sequence 

In Figur e2-1, there are five key points during the fundamental initialization sequence:

1 The BSS segment is cleared almost immediately at the start of the fundamental initialization 
sequence. (BSS is where the linker puts all global uninitialized variables.) Do not reference global 
data structures before this point unless you are extremely careful.

2 The memory management code is started comparatively late in the fundamental initialization 
sequence. No references to malloc() or free() can be made before this time. The 
platform_memory_init()  function is called to allow platforms to declare their memory regions 
for the region and memory manager to control.

3 The ROM monitor always runs at the highest interrupt level possible. For example, on 
680x0-based platforms, it runs at interrupt level 7. Up until this point, the initialization has run at 
the highest level, dropping to a lower level only to initialize the console because it was called 
directly from the ROM monitor. However, following this, all interrupts are effectively enabled. 
Therefore, all interrupt sources must either be squelched or fully handled by this time.

4 The remainder of Cisco IOS initialization is done from an initialization process. This process is 
created before the scheduler is running. Once the scheduler is started, the initialization process is 
run and the rest of the initialization completes.

Clear BBS

Initialize system clock

Initialize interrupt handler support

Call platform_main()

Checksum text segment

Initialize list, memory and region managers

Call platform_exception_init()

Initalize console

Set interrupt level to ALL_ENABLE

Initialize scheduler

Launch initialization process

Start scheduler

1

2

3

4

5

S
42

15
System Initialization 2-5



 CISCO CONFIDENTIAL
5 The scheduler is started, and the initialization thread becomes the context from which the main 
loop of the scheduler is run. If the scheduler is stopped, the thread returns to the ROM monitor. 
This is how the reload mechanism returns control to the ROM monitor.

2.3   Cisco IOS Initialization Process

Most of the features associated with a Cisco IOS image are initialized from the initialization process 
created by the fundamental initialization context . Figure2-2 illustrates the system initialization 
sequence for the Cisco IOS kernel, network, and subsystem portions of the Cisco IOS code. 

Figure 2-2 System Initialization Sequence

Initialize registry support

Start heap checking

Create buffer pools

Start error logging

Initialize exec, login, and authorization support

Initialize SNMP core

Discover subsystems

Initialize kernel subsystems

Start basic network support

Initialize TTY devices

Discover NVRAM

Start protocol subsystems

Start library subsystems

Start management susbsystems

Initialize driver subsystems

S
42

16
2-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Enhanced High System Availability (EHSA)

 CISCO CONFIDENTIAL
Once the initialization shown in  Figure2-2 has been executed, the initialization process continues to 
execute a variety of boot and configuration options, such as loading the configuration from a TFTP 
server. Finally, the configuration is parsed to set the initial state of the interfaces and protocols. At 
this point, the initialization process terminates and the platform is considered initialized.

2.4   Enhanced High System Availability (EHSA)

EHSA is a redundant processor scheme: one processor takes over if the other happens to die or crash. 
This section describes how to implement EHSA, starting with an overview that spells out 
requirements and things to take into consideration when planning your EHSA strategy. Following 
the overview, an short implementation guide is provided, which shows you code samples from an 
implementation on two C7200 routers, refers you to specifications for other implementations, and 
delineates the framework for a cross-platform EHSA command line interface (CLI) syntax.

2.5   Overview

As Cisco moves into the carrier market, high availability (uptime) of an IOS image is becoming more 
and more critical. EHSA is an extension to the High System Availablity (HSA) feature that existed 
on the 7500 product. It is a platform-independent method of providing high availability.

EHSA works with two processors in the same chassis. These two processors might not share 
interface cards, or they might share some interfaces but not others. 

Note Because EHSA is intended to be a two-processor implementation only, if interfaces are not to 
be shared by the processors, the configuration and location of those interfaces should be identical 
and they should be connected e ternally with y cables.

EHSA, like HSA, has the two processors in a master-slave relationship, where the master is 
responsible for all IOS functionality. EHSA also has the slave processor do a of couple things: 
perform a 0 boot time initialization sequence and provide the framework for higher level protocols 
to provide master-to-slave updates.

2.5.1   Master-Slave Communications
EHSA will communicate from master to slave using Cisco IPC. Some platforms may need another 
form of communication to operate before IPC comes up.

Take care when updating IPC code to make your changes as backwards compatible as possible.

2.5.2   Health Monitoring
Health monitoring will be performed by an EHSA process. This process will be of critical priority. 
EHSA will send a keepalive from the master to the slave. The interval is determined by each platform 
and probably should be on the order of 1 or 2 times per second. The slave can use these keepalives, 
or the lack thereof, as one of the criteria for determining if it should take over.
System Initialization 2-7



 CISCO CONFIDENTIAL
The master should also have ways of informing the slave to take over immediately. These should be 
triggered through several different mechanisms. These include the reload command and a registry 
added to the crash routine, similar to the way a crash dump works. (See Ta ble2-1.)

The crash mechanism could also be used to alert protocols on the master that they should finish any 
communication with the slave, although this is a later phase project.

2.5.3   Slave Access and Information Requirements
The master processor needs to be able to access several devices on the slave. It needs to pass several 
pieces of information to the slave.

2.5.3.1   File System
The Route/Switch Processor (RSP) file system should be used on any platforms implementing 
EHSA. It currently contains IPC extensions that allow the master access to any device on the slave 
that the master is aware of. Right now, the master RSP can access the following slave devices:

— configuration (NVram)

— flash

— slot0

— slot1

— bootflash

The master does so by adding the prefix “slave” to each device and by using an IPC-based remote 
filesystem to each device. This remote file system over IPC has been made platform-independent. 

The master has both a remote filesystem server and a remote filesystem client. Although the slave 
has a remote filesystem client, the remote file system server on the master is not currently used.

In addition, putting a remote filesystem client on the slave gives it the ability to access the master's 
tftpboot device, thus allowing the slave to netboot using the master's filesystem.

Any future enhancements to EHSA or the file system must guarantee the reliability of the file system 
service.

2.5.3.2   Boot Parameters
HSA passes certain parameter variables (BOO , BOOTLDR, and CONFIG) from the master to the slave. 
These should still be passed but have been changed to use environment-like variables.

2.5.3.3   Time
The master should update the real time clock on the slave. (This ability also exists for HSA.) There 
are two requirements:

1 System time

System time is sent every minute or so to ensure that the slave's idea of time does not drift too 
much from the master’s.

2 Battery-backed calendar
2-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Slave Access and Information Requirements

 CISCO CONFIDENTIAL
Battery-backed calendar time is sent to the slave whenever it has written the master, either 
because the user issued a command or because Network Time Protocol (NTP) is configured to 
periodically update the calendar.

The first is so that slave processes use the correct time, for example remote filesystem timestamps. 
The second is to ensure that after a changeover, the router boots with the correct time/date.

2.5.3.4   Future Projects
EHSA provides the framework for allowing the protocols and device drivers to pass state 
information. This includes infrastructure changes for allowing the protocol and driver subsystems to 
be informed if a slave is taking control from an active master, or if the processor is a master taking 
control for the first time (that is, a power on situation or one where there were two slaves vying for 
control).

This could be done by adding a new subsytem to register for when a slave comes up. A protocol or 
device driver could register an IPC session. Then, when the slave took over, it would be informed in 
the subsystem header that is passed as part of the PROTOCOL subsystem init.

2.5.3.5   Version Compatibility
Version compatibility is very important for passing information from the master to the slaves. This 
compatibility comes at several different layers. 

The first layer is IPC. If an IPC connection cannot be established when the slave first comes up, there 
must be some way to determine who should be master. This should be on a platform-by-platform 
basis. Basic IPC must be compatible for all versions of EHSA.

The second layer of version compatibility is between the master and slave during the hello messages. 
If the slave is incompatible with the master, the slave should still come up but should never take over 
for the master. At a minimum, the remote file system code should always be available to copy new 
images to the slave.

The last layer of compatibility is for each of the services that uses EHSA. Each service needs to 
verify that it is compatible with the slave. This should occur each time a slave initializes contact with 
the master. For example, if a routing protocol implements a set of master-to-slave state machines, 
that protocol would be responsible for determining if a feature exists on the slave (or master) and 
reporting to the console if an incompatibility exists.

If a slave has more services than a master, this should not be cause for an automatic switchover. 
Operator intervention should be required to get the master and slave running more compatible 
versions.

Some services that must never become incompatible include keepalives and file system.

2.5.3.6   Auto Sync
Auto sync is a configuration copying service. When a configuration is saved to NVram (or 
startup-config), the master will copy that configuration to the slave.

Auto-sync should be defaulted on, and should run the copy startup-config slavestartup-config 
command.

ROM Monitor (rommon) variables and boot variables must also be auto sync’d.

Sync’ing of images is manual, and must be done by the operator.
System Initialization 2-9



 CISCO CONFIDENTIAL
2.5.3.7   Slave Console
While the slave is running in anticipation of being a master, several console commands should be 
accessible, including most show commands that access kernel information.

Certain commands will need to be filtered out, including allowing the slave to enter configuration 
mode, and all commands involving interfaces. Most commands will not be active in the system, since 
the driver and protocol registration has not taken place.

Some commands will have to be registered earlier.

The master should also have access to the slave's console. Something similar to the if-console 
command implemented for the VIP platform should be implemented. Only 1 if-console session 
should be active at any time.

It is desired to have GDB run over the if_console command. This is a requirement for platforms that 
have a single console for both processors. In that case, IPC might not be the correct transport 
mechanism for console messages.

We may also have to pass the console configuration from the master over to the slave, since we will 
not have run the initial NV configure on the slave.

2.5.3.8   Slave Message Logging on Master
The slave should be able to pass error messages to the master. The master should also be able to 
access the crash history of the slave. This is not a requirement but an option. It should be available 
on a per-platform basis.

2.5.3.9   Seamless Software Upgrades
A seamless software upgrade would be if the master loaded the slave with a new image, rebooted the 
slave, then switched from the master to the slave when the slave came up and was ready.

When the master was ready to switch over, it would inform all the services that are running on the 
master so that they could complete passing whatever information was current, then switch to the 
slave.

The ability to provide seamless software upgrade is part of EHSA. Implementation is dependent on 
the individual protocols and platforms.

2.5.3.10   Mac Addresses
This is a concern for platforms that do not share a common MAC address PROM on the backplane. 
In this case, the MAC addresses from one of the processors must be passed from the master to the 
slave. 

On these boxes, to ensure that the MAC addresses remain the same, the MAC addresses should be 
written to the configuration. This is a platform-dependent item.

2.5.4   Basic Flow and Operation

2.5.4.1   Basic Slave Operation
To implement EHSA on a full image requires the slave to stay in a state before the interface driver 
class subsystems are initialized. 

This should probably occur before, or at the time of, platform_interface_init() .
2-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Implementation Guide

 CISCO CONFIDENTIAL
2.5.4.2   Initialization
EHSA can be broken down into the following initialization cases: a slave coming up with an existing 
master, both slaves coming up, and a slave coming up with no communication from the master.

When a slave is coming up with an existing master, this case should be determined quite rapidly 
because the IPC session should begin almost immediately and messages should be passed between 
the master and the slave. In this case, there should be no voting. There should be no way a slave that 
comes up should be allowed to become the master, unless the master crashes, or unless the operator 
orders the switchover.

The more difficult case is the second, when two slaves are coming up at the same time. In that case, 
IPC must come up and they must negotiate which is to be the master. We must come up with some 
generic mechanism (perhaps based on version number). If all things are equal, you need to provide 
a platform-dependent way to break the tie.

If, in the third case, IPC does not come up when a slave is initializing, the slave must wait a certain 
period before continuing with its initialization. This period should probably be a significant amount 
of time—30 seconds or so—to attempt to avoid any blackout periods that the other side might have 
during its own initialization, and should be done on a platform-to-platform basis. This does increase 
the time period of initialization for a complete failure.

Care should be taken during the initialization period not to disable interrupts, and to suspend so that 
the IPC task can run, and check if another slave has come up. This will require that the init process 
must periodically suspend.

2.5.4.3   Interaction with the Boot Loader Image
Most high-end routers contain a boot loader image, which consists of enough code to netboot or to 
load the real image from flash.

Boot loader images must also be aware of the master-slave relationship. They have the same 
problems with initialization that are discussed in the preceding section (Initialization). 

Boot loader code only has a problem between master and slave if netbooting is tried, and only when 
there is not a clear master. 

For information regarding a boot loader netbooting when a master is up, see File System above. For 
a boot loader to netboot when there is no clear master, one boot loader must become the master; 
therefore, EHSA code is required to be in the boot image. The slave must stay in the boot loader slave 
state until the master comes up fully, including not taking control from the time the master image 
finishes loading the image until the time the master gets to the negotiation point. This will require a 
different algorithm in the boot loader for EHSA slave takeover than in the production image.

2.6   Implementation Guide

This section shows you a sample implementation. The two C7200 routers in the sample are 
connected via a DEC21140 FE PA (port adapter). No other hardware support is implied. There is no 
ROM Monitor (rommon) support required.

Note Recommended reading in addition to this chapter: ENG-20467, CPU Redundancy for 
Cougar.
System Initialization 2-11



 CISCO CONFIDENTIAL
2.6.1   Initializing EHSA
The last opportunity for determining primary or secondary status and acting on that status is at the 
end of platform_interface_init() . This also appears to be the best place for initializing EHSA. 
At any rate, your platform must initialize EHSA before the end of platform_interface_init() .
2-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



EHSA APIs

 CISCO CONFIDENTIAL
2.6.1.1   SUBSYS_CLASS_EHSA
SUBSYS_CLASS_EHSA is for initializing subsystems that would normally be initialized in the driver 
subsystem but need to be initialized earlier for EHSA: 

/*
+      * Initialize the EHSA(redundancy) subsystems.
+      */
+     subsys_init_class(SUBSYS_CLASS_EHSA);

2.6.2   EHSA APIs
Table 2-1 lists the EHSA API and registry functions, with a short description of each call. You will 
find reference pages on each of the API functions in the “System Initialization” chapter of the Cisco 
API Refe ence manual.

Table 2-1 EHSA Functions 

API Call Description

ehsa_event() Tells EHSA to switch state.

ehsa_get_state() Gets the current EHSA state.

ehsa_suspend_init() Suspends the init process.

ehsa_resume_init() Causes the init process to resume.

ehsa_secondary() Become an EHSA Secondary: suspends the init 
process and starts the EHSA Secondary 
background process.

ehsa_primary() Starts the Primary background process.

ehsa_init_control() Initialize the control structure, ehsa_control_t.

Registry Call Description

ehsa_switch_to_primary(void) A list registry for functions that need to be run 
when a Secondary transitions to Primary. 
Invoked from ehsa_event().

ehsa_switch_to_secondary(void) A list registry for functions that need to run 
when a Primary dies. This should only be used 
for clean up prior to crashdump or reload. 
Invoked from ehsa_event().

ehsa_switch_to_standalone(
              ehsa_event_t old_state)

A list registry for functions that need to run 
when either a Primary or Secondary becomes 
the sole controlling CPU in the chassis. The 
previous state is passed to the invoked 
function(s). Invoked from ehsa_event().
System Initialization 2-13



 CISCO CONFIDENTIAL
2.0.0.1   Actions on Status -State Transitions 

2.0.0.2   Using ehsa_event() to Trigger State Transitions
When it detects a status change, of either the Primary or the Secondary, the platform must notify 
EHSA via the ehsa_event() call: 

• If on the Secondary:

— If the Primary has died or any other condition exists that prevents it from acting as Primary, 
use ehsa_event(EHSA_SW_P) (reinit as IPC master in the platform code). The EHSA code 
cleans up and then transitions to state EHSA_PRIMAR .

• If on the Primary:

— If the Secondary has died, use ehsa_event(EHSA_SW_SA) .

— If it self-detects an error, use crashdump(). EHSA crash handling will be invoked from 
crashdump().

Table 2-2 EHSA State Meanings

State and Meaning Trigger Event Actions Valid Transitions

EHSA_STANDALONE

No other EHSA-capable 
card is currently known. 
It means that this CPU is 
the controlling CPU and 
is acting as a standalone. 
This is the initial state 
(when bss is initialized 
to 0 in main()). This is 
also the state that should 
be set when the 
hardware detects that the 
other EHSA card has 
been pulled from the 
chassis.

ehsa_event(EHSA_SW_SA) reg_invoke_ehsa_switch_to_standalone() 
is invoked. If a CPU was previously a Primary, the EHSA 
Primary background process is killed. This stops all 
EHSA activity. EHSA must be re-activated if a 
EHSA-capable card is inserted. If a Secondary, this 
causes the EHSA code to resume the init process, kill the 
EHSA Secondary background process and cause 
ehsa_secondary() to return. This CPU will finish 
init and control the box.

EHSA_PRIMARY, 
EHSA_SECONDARY

EHSA_PRIMARY

Two EHSA-capable 
cards exist and this one 
is Primary.

ehsa_event(EHSA_SW_P) None. See ehsa_primary() in the API section above. EHSA_STANDALONE,

EHSA_DEAD

EHSA_SECONDARY

Two EHSA-capable 
cards exist and this one 
is Secondary

ehsa_event(EHSA_SW_SD) None. See ehsa_secondary() in the API section 
above.

EHSA_DEAD

This CPU is dead or 
dying. Last EHSA state 
before returning to ROM 
Monitor (rommon).

ehsa_event(EHSA_SW_D) An attempt is made to kill any EHSA process and notify 
the other CPU that this CPU is dead. Best effort attempt. 
Type of error or crash may prevent this CPU from doing 
any of the above.
2-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Examples

 CISCO CONFIDENTIAL
• If OIR:

— If a new EHSA-capable card is being inserted, use ehsa_init_control(),  
ehsa_event(EHSA_SW_P) for the existing card, and ehsa_event(EHSA_SW_SD)  for the new 
card.

— If an existing Primary or Secondary is being removed, use ehsa_event(EHSA_SW_SA).

2.0.1   Examples
The following sample code is from platform_interface_init()  in 
src-4k-c7100/platform_c7100.c :

ehsa_discover(ehsa_hwidb);
        state = ehsa_get_state();
        switch (state) {
            case EHSA_SECONDARY:
                state = EHSA_PRIMARY;
                ehsa_slave_ipc_init(ehsa_info->hwidb, ehsa_info->other_mac);
                ehsa_secondary();
                break;
            case EHSA_PRIMARY:
                ehsa_master_ipc_init(ehsa_info->hwidb, ehsa_info->other_mac);
                ehsa_primary();
                break;
            case EHSA_STANDALONE:
                break;
            default:
                crashdump(0);
        }

In the example above, ehsa_discover() exchanges packets to determine role and calls 
ehsa_event() with one of the following: EHSA_SW_SA, EHSA_SW_SD, EHSA_SW_P, 
EHSA_SW_D. Once the state has been determined, IPC is initialized and the appropriate EHSA call 
is made.
System Initialization 2-15



 CISCO CONFIDENTIAL
The sample code below is from platform_interface_init()  on the Cougar platform. Cougar 
determines Primary/Secondary roles in the ROM Monitor (rommon). It also has an interrupt that 
occurs on card status changes:

...
asw_ipc_init (aux_line); /* Init IPC, Primary/Secondary role is known */
...
if(this_acpm_state == STATE_MASTER) {
    printf(“*** this cpu is the primary\n”);
    declare_cpu_good(this_acpm_state);
    issue_system_reset();
    ehsa_event(EHSA_SW_P);
    reg_add_ehsa_switch_to_secondary(cougar_state_change, “cougar state change”);
    slo_test(1);
    ehsa_init_info();
    ehsa_primary();
} else if (this_acpm_state == STATE_SLAVE) {
    printf(“*** this cpu is the secondary\n”);
    declare_cpu_good(this_acpm_state);
    ehsa_event(EHSA_SW_SD);
    reg_add_ehsa_switch_to_primary(cougar_state_change, “cougar state change”);
    slo_test(2);
    asw_initiate_fsm();
    ehsa_init_info();
    ehsa_secondary();
    /*
     * if we return here we are becomming the master
     * verify this and continue
     */
    if (ehsa_get_state() == EHSA_PRIMARY) {
        slo_test(1);
        level = get_interrupt_level();
        set_interrupt_level(ALL_ENABLE);
        asw_reinitialize_as_primary();
        reset_interrupt_level(level);
    } else {
        ttyprintf(CONTTY, “ehsa_secondary() returned prematurely\n”);
    }
}

2.0.1.1   IPC Setup
The initialization of IPC is dependent on state. If a Primary or Standalone, IPC is initialized as 
master. If a Secondary, IPC is initialized as a slave. This must be done by the platforms.

2.0.1.2   Determining Primary/Secondary Status
The emulation code uses the lowest MAC address to determine Primary/Secondary. However, most 
platforms should use slot number or config.
2-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



The Secondary Background Process

 CISCO CONFIDENTIAL
2.0.1.3   Platform Initialization of EHSA Information and Vectors
EHSA requires certain information from the platform (the first fields of the structure). The EHSA 
control structure has the following format:

typedef struct ehsa_control_t_ {
    ehsa_platform_oob_send_t   ehsa_oob_send;
    ehsa_poll_crash_ack_t      ehsa_poll_crash_ack;
    ehsa_platform_crash_t      ehsa_platform_crash;
    boolean                    secondary_console_enable;
    boolean                    keepalive_enable;
    ushort                     keepalive_interval;
    ushort                     keepalive_retry_count;
    boolean                    keepalive_failover;
} ehsa_control_t;

This structure must be initialized with ehsa_init_control()  before ehsa_primary() or 
ehsa_secondary() is called.

The emulation code does the following before returning from discovery:

ehsa_control_t ehsa_control;

    ehsa_control.ehsa_oob_send = ehsa_send_oob_packet;
    ehsa_control.ehsa_poll_crash_ack = ehsa_rx_crash_ack;
    ehsa_control.ehsa_platform_crash = ehsa_platform_crash_handle;
    ehsa_control.secondary_console_enable = TRUE;
    ehsa_control.keepalive_enable = TRUE;
    ehsa_control.keepalive_interval = 10;
    ehsa_control.keepalive_retry_count = 3;
    ehsa_control.keepalive_failover = TRUE;
    if (!ehsa_init_control(&ehsa_control))
        ttyprintf(CONTTY, “\nehsa_init_info(): Error setting ehsa_control”);

2.0.2   The Secondary Background Process
This process is created by the ehsa_secondary()  call to handle EHSA background tasks for the 
Secondary  These include messages (keepalives, etc.) and state changes. This process only lives as 
long as the state is EHSA_SECONDAR .

2.0.3   The Primary Background Process
This process is created by the ehsa_primary() call to handle EHSA background tasks for the 
Primary. These include messages (keepalives, etc.) and state changes. It is killed when the state is no 
longer EHSA_PRIMAR .
System Initialization 2-17



 CISCO CONFIDENTIAL
2.0.4   Changes in the Initialization Sequence
The initialization sequence has been changed to support EHSA. A new subsys class has been added 
to support subsystems that need to be initialized on the Secondary before the init process is 
suspended. Process creation is moved up so that the subsystems may run on the Secondary

*** old_init.cFri Apr 17 13:06:30 1998
--- new_init.cFri Apr 17 13:05:02 1998
*************** boolean system_init (boolean loading)
*** 73,82 ****
--- 73,112 ----
       * Initialize default generic network support and services
       */
      network_init();

      /*
+      * Initialize the EHSA(redundancy) subsystems.
+      */
+     subsys_init_class(SUBSYS_CLASS_EHSA);
+
+     result = process_create(critical_background, “Critical Bkgnd”,
+     NORMAL_STACK, PRIO_CRITICAL);
+     if (result == NO_PROCESS)
+ return(FALSE);
+     result = process_create(net_background, “Net Background”,
+     NORMAL_STACK, PRIO_NORMAL);
+     if (result == NO_PROCESS)
+ return(FALSE);
+     if (!loading)
+ logger_start();    
+
+     /*
+      * Spawn the necessary one second background processes
+      */
+     result = process_create(tty_background, “TTY Background”, NORMAL_STACK,
+     PRIO_NORMAL);
+     if (result == NO_PROCESS)
+ return(FALSE);
+     result = process_create(net_onesecond, “Per-Second Jobs”, NORMAL_STACK,
+     PRIO_NORMAL);
+     if (result == NO_PROCESS)
+ return(FALSE);
+ 
+     platform_line_init(); /* init serial lines, AUX line and VTYs */
+ 
+     /*
       * Allow platforms to register special services and functions
       */
      platform_interface_init();
  
      /*
*************** boolean system_init (boolean loading)
*** 111,121 ****
      /*
       * Activate the subsystem management interfaces
       */
      subsys_init_class(SUBSYS_CLASS_MANAGEMENT);
  
-     platform_line_init(); /* init serial lines, AUX line and VTYs */
  
      /*
       * Finish initializations that depend on loaded protocols
       */
      service_init();/* init service booleans */
2-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Common EHSA CLI

 CISCO CONFIDENTIAL
--- 141,150 ----
*************** boolean system_init (boolean loading)
*** 128,173 ****
       * Start the major system processes
       */
  
      set_interrupt_level(ALL_ENABLE);
  
-     result = process_create(critical_background, “Critical Bkgnd”,
-     NORMAL_STACK, PRIO_CRITICAL);
-     if (result == NO_PROCESS)
- return(FALSE);
-     result = process_create(net_background, “Net Background”,
-     NORMAL_STACK, PRIO_NORMAL);
-     if (result == NO_PROCESS)
- return(FALSE);
-     if (!loading)
- logger_start();
      if (loading) {
  result = process_create(bootload, “Boot Load”, LARGE_STACK,
  PRIO_NORMAL);
  if (result != NO_PROCESS) {
      process_set_arg_num(result, loading);
      process_set_ttynum(result, startup_ttynum);
  }
      }
      reg_invoke_emergency_message(EMERGENCY_SYS_STARTUP);

-     /*
-      * Spawn the necessary one second background processes
-      */
-     result = process_create(tty_background, “TTY Background”, NORMAL_STACK,
-     PRIO_NORMAL);
-     if (result == NO_PROCESS)
- return(FALSE);
-     result = process_create(net_onesecond, “Per-Second Jobs”, NORMAL_STACK,
-     PRIO_NORMAL);
-     if (result == NO_PROCESS)
- return(FALSE);
-     result = process_create(net_periodic, “Net Periodic”, NORMAL_STACK,
-     PRIO_NORMAL);
-     if (result == NO_PROCESS)
- return(FALSE);
-
      return(TRUE);
  }

2.1   Common EHSA CLI 

This section gives the cross-platform EHSA command line interface (CLI) syntax, which was agreed 
upon in a cross-BU EHSA working group. The syntax is actually a general framework. Many of the 
platforms that support EHSA will extend it with platform-specific specializations (new keywords 
and/or parameters).

The cross-BU EHSA working group has agreed that each EHSA platform will implement its CLI as 
platform-dependent code and will conform to the common syntax everywhere that it is applicable. 
There is no platform-independent EHSA CLI implementation at this time.
System Initialization 2-19



 CISCO CONFIDENTIAL
In addition, the working group has agreed that each platform will update ENG-23371 with its 
platform-specific syntax extensions. This will encourage platforms adding similar platform-specific 
features to adopt a common pre-existing syntax. It will especially assist new platforms that are just 
entering their EHSA d velopment.

2.1.1   Platforms Currently Represented
• Santa (6400) Redundancy CLI (6400)

2.1.2   General Redundancy (EHSA) CLI Syntax

2.1.2.1   Redundancy Configuration
Redundancy configuration is a new configuration submode, containing additional submodes similar 
to “dialer-profile” or “vp-tunnel” submodes.

# redundancy
        #       [no] associate <object-type> <instance#1> [<instance#2>]
        #               [no] <keyword> [<parameter> [<parameter>]...]
        #       main-cpu
        #               [no] <keyword> [<parameter> [<parameter>]...]
        #       switch-fabric <instance#1> [<instance#2> [<instance#3>]]
        #               [no] <keyword> [<parameter> [<parameter>]...]

<object-type> is a keyword appropriate to the naming of the redundant components on the specific 
platform, for example, slot, card, and others.

<instance> is an specific object identifier, whose syntax depends
on the <object-type> and platform.

<keyword> describes a property of the redundant association, with
optional parameters; the valid set of <keyword>s depends on the
<object-type>.

2.1.2.2   Redundancy Displ y
> show redundancy [<keyword> [<parameter(s)>] ]

By default (no keyword), display the redundancy configuration, annotated with the current runtime 
redundancy status. For example, display which slots are configured to be in redundant mode, which 
of those slots has a card present, and which of those cards is Primary. Details are platform-specific.

<keyword> [<parameter(s)>]  may be used to qualify the output requested or to extend the 
functionality of this command.

2.1.2.3   Redundancy Operations
# redundancy <keyword> [<parameter> [<parameter> ...]]

Supports runtime operations necessary or desirable to control the behavior of redundant system 
components, such as forcing failover from the current Primary to the current Secondary element in 
a redundant association.

<keyword> is required to specify the action requested.
2-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Santa (6400) Redundancy CLI

 CISCO CONFIDENTIAL
2.1.3   Santa (6400) Redundancy CLI
See ENG-23369 for a detailed explanation of the Santa CLI.

santa(config)# redundancy
santa(config-r)#        [no] associate slot #1 [#2]
santa(config-r-sl)#             [no] prefer #
santa(config-r)#        [no] associate subslot #1/#1 [#2/#2]
santa(config-r-su)#             [no] prefer #/#
santa(config-r)#        [no] associate port #1/#1/#1 [#2/#2/#2]
santa(config-r-p)#              [no] prefer #/#/#
santa(config-r-p)#              [no] aps protection #1/#1/#1
santa(config-r)#        main-cpu
santa(config-r-mc)#             prefer <A|B>
santa(config-r-mc)#             [no] sync config <startup|running|both >

santa> show redundancy

santa# redundancy force-failover <slot # | subslot #/# | port #/#/# | main-cpu >

2.2   EHSA Crash Handling

This section reviews all additions that need to be made to the platform code and the independent code 
in order to support EHSA software crash handling.

Note The EHSA crash handling support is available only on MIPS-based platforms.

2.2.1   Background
There are several possible scenarios where a software crash could occur, including the following:

1 crashdump()—This function is called explicitly by the code when the software has gotten into 
an invalid state and chooses to crash the box.

2 exception—In case of a software exception, the MIPS code checks whether the corresponding 
exception entry was initialized with a call-back function by the platform code. If the entry was 
initialized, then the platform exception function is called; otherwise, the function 
handle_exception()  is called.

In handle_exception() , the stack trace information is sent, a core is dumped if the box is 
configured to do so, and the software returns to the Rommon.

Some software hooks have been added to these functions that are currently executed during a box 
crash, crashdump() and handle_exception(), to support EHSA crash handling. These hooks are 
described below.

Note If the platform provides another possible crash path other than the two mentioned, then the 
same hooks will have to be added to those routines. It is up to the platform to add that code.
System Initialization 2-21



 CISCO CONFIDENTIAL
2.2.2   What happens when a Primary crashes?
This section describes the actions that take place in the system when the software on the Primary 
crashes. It describes functional behavior, in chronological order, on both the Primary and Secondary 
processors.

1 The Primary identifies a software crash, either in crashdump() or in an exception routine. The 
ehsa_crash_hook()  routine is invoked via registry. This routine sends a message to the 
Secondary to indicate that the Primary is crashing and that the Secondary should take over. The 
message is sent by an out-of-band (OOB) transmit routine. At that time, it also sets a timer that 
defines the maximum time interval that it will wait before it will continue with the crash. The 
timer is currently set to ONESEC. It can be converted to a variable if required.

Note It is up to the platform to provide an OOB transmit routine with which to send the message 
to the Secondary. The message can be sent on any media that the platform chooses except for IPC. 
Because the interrupts are disabled when a crash occurs, IPC is not reliable at that time.

The EHSA code sends the crash message once. However, a hook has been provided for an
platform that requires a more reliable mechanism and chooses to resend the message. It is up to 
the platform to add the code for retransmission.

2 The Secondary gets the message from the Primary that indicates that the Primary is crashing. The 
Secondary becomes the new Primary. 

In order to become the new Primary, it needs to perform a Secondary-to-Primary switchover. 
Please refer to the Implementation Guide earlier in this chapter for more details about the 
switchover.

Then it will send an EHSA message to the old Primary indicating that the new Primary has taken 
over.

3 The old Primary waits until it either receives the ack message or a timer expires. The platform 
should provide a polled receive routine that receives that message.

The old Primary calls the ehsa_platform_crash()  routine. That routine is provided by the 
platform, and will be called via a function vector. The function sends crash information to 
wherever the platform decides to send it. That is the right place for additional functionality 
required by the platform before the old Primary returns to Rommon.

The old Primary boots the IOS image and becomes the new Secondary. It is up to the platform to 
insure that the processor becomes Secondary and boots as a Secondary.

It is possible that a problem in the code or the configuration will not enable the IOS image to boot. 
If that happens, we might run into a situation where we have constant swaps between Primaries. 
That can start an infinite swap chain, since the IOS image can never fully boot. It is suggested 
that the platform provide a mechanism to prevent this possibility.

The platform can hold a counter to count the number of boot trials in a given amount of time. If 
the number of boot trials exceeds a predefined constant, the platform should indicate so. That 
counter can be held in the NVRAM, in the area just before the configuration. It is up to the 
platform to decide how to handle this case. It can try to boot from another device or it can stop 
the attempts to boot.
2-22 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



What happens when a Secondary crashes?

 CISCO CONFIDENTIAL
2.2.3   What happens when a Secondary crashes?
In the case of a Secondary crash, the following is done:

1 The Secondary sends a message to the Primary to notify it that a crash has happened. That is done 
using the same OOB transmit routine used in the case of a Primary crash.

2 Crash information is sent by the Secondary. It is up to the platform to decide what type of 
information should be sent and where.

3 The Secondary returns to Rommon and reboots as a Primary.

2.2.4   Summary of Routines and Code Additions
These are the routines and code additions required for implementing EHSA crash handling:

1 A registry called ehsa_crash_hook() has been added. The reg_add_ehsa_crash_hook() call 
has been added to the EHSA initialization section. This call registers the ehsa_crash_hook()  to 
be called in case of a master crash. 

This registry will be invoked in any of the following cases:

(a) In the beginning of a crashdump() routine. The reg_invoke_ehsa_crash()  will be 
followed by a call to crashpoint(), which will go back to Rommon via an emt() 
call. 

(b) In the handle_exception() routine, just after it recognizes that this is not a GDB 
exception. This call will be followed by a call to r4k_return_to_monitor() .

(c) If any of the platform exception handlers is crashing the software by going back to 
Rommon, the registry reg_invoke_ehsa_crash() should be added in the 
appropriate place, just before the function returns to Rommon.

The reg_invoke_ehsa_crash()  call has been added to the platform-independent code, that is 
items a and b in the above list. It is the platform’s responsibility to add this registry to any 
appropriate exception routine, as explained above in item c.

The ehsa_crash() call will identify that it is a Primary crash and will send a message to the 
Primary using an OOB transmit routine. It will then wait till it receives a message from the new 
Primary indicating that the Primary switchover has been done.

2 Two new vector functions have been added to the EHSA control structure. The platform code 
needs to provide these functions. The platform code should initialize the appropriate field in the 
control structure as part of the EHSA platform initialization.

The functions to be provided by the platform are as follows:

— * ehsa_poll_crash_ack()

This is a polled receive routine that receives the message that is sent by the other side, to 
acknowledge the receipt of the crash message.

— * ehsa_platform_crash()

The function sends crash information to wherever the platform decides to send it. The crash 
information includes a stack trace and a core file. Usually during a crash we also try to flash 
the logging buffer. It is up to the platform to decide how and where to send the crash 
information. It could decide to store the stack trace locally on the dying Primary flash 
memory. Or it could choose to try to send it to the new Primary, or somewhere else. The same 
goes for the core file; the platform could choose to send the core file information to the new 
Primary. Since it is up to the platform to decide where to send the crash information, the 
platform will have to provide the code that sends it.
System Initialization 2-23



 CISCO CONFIDENTIAL
2-24 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  2
Kernel Services





C H A P T E R

 CISCO CONFIDENTIAL

Schedule
3

Scheduler
The Cisco IOS scheduler is responsible for scheduling kernel processes for execution. The scheduler 
is nonpreemptive, so all processes must voluntarily relinquish control to the scheduler. In general, a 
process should perform a small amount of work, relinquish the processor, and then continue working 
the next time it receives control from the scheduler. There are several constants in the system that 
determine what is appropriate behavior for processor use. 

The scheduler supports multiple process priorities.

The Cisco IOS scheduler uses the list manager to keep track of all processes in the system. The 
scheduler maintains one list per process priority or process type. This allows it to easily determine 
which process should be scheduled next. The kernel identifies each process by its process number, 
called a process identifier (process ID, or PID). 

After giving an overview of scheduler-related changes in Release 12.0 that enhance software 
scalabilit , this chapter describes how the scheduler works. 

3.1   Scalability Changes

In pre-12.0 Cisco IOS code, polling mechanisms would search through all IDBs on a frequent basis, 
looking for work that needed to be done. Because the number of IDBs rose steadily at a steep rate, 
this method of scheduling became too costly. In Release 12.0, changes were made to mitigate these 
costs. They are described in this section: 

• Important Coding Guidelines 

• if_onesec Registry Removed

• Event Driven Route Adjustment Message

• API for Keepalive and Other Periodic Intervals

• FYI: Backup System Changes

3.1.1   Important Coding Guidelines
To maximize the scalability of your code, be sure to follow these guidelines:

• Do not write code that needs to do loops on every interface, every second. Do write code that uses 
a subblock list or private IDB list instead (a list of interfaces that you are interested in).

• Do not write code that polls. Do write code that is event driven. This includes using managed 
timers instead of polling a passive timer.

• Onesec routines (poll every second) are okay, as long as they are short.
r 3-1



 CISCO CONFIDENTIAL
3.1.2   if_onesec Registry Removed
The following statements summarize the changes that were made in Release 12.0 to make several 
one-second polling implementations more scalable:

• atm_arp_onesec()
This routine has been converted into a watched boolean and moved into an ATM-specific, 
subsystem-created process. [sent email to Mike Davison 6/26]

• atm_arp_serv_periodic()
This routine already consisted of managed timers. It is now a onesec routine that loops through 
the list of ATM interfaces.

• cbus_restart_check()
This is a 7000-platform-specific routine. The 7000 platform was removed in Release 12.0.

• channel_onesec()
This CIP routine is now a onesec routine that loops through the subblock list.

• backup_timers and backup loads
FYI: Backup system feature code was reworked to enhance scalability as well as maintainability 
and performance. For an overview of the system’s design and use and a description of all items 
in the rework, see ENG-14273.

• Three IP routing routines:

— ip_gdp_periodic()
This routine has been changed into either managed timers or a private SWIDB list. Include 
it only when IP and GDP are both turned on.

— ip_irdp_periodic()
This routine has been changed into either managed timers or a private SWIDB list. Include 
it only when IP and IRDP or mobile beaconing are both enabled.

— standby_check_if_reset()
This routine has a flag that indicates when an interface reset has been requested. It has been 
moved into a higher, common routine.

• Two WAN routines (two instances with the same function name) are now onesec routines:

— quicc_serial_onesec_periodic()
This routine was called to update LEDs. It has been moved to a common periodic routine that 
is subsystem-invoked.

• Seven routines in the LS1010 code were changed into an LS1010-specific if_onesec routine.

— mmc_poll_invalid_cells()
Was changed to a private/subblock IDB list and put into a common LS1010 routine. (Only 
operates on ATMS2000 IDBs.).  

— dcu_onesec()
Performs keep-alives. Moved to an LS1010 common routine.

— oc3suni_rd_cntrs(), sali25_ISR(), suni622_rd_cntrs(), sunipdh_rd_cntrs()
All read counters and update the hardware IDB statistics. Were moved to a common LS1010 
routine.

— In the LS1010/Rhino code, a call to usecdelay()
This routine essentially just spins its wheels in a loop watching an 8254 timer. Solution 
unknown at this point. It is possible that this routine is implemented only on a single control 
card, in which case it is okay.
3-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Event Driven Route Adjustment Message

 CISCO CONFIDENTIAL
• One ATM card routine, c2katm_if_onesec()
This routine is now a onesec routine.

• ppp_timer()
5 of 6 timers used here have been converted into managed timers and serviced by a separate 
process; is now event driven, using a managed timer.

• serial_pulsetimer()
Timer has been moved into the serial subblock; converted to a managed timer.

• serial_restart()
Converted to a managed timer.

3.1.3   Event Driven Route Adjustment Message
The route_adjust() call has been removed from the net_periodic() routine. The 
net_periodic() routine is a once-per-second process that is basically a wrapper for the 
periodic_activity()  function, a polling routine that, among other things, is responsible for the 
following two things:

• Checking dialer links.

• Calling transition_adjust()  and then route_adjust() and, if a transition has occurred, a few 
other routines.

Because dialer links never go down, the normal interface notification routines had no effect. The 
major scalability problem, though, was with the route_adjust() call, which cycled every software 
IDB in the box and enqueued a route_adjust_msg()  in a watched queue. All processes watching 
that queue would have work to do when they awoke. Because the amount of work that was needed 
was already being taken care of by other routines, the route_adjust() call was a waste of time 
except for the following routines:

ipaddress.c
lec_parser.c
atm_dxi.c
dialer.c
tring.c
frame_relay.c

To address the scalability problem, the route_adjust() call has been moved from the 
periodic_activity()  function to inside the if_(transition_occurred) conditional and 
route_adjust_msg()  calls were moved into the six routines listed above. In this way, the need for 
route_adjust() to be called every second was removed, thereby transforming route_adjust() 
from a polled to an event-driven mechanism. 

Note Because the polling mechanism will no longer generate route_adjust() calls every second, 
it is your responsibility to generate your own as necessary by adding a route_adjust_msg() call to 
the appropriate place in your code. 

3.1.4   API for Keepalive and Other Periodic Intervals
In pre-12.0 releases of the Cisco IOS software, the periodic_activity()  subroutine is called for 
each hardware IDB every second. Among other things, the periodic_activity()  routine 
decrements the keepalive counter, idb->keep_count, and, if the keepalive interval has expired 
Scheduler 3-3



 CISCO CONFIDENTIAL
(idb->keep_count <= 0), it resets the keepalive counter using idb->keep_period  and calls two 
per-IDB vectors: idb->periodic and idb->device_periodic . Therefore, the per-IDB periodic and 
device periodic functions are called every keep_period number of seconds.

This is a classic polled implementation. It searches through all IDBs looking for an expired time that 
indicates work to do. In our environment of fast increasing number of interfaces, this type of 
implementation does not scale well.

Further, the pre-12.0 implementation contains inherent opportunities for wasteful cycles:

• If idb->keep_period  is zero, both periodic vectors are called every second, not every keepalive 
period. While there is a field to disable keepalive in the IDB, some code sets the keepalive interval 
to zero while leaving keepalive enabled.

• Some drivers or subsystems set the device periodic and periodic vectors to the same function. 
This means that the periodic vector is called twice each keepalive period.

• Some drivers or subsystems set both periodic vectors to NULL. Although the calling code checks 
for this, that check is required to determine that there is nothing to do. (Another NULL function, 
return_nothing()  is sometimes used.) Almost no drivers or subsystems use both vectors.

3.1.4.1   New Implementation
To improve the scalability of periodic processing, polling on idb->keep_count has been converted 
to a managed timer implementation. A tree of keepalive interval managed timers has been created 
that has a parent timer for each unique keepalive period.

These keepalive timers are parented to the net_background_time , so the first requester to set a ne
unique keepalive interval creates a new keepalive parent timer. Since the number of unique keepalive 
intervals tends to be small, this implementation scales well. The creation of these parent timers 
allows the system to restart a given timer with minimal overhead as it is reinserted into the 
scheduler's managed timer chain. 

Eight new API functions have been created for getting information about the period (interval set and 
time left before the next vector will be called), enabling or disabling keepalive frames, and 
determining whether keepalive frames are enabled:

Use these API functions instead of changing the vectors directly. This conversion is not backward 
compatible; the names of the pertinent IDB vector fields have changed. For example, the 
idb->periodic field is now idb->periodic_fn and the idb->device_periodic  field is now 
idb->device_periodic_fn . (Table 3-2 lists the name changes.) Code using the old method will not 
compile until it has been converted to use the new keepalive/periodic API functions.

Table 3-1 New API Functions for Keepalive Frames and Other Periodic Intervals

idb_hw_set_periodic() Set the periodic vector

idb_hw_set_device_periodic() Set the device periodic vector

idb_set_periodic_period() Set the periodic interval

idb_get_periodic_period() Determine the length of the periodic interval

idb_get_periodic_period_left() Determine the time left before the next vector will be called

idb_enable_keepalives() Enable keepalive frames

idb_disable_keepalives() Disable keepalive frames

idb_are_keepalives_enabled() Determine whether keepalive frames are enabled
3-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



API for Keepalive and Other Periodic Intervals

 CISCO CONFIDENTIAL
3.1.4.2   Setting the Periodic Interval
Use the following function to set the periodic interval:

idb_set_periodic_period (hwidbtype * hwidb, ulong period)

Note that the periodic period is now maintained in ticks, not seconds. Use the ONESEC macro, 
passing in the number of ticks corresponding to X seconds: 

(X * ONESEC)

For portability reasons, do not use absolute “magic” numbers of ticks that assume a certain tick 
interval.

Use the following function to set the idb->periodic_fn vector:

void idb_hw_set_periodic (hwidbtype * hwidb, periodic_t periodic_function)

Pass the function that you wish to be called to the hardware IDB that represents your interface.

The periodic_fn vector performs various periodic functions needed by an interface. Currently it is 
called once every periodic interval (the default is every 10 seconds). Normally it is used by level-2 
encapsulations, such as PPP. It is not used by most device drivers.

Warning The idb->periodic_fn vector may be modified by encapsulation routines.

Use the following function to set the idb->device_periodic_fn vector:

void idb_hw_set_device_periodic (hwidbtype * hwidb, 
device_periodic_t device_periodic_function)

Pass the keepalive or other periodic functions that you wish to be called to the hardware IDB that 
represents your interface.

The device_periodic_fn  vector performs various device-dependent background tasks, such as 
making sure that the physical device is still alive. Only the device driver is allowed to modify this 
vector.

If both vectors for a given IDB (periodic and device periodic) are NULL, the 11.3 code notices it and 
does not run a timer for that IDB. If either or both vectors are set at a later time, the code will also 
notice and start the timer for that IDB.

Use the following function to determine the periodic interval on which the periodic_fn and 
device_periodic_fn vector functions are called:

static inline ulong idb_get_periodic_period (hwidbtype * hwidb)

Note that the periodic interval will be returned in ticks, not seconds, and that the name has been 
changed from “keepalive interval” to “periodic period.”

Use the following function to determine the time remaining until the periodic functions will be 
called:

ulong idb_get_periodic_period_left (hwidbtype * hwidb)

The time remaining will be returned in ticks, not seconds. 
Scheduler 3-5



 CISCO CONFIDENTIAL
3.1.4.3   Setting Keepalive Frames
Use the following functions to enable or disable keepalive frames:

void idb_enable_keepalives (hwidbtype * hwidb)
void idb_disable_keepalives (hwidbtype * hwidb)

Use the following function to determine if keepalive frames are enabled for your interface:

static inline boolean idb_are_keepalives_enabled (hwidbtype * hwidb)

The returns TRUE if keepalives are enabled. Note the polarity change from the former nokeepalive 
IDB flag (which was TRUE if keepalives were disabled).

3.1.4.4   Hardware IDB Field Name Changes
Driver conversion to the new keepalive/periodic API is straightforward unless a driver was accessing 
the hwidb->keep_count field. That field is no longer directly accessible.

Table 3-2 Hardware IDB Field-Name Changes

3.1.5   FYI: Backup System Changes
Passive timers in the backup code were replaced by managed timers and an existing background 
service routine was modified to service the new (managed) backup timers. Backup code was 
rewritten for Release 12.0. See Appendi x27 for an overview of the system and full description of 
the rewrite.

3.2   Processes: Overview

A process in Cisco IOS terminology is roughly the equivalent of a thread in computer science 
terminology. A Cisco IOS process consists of a set of processor registers and a stack area. All 
processes share the same text segment, executing from mostly nonoverlapping code paths. They also 
share the same flat memory space, and thus share all variables. Cisco routers do not currently support 
any form of virtual memory or memory mapping. (The R4000-based processors have user and kernel 
data segments, but these are a complete overlay, and all memory is accessible from either processor 
mode.) 

Pre-11.3 Field 11.3 Field

short keep_period ulong periodic_interval 

short keep_count mgd_timer periodic_timer

tinybool nokeepalive tinybool keepalive_flag 

periodic_t periodic periodic_t periodic_fn

device_periodic_t device_periodic device_periodic_t device_periodic_fn
3-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



How a Process Is Created

 CISCO CONFIDENTIAL
3.2.1   How a Process Is Created
New processes can be created at any time by any process. Processes are generally created either as 
part of the startup process—from either the init process or a subsystem initialization routine—or 
they are created in response to a user configuration command. The process creation function assumes 
that the process takes no argument and does not have a terminal attached to it. If the process has an 
argument or a terminal, it is informed of it by a call to one of the process attribute modification 
functions. 

When a process is created, it is assigned a positive PID number. A PID of 0 is never used. 

3.2.2   How a Process Stops
A process stops executing by killing itself. The main routine of a process must explicitly call the 
process_kill() function; it cannot just execute a return statement. The latter is considered an error 
condition and is protected against. When processes are no longer needed—for example, when a 
protocol is unconfigured—they should clean up after themselves and exit. 

3.2.3   How the Scheduler Executes a Process
The scheduler executes a process by calling a special function that saves the scheduler’s current state, 
restores the state of the process from a data structure, and then returns. This return occurs on the 
process’ stack and therefore causes the process to continue executing. When the process relinquishes 
the processor, it calls a second special function that saves the process state, restores the scheduler 
state, and then returns. The return from this function happens on the scheduler’s stack and thus 
causes the scheduler to continue executing where it was before it ran the process.

3.2.4   Process States
All processes exist in one of a finite set of states that describe their current activit y. Table3-3 
describes these states.

Table 3-3 Process States

Process State Description

Running Process is currently executing in the CPU.

Suspended Process has temporarily relinquished the processor. It will resume at the next possible 
opportunity. Processes enter this state to allow other processes to use the processor. Because the 
Cisco IOS scheduler is a run-to-completion scheduler, if a process did not suspend 
occasionally, nothing else would run.

Ready to run Conditions for executing have been fulfilled, and the process is in the ready queue, waiting to 
run. This implies that the process was previously waiting for an event or a timer, and that that 
event or timer has occurred.

Waiting for event Process is awaiting completion of an event before being ready to execute.

Sleeping (absolute time) Process is suspended until a specific clock time. 

Sleeping (interval) Process is suspended until a specific time interval has elapsed.
Scheduler 3-7



 CISCO CONFIDENTIAL
3.2.5   Scheduler Messages
The scheduler uses messages to provide a simple interprocess communication (IPC) mechanism that 
works on a single processor. A message is a simple way for two processes to communicate. 
message consists of a command and two arguments, a numeric argument and a pointer argument. 
Messages are used with registry processing. For example, you might use a message to indicate that 
an interface has changed state. For this example, the command code would indicate “interface state 
change,” and either the numeric or pointer argument would indicate the interface.

The scheduler messages are in addition to the standard Cisco IOS IPC services, which are discussed 
in the “Interprocess Communications (IPC) Services” chapter.

3.3   Queues and Process Priorities

Process priority controls how often a process gets processor (CPU) time. The scheduler uses 
multiple queues to track the processes that run various priorities. 

3.3.1   Scheduler Queues
The scheduler provides three types of queues: 

• Ready queues

• Idle queue

• Dead queue

The scheduler queues are implemented using the Cisco IOS list manager, which is described in the 
“Queues and Lists” chapter. 

3.3.1.1   Ready Queues
Ready queues are used for processes that are ready and waiting to run. A process is in a ready queue 
if at least one of the process’ conditions for executing, if there were any, has been fulfilled. 

Ready queues can handle processes of critical, high, medium, and low priority.

Sleeping (periodic) Process is suspended until a regular time period has elapsed. This state is essentially the same 
as “sleeping (interval),” with one subtle difference. With “sleeping (periodic),” the wakeup time 
is computed based on the time the process began executing, not the time the process finished 
executing. This allows a process to execute at a fixed interval and not have its wakeup time 
slowly drift because of processing time. For example, suppose a process should execute every 
second, and it requires 0.1 seconds to perform its processing. Using the 
process_sleep_periodic()  function, the processes would execute at times 0.0, 1.0, 2.0, 
3.0, and so on. Using the process_sleep_for()  function, which places a process in the 
“sleeping (interval)” state, this same process would execute at times 0.0, 1.1, 2.2, 3.3, and so 
on.

Sleeping (managed timer) Process is suspended until a managed timer has expired.

Hung Process would not relinquish the processor and was stopped by the watchdog interrupt. This 
process will never again be scheduled to receive the processor.

Dead Process has stopped or been killed and will never resume. This is a transient state that lasts until 
the scheduler can perform a postmortem analysis on the process and reclaim its resources.

Process State Description
3-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Process Priorities

 CISCO CONFIDENTIAL
3.3.1.2   Idle Queue
The idle queue is for processes that are waiting for an event to occur before they can execute. These 
processes are actively awakened by the code fragment that creates them. As an example, the code 
fragment that enqueues a packet on the VINES receive queue is responsible for waking up the 
VINES process. The VINES process does not poll the queue at every pass of the scheduler.

The event that causes the process to execute can be the expiration of a timer, or it can be an 
asynchronous event, such as a packet being enqueued into a specific queue. 

All processes in the idle queue that are awaiting a timer event are threaded by expiration time into a 
tree maintained by the managed timers code. (Managed timers are discussed in the “Timer Services” 
chapter.)

3.3.1.3   Dead Queue
The dead queue is for processes that have exited, but on which the scheduler has not yet performed 
a postmortem analysis. When the scheduler processes this queue, it analyzes the stack for each 
process and then releases all memory associated with its record of that process. 

3.3.1.4   Moving Processes between Queues
During its operation, the scheduler moves processes between two queues, for example, from the idle 
queue to the ready queue. Consider the following points concerning moving processes between 
queues: 

• All linking and unlinking is executed with interrupts disabled. 

• A running process is unlinked from the queue only when it executes a scheduler primitive to 
relinquish the processor.

• A running process is not moved to the idle queue (either from a sleep or wait call) if new events 
have arrived for it while it has been executing. Instead, the process is left on the ready queue so 
that it can process the new data in the next pass of that queue. This protects against the race 
condition that can occur if a process is relinquishing the processor at the same time that an 
interrupt-level code path enqueues data for the process. 

3.3.2   Process Priorities
Processes are grouped according to their priority. Processes can run at one of the following priority 
levels: 

• Critical. This priority is for processes that resolve resource allocation problems, for example, a 
process that creates or replenishes the packet buffer pools. 

Caution A single, poorly behaved process running at critical priority can disable a router, because 
an item on this queue has the chance to execute after every high-, medium-, and low-priority process. 
Therefore, the use of this priority level must be approved by an engineer in the Cisco IOS Technology 
group.

• High. This priority is for processes that need more than an average amount of CPU time, such as 
processes that accept packets directly from a network interface. 

• Medium. This is the default priority in which most processes, such as EXEC commands and 
routing protocols, should execute. 
Scheduler 3-9



 CISCO CONFIDENTIAL
• Low. This priority is generally used for periodic background tasks, such as logging and the TCP 
discard daemon. 

3.3.3   Operation of Scheduler Queues 
In the Cisco IOS scheduler, the queues are not given equal processing time. Instead, the high-priority 
and critical-priority queues are processed multiple times for each pass at the medium-priority and 
low-priority queues.

The scheduler queue operation is as follows. Figure3- 1 illustrates this operation. 

1 Run all processes in the critical-priority list.

2 Run one process in the high-priority list.

3 Repeat Steps 1 and 2 until no critical-priority or high-priority processes remain to be run.

4 Run one process in the medium-priority list.

5 Repeat Steps 3 and 4 until no critical-priority, high-priority, or medium-priority processes remain 
to be run.

6 Run one process in the low-priority list.

7 Repeat Steps 5 and 6 until no processes remain to be run.

8 Wake sleeping processes. All processes are threaded via managed timers. The scheduler checks 
the parent timer for expiration time and moves expired processes to the appropriate run queues.

9 Perform housekeeping operations. These include computing CPU loads and busy times, 
performing postmortem analyses on processes, performing “scheduler-interval” processing, and 
spinning a random-number generator. 
3-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Operation of Scheduler Queues

 CISCO CONFIDENTIAL
Figure 3-1 Overall Scheduler Queue Operation 

S
63

02

Are
there critical
processes?

Run process
Yes

Yes

Yes

No

No

Wake sleepers

Wake sleepers

Are
there

high-priority
processes?

Are
there

medium-priority
processes?

Are
there

low-priority
processes?

Yes

Yes

Run process

No

No

No

Wake sleepers

Run process

Wake sleepers

Run process

Perform
housekeeping

Wake sleepers

Another
critical

process?
Scheduler 3-11



 CISCO CONFIDENTIAL
3.4   Manage Processes

3.4.1   Create a Process
All processes are created using the process_create()  function. This function does not pass any 
arguments to the process and does not provide the process with a controlling terminal.

pid_t process_create(process_t (* padd), char *name, stack_size_t stack,
process_priority_t priority); 

Once a process has been created, use either the process_set_arg_num()  function to provide a 
numeric argument or the process_set_arg_ptr()  function to provide a pointer argument. 

static inline boolean process_set_arg_num(pid_t pid, ulong arg); 

static inline boolean process_set_arg_ptr(pid_t pid, void *arg); 

For processes that require a controlling terminal, such as access server and EXEC processes, use 
either the process_set_ttynum()  or process_set_ttysoc()  function to provide the terminal.

static inline boolean process_set_ttynum(pid_t pid, int ttynum); 

static inline boolean process_set_ttysoc(pid_t pid, tt_soc *tty); 

3.4.1.1   Create a Process: Example
The following example creates a process for the TCP discard daemon, which is run from the 
tcpdiscard_daemon  routine. The process is named TCP Discard. It has a process stack size of 
NORMAL_STACK and runs at low priority. After the process has been created, the 
process_set_arg_ptr()  function passes it an argument. 

tcp->pid = process_create(tcpdiscard_daemon, “TCP Discard”, NORMAL_STACK, PRIO_LOW);
if (tcp->pid != NO_PROCESS) {

process_set_arg_ptr(tcp->pid, tcb);
} else

tcp_abort(tcp);
}

The following example creates a bootload process, passing an argument to the process and assigning 
the console as the output device: 

result = process_create(bootload, “Boot Load”, LARGE_STACK, PRIO_NORMAL);
if (result != NO_PROCESS) {

process_set_arg_num(result, loading);
process_set_ttynum(result, startup_ttynum);

}

3.4.2   Enqueue Data for a Process
To add an item for a process to the end of a managed queue and awaken any processes watching this 
queue, use the process_enqueue()  function. 

boolean process_enqueue(watched_queuetype * queue, void *whatever); 

To add a packet or an arbitrary data pointer to the beginning of a managed queue and awaken any 
processes watching this queue, use the process_requeue()  function. 

boolean process_requeue(watched_queuetype * queue, void *whatever); 
3-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Dequeue Data from a Process

 CISCO CONFIDENTIAL
To add a packet or an arbitrary data pointer to the beginning of a managed queue and awaken any 
processes watching this queue, use the process_requeue_pak()  function. 

void process_requeue_pak(watched_queuetype * queue, paktype *pak); 

3.4.3   Dequeue Data from a Process
To remove an item for a process from the beginning of a managed queue, call the 
process_dequeue()  function. 

void *process_dequeue(queuetype * queue); 

3.4.4   Register a Process for Notification on a Timer
To register a process to be notified that a timer has expired, use the process_watch_mgd_timer()  
function for managed timers or the process_watch_timer()  function for simple (passive) timers. 
(Timers are discussed in the “Timer Services” chapter.) 

void process_watch_mgd_timer(mgd_timer * timer, ENABLEDISABLE enable); 

void process_watch_timer(sys_timestamp * timer, ENABLEDISABLE enable); 

When the timer expires, the process that is watching it is awakened. A process can watch a single 
managed timer and a single simple timer at the same time. It cannot watch multiple simple timers 
simultaneously. Even though a process can watch only one managed timer directly, an arbitrary 
number of managed timers might be subordinate to that single watched managed timer.

For simple timers, the wakeup time is read when the process relinquishes the CPU and is not 
dynamically updated. In contrast, the wakeup time of a managed timer can be changed while a 
process is sleeping, and the new wakeup time automatically propagates into the scheduler.

3.4.5   Set and Retrieve Information about a Process
Table 3-4 and Table 3 -2 list the functions available to set and retrieve information about processes.

Table 3-4 Set and Retrieve Information about a Process

Information about Process Function to Set Function to Retrieve

Name process_create()
process_set_name()

process_get_name()

Identifier (PID) — process_get_pid()

Priority process_create() process_get_priority()

Controlling terminal process_set_ttynum()
process_set_ttysoc()

process_get_ttynum()
process_get_ttysoc() 

Profiles process_set_profile()
process_set_all_profiles()

process_get_profile()

Stack size — process_get_stacksize() 

Classes of events allowed to wake up a process process_set_wakeup_reasons() process_get_wakeup_reasons()

Next reason why a process was awakened — process_get_wakeup() 

Starting time — process_get_starttime()

Cumulative running time — process_get_runtime()
Scheduler 3-13



 CISCO CONFIDENTIAL
3.4.6   Send a Message to a Process
To send a generic message to a process, use the process_send_message()  function. 

boolean process_send_message(pid_t pid, ulong id, void *ptr_arg, ulong num_arg); 

3.4.7   Retrieve Messages for a Process
To retrieve the next message that is waiting for this process, use the process_get_message()  
function. 

boolean process_get_message(ulong * id, void **ptr_arg, ulong *num_arg); 

3.4.8   Determine Whether a Process Exists
Two functions—process_exists()  and process_is_ok()—allow you to determine whether a 
process exists. Both functions determine whether a process identifier (PID) exists; in addition, 
process_is_ok(), if TRUE, indicates that the process has not failed. 

boolean process_exists(pid_t pid); 

boolean process_is_ok(pid_t pid); 

3.4.9   Suspend a Process
Table 3-5 and Table 3 -2 list the functions available for suspending a process.

Table 3-5 Functions for Suspending Processes

Arguments that are passed to process process_set_arg_num()
process_set_arg_ptr()

process_get_arg_num()
process_get_arg_ptr()

Whether to perform postmortem analysis of process process_set_analyze() process_get_analyze()

Whether process should stop running while a core 
dump is being written

process_set_crashblock() process_get_crashblock()

Purpose Effect Function

Suspend unconditionally. Place the process on appropriate ready queue. The 
process executes again during the scheduler’s next pass of 
that queue. 

process_suspend() 

Conditionally relinquish the 
processor.

Execute the suspended process again as soon as all other 
ready processes at the same or higher priority have 
executed. 

process_may_suspend() 

Check whether a process has 
exceeded its allotted time (time 
quantum).

— process_time_exceeded() 

Information about Process Function to Set Function to Retrieve
3-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Wake Up a Process

 CISCO CONFIDENTIAL
3.4.10   Wake Up a Process
The scheduler provides two functions to wake up a process—process_wakeup() and 
process_wakeup_w_reason() . Waking up a process moves it to the appropriate ready queue. Most 
processes are awakened as a result of the wakeups implicit in modifying a managed data structure. 
Therefore, you rarely need to call these functions directly. 

void process_wakeup(pid_t pid); 

void process_wakeup_w_reason(pid_t pid, ulong major, ulong minor); 

To determine the classes of events that are allowed to wake up the current process, use the 
process_get_wakeup_reasons()  function. 

static inline boolean process_get_wakeup_reasons(ulong * reasons); 

To determine the next reason why the current process has been awakened, use the 
process_get_wakeup()  function. 

boolean process_get_wakeup(ulong * major, ulong *minor); 

Suspend for a finite period of time. Execute a process again as soon as the specified time has been reached or as soon as the time interval 
has elapsed. The process will not wake up for any other reason.

Sleep for the specified amount of time (number of 
milliseconds). 

process_sleep_for() 

Sleep until a managed timer expires. This is the preferred 
method if the process uses managed timers or if the 
timers within the process will be modified by any other 
process. The wakeup time of the modified managed timer 
percolates from the process’ private timers up into the 
scheduler, thereby automatically adjusting the wakeup 
time of the process. 

process_sleep_on_timer() 

Sleep for a specified amount of time (number of 
milliseconds) from the last time the process should have 
awakened. This allows processes to begin execution at a 
fixed time interval, even though a single execution might 
have lasted longer than usual because the processor was 
temporarily busy. 

process_sleep_periodic() 

Sleep until an absolute time is reached. process_sleep_until() 

Suspend until an asynchronous event 
occurs.

Place a process on the idle queue and ignore it until the process is explicitly awakened by another 
process, an event for which the process has registered occurs, or a timer with which the process has 
registered has expired.

Suspend the process until an asynchronous event occurs. process_wait_for_event() 

Suspend the process, providing a temporary timer to limit 
how long the process can remain idle. 

process_wait_for_event_timed() 

Determine whether a process can 
suspend.

Have a process determine whether it is in a context in 
which it is allowed or desirable to suspend itself. 

process_suspends_allowed() 

Determine whether a high-priority or critical-priority 
process is ready to run or whether the current process’ 
quantum has expired. 

process_would_suspend() 

Purpose Effect Function
Scheduler 3-15



 CISCO CONFIDENTIAL
3.4.11   Delay a Process 
The scheduler provides two functions to delay a process.

The process_wait_on_system_init()  function causes the process to block and wait until the 
system initialization flag becomes TRUE. This is a simple function that indicates that the process 
wants to be informed when a boolean changes state, idles until that event occurs, and then indicates 
that the process no longer needs notification of the event. Using this function saves code space.

void process_wait_on_system_init(void); 

The process_wait_on_system_config()  function halts a process until all interfaces in the router 
have been configured. In all other respects, it operates in the same way as 
process_wait_on_system_init() . 

void process_wait_on_system_config(void); 

3.4.11.1   Delay a Process: Example
Use the process_wait_on_system_init()  function at the beginning of a process that should not run 
during system initialization. For example, the normal starting code for packet-handling routines is 
similar to this: 

void snark_input (void) {
process_wait_for_system_init();
reg_add_raw_enqueue(snark_enqueue, “snark_enqueue”);
while (snark_running) {

... 
}

}

The code in the first line of this example prevents snark_input() from running until the system is 
initialized. Delaying registration with raw_enqueue() means that all packets of type snark are sent 
to net_input and discarded until the system finishes initializing. This example code replaces a spin 
loop where the process discards packets or a call to systeminitBLOCK, which is an older method of 
doing the same thing.

3.4.12   Destroy a Process
To destroy a currently running process, call the process_kill() function. Specify as the argument 
the process identifier of the process to kill or the constant THIS_PROCESS, which kills the process that 
is currently executing. 

boolean process_kill(pid_t pid); 

3.5   Scheduler Objects: Overview

The scheduler provides primitives for managing four types of objects: queues, booleans, bit fields, 
and semaphores. The primitives perform such operations as creating and deleting the objects, and 
setting processes to be notified when the object is modified. 
3-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manage Queues

 CISCO CONFIDENTIAL
3.6   Manage Queues

3.6.1   Queue: Definition
A queue is a simple data structure for maintaining a linked list of objects. It is an ordered collection 
of items that keeps track of the first and last objects, the current number of objects, and the maximum 
number of objects. 

3.6.2   Create a Watched Queue
Creating a queue that can be managed by the scheduler allows processes to be awakened 
automatically whenever new items are enqueued. To create a queue, use the 
create_watched_queue()  function. 

watched_queue *create_watched_queue(char * name, int limit, ulong id); 

3.6.3   Modify the Queue Minor Type
Use the process_set_queue_minor()  function after creating a watched queue and before watching 
it to modify the minor type that the queue receives when the queue state changes. This function is 
most useful when the queue is created in a common function that specifies a default minor identifier 
for each queue it creates. The process_set_queue_minor()  allows a process to unambiguously 
re-identify queues created in this way before watching them. 

void process_set_queue_minor(watched_bitfield * event, ulong minor); 

3.6.4   Register a Process for Notification on a Watched Queue
Some processes, such as those awaiting the receipt of packets, need to be notified when packets 
arrive on the specified queue. To register the process to be notified that an item has been added to a 
queue, use the process_watch_queue()  function. In this function, you specify the frequency of the 
notification; that is, whether the process should be awakened only the first time packets arrive on the 
queue (ONESHOT) or every time packets arrive (RECURRING). 

void process_watch_queue(watched_queue *queue, ENABLEDISABLE enable, ONESHOT one_shot); 

3.6.5   Enqueue an Item onto a Watched Queue
Enqueuing a packet or an arbitrary data pointer places that item at the end of the queue. It also 
notifies any process watching this queue that a packet has been added to the queue. To enqueue an 
item, use either the process_enqueue() or process_enqueue_pak()  function: 

boolean process_enqueue(watched_queuetype * queue, void *whatever); 

void process_enqueue_pak(watched_queuetype * queue, paktype *pak); 

Both functions print an error message if the queue does not exist. If the item cannot be enqueued, 
process_enqueue()  returns FALSE, whereas process_enqueue_pak()  returns the packet to the pool 
of free packets.
Scheduler 3-17



 CISCO CONFIDENTIAL
3.6.6   Dequeue an Item from a Watched Queue
To remove an item from the head of a managed queue, use the process_dequeue() function. If you 
need to empty a queue, you can call this function from a loop until it returns NULL, indicating that the 
queue is empty

void *process_dequeue(queuetype * queue); 

3.6.7   Locate an Item on the Queue
To return a pointer to the first item on the queue, use the process_peek_queue()  function. 

void process_peek_queue(watched_queue * queue); 

3.6.8   Determine the Size of a Watched Queue
To return the current size of a watched queue, use the process_queue_size()  function. 

int process_queue_size(watched_queue * queue); 

To return the maximum size of a watched queue, use the process_queue_max_size()  function. 

int process_queue_max_size(watched_queue * queue); 

3.6.9   Resize a Watched Queue
To change the maximum allowed size of an existing managed queue, use the 
process_queue_resize()  function. 

void process_queue_resize(watched_queuetype *queue, int new_size, queuetype *overflow); 

3.6.10   Determine Whether a Queue is Full or Empty
To determine whether a queue is full or empty, use the process_is_queue_full()  or 
process_is_queue_empty()  function. 

boolean process_is_queue_full(watched_queue * queue); 

boolean process_is_queue_empty(watched_queue * queue); 

3.6.11   Delete a Watched Queue
When a queue is no longer needed, delete it using the delete_watched_queue()  function. This 
function unlinks and frees the data structures for any processes that are watching the queue and then 
frees the queue data structure itself. The function also clears the input parameter to prevent dangling 
pointers. Make sure the queue is empty when you call the delete_watched_queue()  function. 
Otherwise, all elements in the queue are lost. 

void delete_watched_queue(watched_queue ** wq); 
3-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manage Booleans

 CISCO CONFIDENTIAL
3.7   Manage Booleans

3.7.1   Boolean: Definition
A boolean is a memory location that holds one of two values, TRUE or FALSE (that is, the value 1 or 
0, respectively). A managed boolean (also called a watched boolean) can additionally wake up a 
process or processes whenever the value of the boolean is set to TRUE (that is, the value 1). 

3.7.2   Create a Watched Boolean
Creating a boolean that can be managed by the scheduler allows processes to be automatically 
scheduled for execution whenever the value of the boolean changes. To create a watched boolean, 
use the create_watched_boolean()  function. 

watched_boolean *create_watched_boolean(char * name, ulong id); 

3.7.3   Modify the Boolean Minor Type
Use the process_set_boolean_minor()  function after creating a watched boolean and before 
watching it to modify the minor type that the boolean receives when the boolean state changes. This 
function is most useful when the boolean is created in a common function that specifies a default 
minor identifier for each boolean it creates. The process_set_boolean_minor()  allows a process to 
unambiguously re-identify booleans created in this way before watching them. 

void process_set_boolean_minor(watched_bitfield * event, ulong minor); 

3.7.4   Set the Value of a Watched Boolean
Setting the value of a managed boolean to TRUE moves all processes watching this variable onto their 
appropriate processor ready queue if they are not already there. To do this, use the 
process_set_boolean()  function. 

void process_set_boolean(watched_boolean * wb, boolean value); 

After the process has been processed, the value of the managed boolean should be set back to FALSE.

A watched boolean event is triggered on a state change from FALSE to TRUE. Setting the boolean if it 
is already set has no effect, and clearing the boolean also has no effect.

3.7.5   Retrieve the Value of a Watched Boolean
To retrieve the value of a managed boolean, use the process_get_boolean()  function. 

boolean process_get_boolean(watched_boolean * wb); 

3.7.6   Register a Process for Notification on a Watched Boolean
To register a process to be notified that the value of a boolean has changed, use the 
process_watch_boolean()  function. In this function, you specify the frequency of the notification; 
that is, whether the process should be awakened only the first time the boolean changes (ONESHOT) 
or every time it changes (RECURRING). 

void process_watch_boolean(watched_boolean * wb, ENABLEDISABLE enable, ONESHOT 
one_shot);
Scheduler 3-19



 CISCO CONFIDENTIAL
3.7.7   Delete a Watched Boolean
When a boolean is no longer needed, delete it using the delete_watched_boolean()  function. This 
function unlinks and frees the data structures for any processes that are watching this queue and then 
frees the boolean data structure itself. The function also clears the input parameter to prevent 
dangling pointers. 

void delete_watched_boolean(watched_boolean ** wb); 

3.8   Manage Semaphores

3.8.1   Semaphore: Definition
A semaphor  is a memory location that is used by multiple processes to serialize their access to a set 
of resources. The resource can be anything, for example, Flash memory or the table of IP routes. A 
simple semaphore is a single memory location that can be set or cleared by routines that function 
atomically. It is represented by the basic semaphore data structure. A watched semaphore, or 
managed semaphore, contains a simple semaphore and all other information necessary so that the 
semaphore can be used as a scheduler wakeup condition. A watched semaphore is represented by the 
data type watched_semaphore. To guarantee the atomicity of operations that modify a semaphore, 
you must lock the semaphore before making the modification and unlock the semaphore when the 
modification is complete. 

3.8.2   Create a Watched Semaphore
Creating a semaphore that can be managed by the scheduler allows processes to be scheduled 
automatically for execution whenever the semaphore is released. To create a watched semaphore, use 
the create_watched_semaphore()  function: 

watched_semaphore *create_watched_semaphore(char * name, ulong id); 

3.8.3   Modify the Semaphore Minor Type
Use the process_set_semaphore_minor()  function after creating a watched semaphore and before 
watching it to modify the minor type that the semaphore receives when the semaphore state changes. 
This function is most useful when the semaphore is created in a common function that specifies a 
default minor identifier for each semaphore it creates. The process_set_semaphore_minor()  
allows a process to unambiguously re-identify semaphores created in this way before watching them. 

void process_set_semaphore_minor(watched_bitfield * event, ulong minor); 

3.8.4   Lock and Unlock a Semaphore
A semaphore is a memory location that is used by multiple processes to serialize their access to a set 
of resources. The resource can be anything, for example, Flash memory or the table of IP routes. To 
guarantee the atomicity of operations that modify a semaphore, you must lock the semaphore before 
making the modification and unlock the semaphore when the modification is complete. 
3-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Register a Process for Notification on a Watched Semaphore

 CISCO CONFIDENTIAL
For a simple semaphore, use the lock_semaphore() and unlock_semaphore()  functions to 
atomically lock and to unlock the semaphore, respectively. 

boolean lock_semaphore(semaphore * sem); 

void unlock_semaphore(semaphore * sem); 

For a managed semaphore, use the process_lock_semaphore()  and process_unlock_semaphore()  
functions to lock and unlock a semaphore, respectively

boolean process_lock_semaphore(watched_semaphore * sem, ulong timeout); 

boolean process_unlock_semaphore(watched_semaphore * sem); 

3.8.5   Register a Process for Notification on a Watched Semaphore
To register a process to be notified that a semaphore has been released, use the 
process_watch_semaphore()  function. In this function, you specify the frequency of the 
notification; that is, whether the process should be awakened only the first time the semaphore is 
released (ONESHOT) or every time it is released (RECURRING). 

void process_watch_semaphore(watched_semaphore * sem, ENABLEDISABLE enable,
ONESHOT one_shot); 

3.8.6   Delete a Watched Semaphore
When a semaphore is no longer needed, delete it using the delete_watched_semaphore()  function. 
This function unlinks and frees the data structures for any processes that are watching this 
semaphore, and then frees the semaphore data structure itself. This function also clears the input 
parameter to prevent dangling pointers.

void delete_watched_semaphore(watched_semaphore ** ws); 

3.9   Manage Bit Fields

3.9.1   Bit Fields: Definition
A bit field is a 32-bit quantity in which each of the individual bits has significance. This is in contrast 
with the normal set of bits, such as a long number or an unsigned long number, in which the set is 
taken as a whole. 

3.9.2   Create a Watched Bit Field
Creating a bit field that can be managed by the scheduler allows processes to be awakened 
automatically whenever the value of the data structure changes. To create a bit field, use the 
create_watched_bitfield()  function. 

watched_bitfield *create_watched_bitfield(char * name, ulong id); 
Scheduler 3-21



 CISCO CONFIDENTIAL
3.9.3   Modify the Bit Field Minor Type
Use the process_set_bitfield_minor()  function after creating a watched bit field and before 
watching it to modify the minor type that the bit field receives when the bit field state changes. This 
function is most useful when the bit field is created in a common function that specifies a default 
minor identifier for each bit field it creates. The process_set_bitfield_minor()  allows a process 
to unambiguously re-identify bit fields created in this way before watching them. 

void process_set_bitfield_minor(watched_bitfield * event, ulong minor); 

3.9.4   Register a Process for Notification on a Watched Bit Field
To register the process to be notified when the state of a bit field has changed, use the 
process_watch_bitfield()  function. In this function, you specify the frequency of the notification; 
that is, whether the process should be awakened only the first time a bit field changes (ONESHOT) or 
every it changes (RECURRING). 

void process_watch_bitfield(watched_bitfield * wb, ENABLEDISABLE enable, 
ONESHOT one_shot); 

3.9.5   Retrieve the Value of a Watched Bit Field
To retrieve the value of a managed bit field, use the process_get_bitfield()  function. 

ulong process_get_bitfield(watched_bitfield * wb); 

3.9.6   Set Bits in a Watched Bit Field
To set only the specified bits in a managed bit field, leaving the other bits unchanged, use the 
process_set_bitfield()  function: 

void process_set_bitfield(watched_bitfield * wb, ulong value, boolean send_wakeup); 

3.9.7   Clear Bits in a Watched Bit Field
To clear bits in a watched bit field, use the process_clear_bitfield()  and 
process_keep_bitfield()  functions. The process_clear_bitfield()  function clears the 
specified bits in a managed bit field, while the process_keep_bitfield()  function clears all bits 
except the specified ones. 

void process_clear_bitfield(watched_bitfield * wb, ulong value, boolean send_wakeup); 

void process_keep_bitfield(watched_bitfield * wb, ulong value, boolean send_wakeup); 

3.9.8   Delete a Watched Bit Field
When a bit field is no longer needed, delete it using the delete_watched_bitfield()  function. This 
function unlinks and frees the data structures for any processes that are watching this bit field, and 
then frees the bit field data structure itself. The function also clears the input parameter to prevent 
dangling pointers. 

void delete_watched_bitfield(watched_bitfield ** wbf); 
3-22 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manage Sets of Scheduler Objects

 CISCO CONFIDENTIAL
3.10   Manage Sets of Scheduler Objects

The scheduler provides three functions to manage sets of scheduler objects rather than just specific 
scheduler objects. 

The process_push_event_list()  function saves the current set of watched events and installs a 
new set of events. This function performs a complete swap of watched events, not an addition or 
subtraction as is done with the process_watch_xxx() functions. Passing a NULL argument to 
process_push_event_list()  creates a new empty set of watched events after saving the existing set 
of events. 

boolean process_push_event_list(sched_event_set * preexisting); 

The process_pop_event_list()  functions serves the opposite function from 
process_push_event_list() . It removes the currents set of events and then restores the previously 
saved set of watched events. Passing a NULL argument to process_pop_event_list()  discards the 
list that it removed. Otherwise, this function returns the argument to the caller. 

boolean process_pop_event_list(sched_event_set ** save_current); 

The process_push_event_list()  and process_pop_event_list()  functions are designed to be 
used by subroutines that do not want to concern themselves with any watched events being used by 
the caller of the library. If the library calls process_push_event_list(NULL)  at the very beginning, 
it can no longer see any of its caller’s events nor can those events wake up the process. The library 
then proceeds to install the events it wants to watch and continues execution. When the library is 
finished executing, it should clean up the watched events that it installed and then call 
process_pop_event_list(NULL)  just before returning to the caller. This restores the caller’s set of 
watched events and leaves the watched event list exactly where it was when the library was first 
called. Any events for the calling process that occurred between the calls to 
process_push_event_list()  and process_pop_event_list()  are saved and are made available to 
the process the next time it calls process_get_wakeup() .

If a library routine always builds the same set of events, and if the routine is nonreentrant, it can pass 
arguments to the process_push_event_list()  and process_pop_event_list()  functions. This 
saves the overhead of building the same set of watched events each time the library is called. The 
library routine can simply installs and de-installs a preexisting set of watched events.

After a process has called the process_push_event_list()  or process_pop_event_list()  
function, it can determine whether any “hidden” events have occurred by calling the 
process_caller_has_events()  function.

boolean process_caller_has_events(void); 

3.11   Scheduler: Example Code

The following example shows code for creating, managing, and exiting from a Banyan VINES router 
process. 
Scheduler 3-23



 CISCO CONFIDENTIAL
Process Setup
process vines_router (void)
{

ulong major, minor;

/*
* Set up this process’ world.
*/

signal_permanent(SIGEXIT, vines_router_teardown);
vinesrtpQ = create_watched_queue(“VINES RTP packets”, 0, 0); 
process_watch_queue(vinesrtpQ, ENABLE, RECURRING); 
reg_add_route_adjust_msg(vines_rtr_pid, “vines_router”);
reg_add_media_fr_pvc_active(vines_rtr_pid, “vines_router”);
reg_add_media_fr_pvc_inactive(vines_rtr_pid, “vines_router”);
process_watch_mgd_timer(&vines_timers, ENABLE);
.
.
.

}

Main Loop
while (TRUE) {

/*
* Wait for the next event to occur.
*/

process_wait_for_event(); 
while (process_get_wakeup(&major, &minor)) { 

switch (major) {
case TIMER_EVENT:

vroute_do_timers();
break;

case QUEUE_EVENT:
vroute_process_queues();
break;

case MESSAGE_EVENT:
vroute_process_messages();
break;

default:
errmsg(&msgsym(UNEXPECTEDEVENT, SCHED), major, minor);
break;

}
}

}

3-24 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Scheduler: Example Code

 CISCO CONFIDENTIAL
Exit Handler
void vines_router_teardown(int signal, int dummy1, void *dummy2, char *dummy3)
{

paktype *pak;

process_watch_mgd_timer(&vines_timer, DISABLE); 
process_watch_queue(vinesrtpQ, DISABLE, RECURRING); 
while ((pak = process_dequeue(vinesrtpQ)) != NULL)

retbuffer(pak);
delete_watched_queue(&vinesrtpQ); 
reg_delete_route_adjust_msg(vines_rtr_pid);
reg_delete_media_fr_pvc_active(vines_rtr_pid);
reg_delete_media_fr_pvc_inactive(vines_rtr_pid);
vines_rtr_pid = 0;

}

Scheduler 3-25



 CISCO CONFIDENTIAL
3-26 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Memory Managemen
4

Memory Management
This chapter discusses regions, memory pools, and the chunk manager, and it describes the memory 
management functions in the Cisco IOS code. The last section describes Virtual Memory, new in 
Release 12.0.

4.1   Overview: Memory Management

To understand memory management in the Cisco IOS software, you must understand three groups 
of concepts:

• Regions and the Region Manager

• Memory Pools, Memory Pool Manager, and Free Lists

• Chunk Manager

4.1.1   Regions and the Region Manager
A region is a contiguous area of the Cisco IOS address space. The Cisco IOS software provides a 
region manager to organize memory hierarchically so that platform-specific and driver-specific code 
can declare areas of memory to the kernel and the kernel can determine how much memory is 
installed or available in a platform. 

4.1.2   Memory Pools, Memory Pool Manager, and Free Lists
To allow applications to allocate memory from the various regions, a memory pool manager creates 
memory pools and manages memory within the regions. The memory pool manager can manage 
multiple regions within a single memory pool; this allows memory to be reclaimed from various 
corners of system memory and used when required. The memory pool manager uses free lists to hold 
different sizes of free memory blocks and requests blocks of a specific size when creating memory 
pools. Having different sizes of memory blocks minimizes the fragmentation of memory and 
preserves the ability to supply memory blocks of a specified size. 

4.1.3   Chunk Manager
Having the memory pool manager provide comprehensive support for managing areas of memory 
requires an overhead of context for every block managed. When the memory pool manager is 
managing many thousands of small blocks, the overhead quickly becomes substantial. To avoid this 
4-1



 CISCO CONFIDENTIAL
overhead, some sections of the Cisco IOS system code allocate a large block of memory called a 
chunk, subdivide it, and manage the subdivided chunks. These chunks are managed by the chunk 
manager. 

4.1.4   Relationship between Regions, Memory Pools, and Chunks
Figur e4-1 illustrates the relationship between regions, memory pools, and chunks. At the left are the 
regions for a platform. These describe the physical memory in the platform. The heap region is the 
memory that remains after the image has loaded; the image is represented by the text, data, and BSS 
regions. The heap normally has a memory pool assigned to it. The memory pool is shown in the 
middle of the figure and consists of several blocks of memory. These blocks are the areas of memory 
that are divided up by the allocation code, such as malloc(). The blocks can be of different sizes. In 
the figure, one of these blocks is expanded to show chunks. The block of memory used by the chunk 
manager looks similar to that of the memory pool, except that chunks consist of identically sized 
blocks of memory and incur little or no management overhead.

Figure 4-1 Regions, Memory Pools, and Chunks 

4.2   Regions

4.2.1   Regions: Definition 
A region is a contiguous area of the Cisco IOS address space. The Cisco IOS software uses regions 
to organize memory into a hierarchical and manageable scheme. This organization of memory into 
regions provides a way for platform-specific and driver-specific code to declare areas of memory to 
the kernel. It also allows the system code to determine how much memory is installed or available 
in a platform and where in memory the various sections of an image are located. 

In its simplest form, a region is an area of memory that is described by a starting address and a size, 
in bytes. 

A region can also have attributes, such as a class, media access attributes, and inheritance attributes. 
Region attributes are controlled by the region manager. 

Bss

Data

Text

Memory pools Chunks

Heap

Block

S
37

05

Regions
4-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Region Classes: Definition

 CISCO CONFIDENTIAL
4.2.2   Region Classes: Definition
A region class identifies the function for which a region of memory is used. Classes provide a 
method for organizing regions of memory. Classes have common attributes that allow them to be 
identified by the region manager and by clients of the region manager. 

For example, region classes identify the text, data, BSS, and heap segments of an image’s memory.

Figur e4-2 illustrates how a region is organized into classes. In the figure, the main region is divided 
into four regions, which correspond to the text, data, BSS, and heap memory segments.

Figure 4-2 Region Classes

4.2.3   Region Hierarchies: Definition
The Cisco IOS region manager uses region classes to organize memory into a parent-child hierarchy. 
The region manager creates the hierarchy based on memory base addresses and sizes. The memory 
allocated to a parent region completely contains the memory allocated to the children of that region. 
The hierarchy of memory regions can be arbitrarily deep. However, it is normally quite shallow, 
consisting of two levels, one parent level and one level of children.

Regions are generally declared when a platform is initialized. However, they can be declared to the 
system at any time. When a region is declared, the region manager arranges the regions in the proper 
parent-child hierarchy. 

Figur e4-3 illustrates how the region manager creates a hierarchy. In the figure, main is the parent 
region of four child regions (text, data, BSS, and heap) because the memory allocated to the main 
region is a superset of the memory allocated to all the child regions. 

Figure 4-3 Region Hierarchy 

REGION_CLASS_LOCAL
"heap"

S
37

00
 

REGION_CLASS_IMAGEBSS
"BSS"

REGION_CLASS_IMAGEDATA
"data"

REGION_CLASS_IMAGETEXT
"text"

main

Text

Data

BSS

Heap

S
37

01
 

0x0000 

m
em

or
y

Child
regions

Parent
region
Memory Managemen 4-3



 CISCO CONFIDENTIAL
Organizing memory regions into a hierarchy is a straightforward way for the system code to 
determine how much memory is available without counting the memory in overlapping memory 
areas more than once. For example, the system code needs to know exactly how much main memory 
is installed on a platform in order to provide output to the user interface, for instance, in response to 
the show version EXEC command. 

The hierarchical organization of memory regions also allows the system code to determine where 
the various sections of an image are located. For example, for subsystem discovery, the system code 
must be able to locate the data segment. The code can determine this easily because an image’s data 
segment is always a child of the image’s main memory region and because the data segment is 
always defined as being in the data region class.

4.2.4   Create a Region
Creating a memory region declares it to the system and automatically registers the region with the 
region manager. To create a memory region, call the region_create() function. In this function, you 
specify a pointer to the region structure to be initialized, the region’s name, starting location and size, 
class, and any inheritance flags. 

regi ontype *region_create(regiontype* region, c har*name, v oid*start,
ui n size, r e g i o n _ c l a sclass, u i nflags); 

4.2.4.1   Create a Region: Example
The code in the following example declares the main memory for a standard Cisco platform. The 
code first interrogates the ROM monitor to determine the system memory size. Then it creates a 
memory region starting at RAMBASE of size memsize bytes. The name of the region—main—is 
displayed in the output of user interface commands. The region’s class is REGION_CLASS_LOCAL , and 
the region uses the default flags. 

ulong memsize;

/*
* Find out how much main DRAM the ROM monitor thinks the system has.
*/

memsize = mon_getmemsize();

/*
* Add a region to describe all of main DRAM.
*/

region_create(&main_region, “main”, RAMBASE, memsize, REGION_CLASS_LOCAL,
REGION_FLAGS_DEFAULT);

In this code example, the region structure is supplied as a pointer to the variable main_region. This 
is important because regions are often created before memory pools are initialized and malloc() is 
available. Most region variables are declared as static variables in the source file that creates them. 
This allows region creation to be independent of memory pool creation, although the two are usually 
intrinsically linked.

4.2.5   Set a Region’s Class
When you create a region with the region_create() function, the region is assigned to the class you 
specify in the class parameter. To change a region’s class after you have created the region, use the 
region_set_class()  function.

void region_set_class(regiontype * region, region_class class); 
4-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Set Media Access Attributes

 CISCO CONFIDENTIAL
4.2.5.1   List of Region Classes
Table 4-1 lists the most common classes used by the system. The region classes that are listed as 
mandatory in this table are required by the system. Therefore, you must declare at least one region 
for these classes, either with the region_create() or region_set_class() function.

Table 4-1 Region Classes

4.2.6   Set Media Access Attributes
A region has media access attributes, which define whether a region is readable and writable. To 
specify a region’s media access attributes, use the region_set_media() function. 

void region_set_media(regiontype * region, region_media media); 

Calling this function is optional. If you omit it when creating a region with the region_create() 
function, the region is automatically assigned the media type of REGION_MEDIA_READWRITE . This 
media type is appropriate for most regions.

For some regions, you must modify the default media access attributes because of hardware 
protection issues so that the region media attributes reflect the physical characteristics. For example, 
text segments are often protected from hardware MMU manipulation. If this is the case, the text 
segment region should be marked read-only so that applications that are affected by these issues, 
such as the checksum code, can make proper decisions. 

Class Description

REGION_CLASS_LOCAL (Mandatory) Memory for normal memory and local heaps. This is the 
default region class.

REGION_CLASS_IOMEM (Optional) Shared memory visible to the processor, network 
controllers, and other DMA devices.

REGION_CLASS_FAST (Optional) Fast memory, such as SRAM blocks, used for 
special-purpose and speed-critical tasks.

REGION_CLASS_IMAGETEXT (Mandatory) Region of memory describing the text segment for a 
running image. This segment contains executable code.

REGION_CLASS_IMAGEDATA (Mandatory) Region of memory describing the data segment. This 
segment contains all of the initialized variables for an image.

REGION_CLASS_IMAGEBSS (Mandatory) Region of memory describing the BSS segment. This 
segment contains the uninitialized variables for an image and is zeroed 
during platform initialization.

REGION_CLASS_FLASH (Optional) Flash memory, which is used by the system for storage. 
This region is declared primarily on run-from-Flash platforms so that 
the REGION_CLASS_IMAGETEXT regions have valid parents.

REGION_CLASS_PCIMEM (Optional) PCI bus memory, which is visible to all devices on the PCI 
buses in a platform.
Memory Managemen 4-5



 CISCO CONFIDENTIAL
4.2.6.1   List of Media Access Attributes
Table 4-2 lists the possible media access attributes.

Table 4-2 Region Media Access Attributes

4.2.6.2   Example: Media Access Attributes
In the following example, the region_set_media()  function is used on an R4600-based system to 
indicate that the text segment is protected against write operations. This code allows the Cisco IOS 
software to make policy decisions about areas of memory because the Cisco IOS software can 
determine the memory’s vulnerability to erroneous writes. 

/*
* Mark the text segment as read only because the R4600 TLB is set up
* to protect this area.
*/

region_set_media(&text_region, REGION_MEDIA_READONLY);

4.2.7   Establish Region Hierarchy
After you have issued the region_create() function to create a region, the region manager arranges 
regions into a hierarchy based on the memory regions’ base addresses and sizes, and realigns 
parent-child relationships if necessary. The hierarchy consists of one or more parent regions and, 
optionally, child regions of each parent. 

4.2.7.1   Region Hierarchy Types
Table 4-3 lists the region hierarchy types that apply to regions.

Table 4-3 Region Hierarchy Types

Media Access Attribute Description

REGION_MEDIA_READWRITE Both read and write operations to the area described by the region are 
possible. This is the default media access attribute.

REGION_MEDIA_READONLY Media represented by the region can only be read from.

REGION_MEDIA_WRITEONLY Media represented by the region can only be written to.

REGION_MEDIA_UNKNOWN Media access of the region is unknown.

REGION_MEDIA_ANY  (Used in searches only) Find any media access attributes.

Type Description

REGION_STATUS_PARENT Parent region. These memory regions are completely unenclosed b
the memory of any other regions. All parents are peers. 

REGION_STATUS_CHILD Child region. These memory regions are enclosed by at least one other 
memory region. 

REGION_STATUS_ALIAS Alias region. These allow regions to be duplicated at other memory 
addresses such that the duplicate region does not appear to be a parent.

REGION_STATUS_ANY  (Used in searches only) Finds any region regardless of type.
4-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Establish an Alias Region

 CISCO CONFIDENTIAL
4.2.7.2   Region Hierarchy Example
Figur e4-4 illustrates a common region hierarchy for a Cisco platform. This figure shows two parent 
regions, main and iomem. The main region is a parent because it contains other regions—text, data, 
BSS, and heap. These four regions are the children of the main region. The iomem region is a parent 
region with no children. The dotted lines in the figure reflect the order of the regions within the 
region manager

Figure 4-4 main and iomem Region Hierarchy

4.2.8   Establish an Alias Region
The region hierarchy status type REGION_STATUS_ALIAS  allows regions of memory that are aliased 
to other, already-declared areas of memory to be accurately reported. Systems where memory 
addresses signify particular cache policies or byte-swapping manipulation commonly use aliased 
memory. 

To understand why you might want to declare regions as aliases, consider how you would calculate 
the total size of a particular class of region. To do this, you sum all the parent regions for that 
particular class. Aliased memory almost always has parent status, so its size is included in the 
memory total, resulting in an incorrect size. By declaring regions as aliases, they are not included in 
the sum and their true relationship to the rest of memory is preserved.

To declare a region as an alias, use the region_add_alias() function. 

boolean region_add_alias(regiontype * region, regiontype *alias); 

4.2.8.1   Example: Establish an Alias Region
The following example of region_add_alias()  is from the R4600 code. This code declares 
k0_main_region to be an alias of the main_region memory region. Aliasing is necessary because 
the R4600 K0 segment shadows the normal virtual memory map used on R4600-based platforms. 

region_add_alias(&main_region, &k0_main_region); 

main

iomem

Text

Data

BSS

Heap
S

35
85

 

Memory Managemen 4-7



 CISCO CONFIDENTIAL

a s
4.2.9   Set Inheritance Attributes
All regions have inheritance properties associated with them. These properties are passed from a 
parent region to a child region when the child region is created. You set a regions’s inheritance 
properties using the flags parameter of region_create() when you create the region. 

Whenever the region_create(), region_get_media() , or region_set_class()  function is called, 
the region manager evaluates the region hierarchy to determine whether the attributes of any child 
regions need to change based on their parent’s new attributes.

4.2.9.1   List of Region Inheritance Flags 
Table 4-4 lists the possible region inheritance flags. 

Table 4-4 Region Inheritance Flags

4.2.10   Search through Memory Regions
One of the key reasons for declaring memory to the system is to allow clients of the region manager 
to search through the known regions for particular memory classes or identify whether a memory 
address is valid for a particular platform. The following are the main functions for searching for 
particular memory regions:

regiontype *region_find_by_addr(void * address); 

regi o n t y p e  * r e g i o n _ f i n d _ b y _ a t t r i b u t e s ( r e g i o n _ c lclass, r e g i o n _ s t a t ustatus,
re g i o n _ m e d imedia);

regi ontype *region_find_next_by_attributes(regiontype* region, re g i o n _ c l a sclass,
re g i o n _ s t a t ustatus, reg i o n _ m e d imedia);

regiontype *region_find_by_class(region_class class);

regiontype *region_find_next_by_class(regiontype * region, region_class class);

Calling the region_find_by_class()  function is equivalent to calling 
region_find_by_attributes()  with REGION_MEDIA_ANY  and REGION_STATUS_ANY specified for 
media and status, respectively. The same relationship exists between the 
region_find_next_by_class()  and the region_find_next_by_attributes()  functions. 

Inheritance Flag Description

REGION_FLAGS_DEFAULT Inherit the parent’s media type only. Do not modify the child region’
class.

REGION_FLAGS_INHERIT_MEDIA Always inherit the parent’s media type.

REGION_FLAGS_INHERIT_CLASS Always inherit the parent’s region class.
4-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Determine Whether a Region Class Exists

 CISCO CONFIDENTIAL
4.2.10.1   Example: Search through Memory Regions by Address
User code often needs to associate region attributes with a given memory address. This can be done 
with the region_find_by_addr()  function. The following example illustrates how to associate 
region attributes with a memory address. This example returns TRUE if an address lies within a known 
text segment (that is, in the REGION_CLASS_IMAGETEXT  class). 

boolean is_valid_pc(void *pc)
{

regiontype *region;

/*
* Find the region associated with pc.
*/

region = region_find_by_addr(pc);
return(region_get_class(region) == REGION_CLASS_IMAGETEXT));

}

4.2.10.2   Example: Search through Memory Regions by All Attributes
It is possible to search the available regions based solely on region class or on all the possible 
attributes—that is, class, media and status. You can construct loops using the region functions, as 
shown in the following example: 

regiontype *region;

/*
* Find the first data segment region.
*/

region = region_find_by_class(REGION_CLASS_IMAGEDATA);
while (region) {

...
region = region_find_next_by_class(region, REGION_CLASS_IMAGEDATA);

}

4.2.11   Determine Whether a Region Class Exists
To determine whether a region class exists, use the region_exists() function. If the region exists, 
this function returns TRUE. 

boolean region_exists(region_class class); 

4.2.12   Determine a Region’s Size
You commonly need to determine the total sizes of various memory region classes. The 
region_get_size_by_class()  and region_get_size_by_attributes()  functions allow you to 
total the sizes of all regions of the same class and all regions with the same attributes. 

uint region_get_size_by_class(region_class class);

uint  r e g i o n _ g e t _ s i z e _ b y _ a t t r i b u t e s ( r e g i o n _ c l a sclass, r e g i o n _ s t a t ustatus,
re g i o n _ m e d imedia);

Calling the region_get_size_by_class()  function is equivalent to calling 
region_get_size_by_attributes()  for a given class with REGION_MEDIA_ANY and 
REGION_STATUS_PARENT  specified for media and status, respectively.
Memory Managemen 4-9



 CISCO CONFIDENTIAL
4.2.12.1   Example: Determine a Region’s Size
The following example returns the amount of main memory (that is, size of the REGION_CLASS_LOCAL 
class) installed in a platform: 

uint size;

/*
* Find the amount of main DRAM installed.
*/

size = region_get_size_by_class(REGION_CLASS_LOCAL);

4.2.13   Retrieve a Region’s Attributes
Several functions allow you to manipulate a region’s attributes. 

Note Use the wrapper functiosn described in this section to manipulate a region’s attributes. Do not 
directly manipulate the region attributes in the regiontype structure. If you do, the 
region_set_class()  and region_set_media()  functions will not be able to properly track the 
region’s inheritance properties. 

To retrieve a region’s attributes, use the following functions: 

region_class region_get_class(regiontype * region); 

region_media region_get_media(regiontype * region); 

region_status region_get_status(regiontype * region); 

Table 4-5 summarizes the functions that set and retrieve a region’s attributes.

Table 4-5 Set and Retrieve Information about a Region’s Attributes

Although the region_get_status()  function exists, region_set_status()  does not. This is to 
prevent the region hierarchy from being corrupted by inappropriate manipulation. The only status 
type that you can set directly is REGION_STATUS_ALIAS , which you set by calling 
region_add_alias() .

Information about Region Function to Set Function to Retrieve

Class region_set_class() region_get_class()

Media region_set_media() region_get_media()

Status — region_get_status()
4-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Memory Pools

 CISCO CONFIDENTIAL
4.3   Memory Pools

4.3.1   Overview: Memory Pools
The Cisco IOS system code provides memory pools for managing heaps. The region manager 
supplies regions to the memory pool manager as candidates for memory pools. The memory pool 
manager creates memory pools to associate disjointed regions into the same pool and hence the same 
heap segment. Associating disjointed memory areas into a single memory pool allows memory to be 
reclaimed from various corners of the system memory map and used if required. 

The Cisco IOS memory pool support has been designed with the network device environment in 
mind, because these environments are unlike other common kernel environments, such as the UNI
environment. One major difference is that network devices have a variety of memory areas installed 
on them, and each area has its own properties. The Cisco IOS memory pools make it easy to 
implement specific network-related requirements such as dynamic memory pool aliasing and 
alternate memory pools. 

4.3.2   Free Lists: Overvie
The free lists used by the Cisco IOS memory pools are different from those used in UNIX and other 
kernel environments. In these environments, memory managers commonly allocate fixed-size 
blocks only. This can be inefficient over prolonged periods of time and when used with network 
devices. To allow the efficient use and re-use of memory, the Cisco IOS memory pool manager uses 
threaded lists of similarly sized free memory blocks to hold any available memory. 

Each free list has a particular size associated with it. Each free block on a list has a size that is equal 
to or greater than the free list size (but obviously not greater than the next larger free list size). When 
looking for an available block of memory during a malloc() call, the memory manager looks for a 
block of memory on the free list that is the best fit for the size requested. If no blocks exist on the 
best-fit free list, the memory manager uses the next higher free list and fragments the block. The 
fragment is then requeued on a suitably sized (and usually much smaller) free list. This method 
attempts to find blocks quickly and with minimal fragmentation.

when an allocated memory block is returned to a pool, the memory manager attempts to coalesce 
physically adjacent blocks to form larger blocks. If this happens, the newly coalesced block is moved 
to a free list of the correct size. The Cisco IOS software performs no background coalescing and heap 
cleanup; all coalescing operations happen during the free() call.

When you create a memory pool, you can specify a list of initial memory pool free list sizes in bytes 
or you can use the default list. The default free list contains the following memory sizes in bytes: 24, 
84, 144, 204, 264, 324, 384, 444, 1500, 2000, 3000, 5000, 10000, 20000, 32768, 65536, 131072, and 
262144.

Users who call malloc() and free() frequently can register their most active and dynamic memory 
pool sizes to try to alleviate fragmentation and increase the efficiency of the memory pool. The 
reason for registering memory pool sizes is that certain heavy users of a memory pool can use 
memory in patterns that result in excessive fragmentation. For example, users who allocate two 
identically sized blocks at a time and almost immediately hand one back can excessively fragment 
larger pools if the free list sizes are poorly chosen in that particular area. Allowing a new free list to 
be created for a common size leads to faster memory allocation and less fragmentation.
Memory Managemen 4-11



 CISCO CONFIDENTIAL
4.3.3   Create a Memory Pool
Memory pools are usually created when the system is initialized by calling the mempool_create()  
function. Creating the memory pool registers it automatically for the class specified in the class 
parameter, and the pool immediately becomes available for operations by the malloc() and free() 
functions.

memp ool *mempool_create(mempool*mempool, c har*name, r egiontype*region,
ulo n alignment, u long*free_list_sizes,
ulong free_list_count, m e m p o o l _ c l a sclass); 

4.3.3.1   Example: Create a Memory Pool
The following example illustrates how to create a memory pool. First, a region that starts at 
heapstart and has a size of heapsize is created. The MEMPOOL_CLASS_LOCAL  memory pool is then 
created from this region of memory. The name of the memory pool is “Processor.” This name is 
displayed in any console output. The alignment is given as 0, which means that the default alignment 
for the processor is used; this alignment is usually longword. The parameters free_list_sizes and 
free_list_count are given as NULL and 0, respectively. This means that the memory pool is created 
with the default free list sizes for heap management. 

/*
* Declare a region starting at heapstart of heapsize bytes,
* and create a “local” memory pool based on it.
*/

region_create(&pmem_region, “heap”, heapstart, heapsize, REGION_CLASS_LOCAL,
REGION_FLAGS_DEFAULT);

mempool_create(&pmem_mempool, “Processor”, &pmem_region, 0, NULL, 0,
MEMPOOL_CLASS_LOCAL);

The structure for pmem_mempool is passed into mempool_create() because it is not possible to 
allocate memory before a memory pool is created. In fact, all memory pools are usually created in 
static variables declared in the function that is creating the memory pools. This prevents any timing 
problems when creating memory pools.

4.3.4   Add Regions to a Memory Pool
After a memory pool is created, regions can be added to it to allow a memory pool to span several 
disjointed areas of memory. New regions are added with the mempool_add_region()  function. 

boolean mempool_add_region(mempool * pool, regiontype *region); 

When adding regions to a memory pool, once a region is assigned to a memory pool, it cannot be 
removed or deleted from that memory pool.

4.3.5   Set a Memory Pool’s Class
When you create a memory pool with the mempool_create() function, you assign a class to that 
pool. The class you choose reflects both the physical media characteristics of the memory being 
managed and the abstract uses for the memory pool. 

4.3.5.1   Mandatory Memory Pool Classes
Some memory pool classes are mandatory; they are required by the system code. This means that at 
least one memory pool must be declared for these classes. 
4-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Alias Memory Pools

 CISCO CONFIDENTIAL
4.3.5.2   Aliasable Memory Pool Classes
Some memory pool classes are aliasable. This means that they can be aliased for a particular 
platform.

4.3.5.3   List of Memory Pool Classes
Table 4-6 lists the most common memory pool classes used by the system code.

Table 4-6 Memory Pool Classes

4.3.6   Alias Memory Pools
Not all platforms need to allocate memory for each class of memory pool. For example, many 
platforms do not have “fast” areas of memory available for speed-critical memory demands. On 
these platforms, the main system heap is used for these purposes. In these cases, you can alias 
memory pools to give the illusion of providing support for a mandatory memory pool class. To alias 
a memory pool, use the mempool_add_alias_pool()  function.

boolean mempool_add_alias_pool(mempool_class class, mempool *alias); 

4.3.6.1   Example: Alias Memory Pools
In this example, which illustrates how to alias a memory pool, a platform has neither shared nor fast 
memory. These mandatory memory pools are aliased to point at pmem_mempool, which is the name 
commonly used for the main heap. This example also illustrates that there are no special stack 
considerations for either of the memory pools. These pools can also be aliased to the main memory 
heap. Using aliases in this manner allows efficient and flexible use of the available memory.

/*
* Add aliases for mandatory memory pools.
*/

mempool_add_alias_pool(MEMPOOL_CLASS_LOCAL, &pmem_mempool);
mempool_add_alias_pool(MEMPOOL_CLASS_FAST, &pmem_mempool);
mempool_add_alias_pool(MEMPOOL_CLASS_ISTACK, &pmem_mempool);
mempool_add_alias_pool(MEMPOOL_CLASS_PSTACK, &pmem_mempool);

Memory Pool Description

MEMPOOL_CLASS_LOCAL (Mandatory) Main system heap.

MEMPOOL_CLASS_IOMEM (Mandatory/aliasable) Shared memory for buffer data and controller 
descriptor blocks. 

MEMPOOL_CLASS_FAST (Mandatory/aliasable) Fast memory (defined by the particular 
platform) for speed critical structures. 

MEMPOOL_CLASS_PSTACK (Mandatory/aliasable) Memory for allocating process stacks. 

MEMPOOL_CLASS_ISTACK (Mandatory/aliasable) Memory for allocating interrupt stacks. 

MEMPOOL_CLASS_MULTIBUS (Optional) Multibus memory present on some older platforms and 
used as a fallback pool. 

MEMPOOL_CLASS_PCIMEM (Optional) PCI memory present on some platforms.
Memory Managemen 4-13



 CISCO CONFIDENTIAL
4.3.7   Create Alternate Memory Pools
Alternate pools provide a fallback resource when a memory pool runs out of memory. Including 
alternate pools in the memory pool management design means that the memory pool manager can 
construct specialized and optimal memory pools frugally, because larger and more general pools are 
available as a fallback. 

To specify alternate pools, use the mempool_add_alternate_pool()  function. 

boolean mempool_add_alternate_pool(mempool * pool, mempool *alternate); 

4.3.7.1   Example: Create Alternate Memory Pools
The mempool_add_alternate_pool()  function is commonly used to provide a fallback pool for the 
MEMPOOL_CLASS_FAST  memory pool, as shown in the following example: 

/*
* If fast memory runs out, fall back on the system heap.
*/

mempool_add_alternate_pool(&fast_mempool, &pmem_mempool);

4.3.8   Allocate Memor
To allocate memory to a memory pool, you use a family of malloc() functions. See Table 4-7 for a 
list of the malloc() functions that points out the unique feature of each function.

All allocated memory can be returned using the free() function. 

4.3.8.1   Allocate Unaligned Memory
To allocate memory with the default alignment for the pool, use the following functions: 

void *malloc(uint size); 
void *malloc_fast(uint size);
void *malloc_iomem(uint size); 
void *malloc_named(uint size, const char *name); 
void *malloc_named_fast(uint size, const char *name); 
void *malloc_named_iomem(uint size, const char *name); 
void *malloc_named_pcimem(uint size, const char *name); 
void *malloc_pcimem(uint size); 
void *mempool_malloc(mempool_class class, uint size); 

4.3.8.2   Allocate Aligned Memory
Occasionally, you must allocate memory that has a specified alignment. To do this, use the 
malloc_aligned() , malloc_iomem_aligned() , malloc_named_aligned() , or 
mempool_aligned_malloc()  function, specifying the alignment in bytes. 

void *malloc_aligned(uint size, uint alignment);
void *malloc_iomem_aligned(uint size, uint alignment);
void *malloc_named_aligned(uint size, const char *name, uint alignment);
void *malloc_named_iomem_alig ned(uint size, const char *name, uint alignment);
void *malloc_named_pcimem_alig ned(uint size, const char *name, uint alignment);
void *mempool_aligned_malloc(mempool_class class, uint size, uint alignment);
4-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Allocate Memory

 CISCO CONFIDENTIAL
4.3.8.3   Comparison of Memory Allocation Functions
Table 4-7 compares the malloc() family of functions available for allocating memory.

Table 4-7 malloc() Family of Functions 

4.3.8.4   Guidelines for Allocating Memory
Keep these guidelines in mind when designing code that allocates memory:

• Always check the return value of all calls to the malloc() family of functions. 

Check the return value for a return code of NULL, which indicates that no memory is available. 
Unlike UNIX systems or other virtual memory platforms, embedded systems such as network 
devices can run out of memory. Failure to check the return code of a malloc() request can result 
in memory corruption in systems that do not have MMU support or protection.

As the Cisco IOS system image grows larger, the heap size gets squeezed and network platforms 
run out of memory. Code such as the following fragment dereferences NULL if malloc() fails:

ptr = malloc(sizeof(snark_t));
ptr->flags = SNARK_DEFAULT_FLAGS;

On 68000-based platforms, this code makes the values in low memory unusable. For some 
releases, the exception table is located in low memory. This type of problem is difficult to debug. 
On R4600-based platforms, this exception is caught and the offending party recorded as part of 
the crash. In either case, this is a catastrophic bug that is difficult to trace at a customer site. 

• A call to malloc() does not need a cast. 

All the memory allocation functions return a type of void *. Therefore, no typecasting is 
required. This allows the code to be cleaner than code littered with typecasts that subvert any 
typechecking that the compiler can perform. Code such as the following is completely spurious:

ptr = (snark_t *)malloc(sizeof(snark_t));

Also, casts effectively circumvent any type checking that gcc can perform. 

Description 
Function to Allocate 
General Memory

Function to Allocate 
Aligned Memory

Allocates memory from MEMPOOL_CLASS_LOCAL . malloc() malloc_aligned()

Allocates memory from MEMPOOL_CLASS_FAST . malloc_fast() —

Allocates memory from MEMPOOL_CLASS_IOMEM . malloc_iomem() malloc_iomem_aligned()

Allocates memory from MEMPOOL_CLASS_LOCAL  and binds a 
textual name to the allocated memory. 

malloc_named() malloc_named_aligned()

Allocates memory from MEMPOOL_CLASS_FAST  and binds a 
textual name to the allocated memory. 

malloc_named_fast() —

Allocates memory from MEMPOOL_CLASS_IOMEM  and binds a 
textual name to the allocated memory. 

malloc_named_iomem() malloc_named_iomem_aligned()

Allocates memory from MEMPOOL_CLASS_PCIMEM  and binds a 
textual name to the allocated memory. 

malloc_named_pcimem() malloc_named_pcimem_aligned()

Allocates memory from MEMPOOL_CLASS_PCIMEM . malloc_pcimem() —

General-purpose method of allocating memory. When you call 
this function, you must specify the memory pool class to which 
you are allocating memory. 

mempool_malloc() mempool_aligned_malloc()
Memory Managemen 4-15



 CISCO CONFIDENTIAL
• Failures in malloc() are recorded by the memory management code. 

In earlier Cisco IOS software releases, the following type of code was common:

ptr = malloc(sizeof(snark_t));
if (!ptr) {

errmsg(&msgsym(NOMEMORY, SNARK), “snark structure”);
return;

}

However, this resulted in a huge amount of text segment space being used by these errmsg() (or 
sometimes buginf()) calls. Starting with Software Release 11.0, no error logging should be 
produced locally by malloc() failures. Instead, the malloc() function produces rate-limited 
error messages of the following form:

Jun 17 16:58:37: %SYS-2-MALLOCFAIL: Memory allocation of 16777236 bytes failed
from 0x3E81E, pool Processor, alignment 0

-Process= “Exec”, ipl= 0, pid= 42
-Traceback= E3FE F3D0 3E826 3EE5E 6361E 1CEC4 6C64E

To display the last ten failures, use the show memory failures allocation EXEC command: 

Router# show memory failures allocation
Caller       Pool          Size   Alignment   When
0x3E81E     Processor   16777236      0      0:02:28
0x3E81E     Processor   16777236      0      0:02:26
0x3E81E     Processor   16777236      0      0:02:25
0x3E81E     Processor   16777236      0      0:02:24
0x3E81E     Processor   16777236      0      0:02:23
0x3E81E     Processor   16777236      0      0:02:09
0x3E81E     Processor   16777236      0      0:02:07
0x3E81E     Processor   16777236      0      0:02:07
0x3E81E     Processor   16777236      0      0:02:06
0x3E81E     Processor   16777236      0      0:00:10

The only sections of code that should generate any visible messages are those called by the parser 
to let the user know the command has failed because of memory shortages. In these cases, the 
following type of code is acceptable. Note that printf() should be used only when the code is 
being executed by the parser; the string should be the globally provided string nomemor .

ptr = malloc(sizeof(frobnitz_t));
if (!ptr) {

printf(nomemory);
return;

}

• For major structures that might consume a large amount of memory, consider calling 
named_malloc() so that the show memory EXEC command shows both the name of the 
allocated memory and what allocated the memory.

• If you choose to locate a mgd_timer structure inside of memory that has been allocated using 
malloc(), you must stop the mgd_timer before freeing the space. Otherwise, router crashes can 
occur with mgd_timer_set_exptime_internal()  in the backtrace. For example, if you call 
malloc(sizeof mgd_timer) , use the mgd_timer in that malloc'd space, and then, in error, 
manage to call free() on the space while the timer is still running, the next time some code in 
the same process calls mgd_timer_start(), the router will crash in the 
mgd_timer_set_exptime_internal()  routine when it dereferences a n w-poisoned pointer in 
the mgd_timer tree for that process.

Because it is harmless to call mgd_timer_stop() on a timer that is already stopped, you should 
always call mgd_timer_stop() on the timer before calling free() for the memory area.
4-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Return Memory

 CISCO CONFIDENTIAL
4.3.8.5   Example: Allocate Memory
The following code fragment illustrates how to allocate general memory. This code attempts to 
allocate memory for two structures. The first attempt uses the fast_malloc() function to allocate 
memory from the MEMPOOL_CLASS_FAST  memory pool. If the first attempt does not succeed, the code 
returns a value of NULL, which indicates that no memory is available. The second attempt to allocate 
memory uses malloc() to obtain memory from the MEMPOOL_CLASS_LOCAL  memory pool. If this 
attempt fails, the code calls free() to return the previous allocation and then returns a value of NULL. 

hwidb = malloc_fast(sizeof(hwidbtype));
if (!hwidb)

return(NULL);

idb = malloc(sizeof(idbtype));
if (!idb) {

free(hwidb);
return(NULL);

}

4.3.9   Return Memory
To return allocated memory, use the free() function. 

void free(void *memory); 

4.3.10   Lock and Return Memory
When there are multiple users of a block of memory (such as multiple processes), it often becomes 
necessary to lock a block so that it is not freed until every user has signalled that they are finished 
with it. Each block of memory has a reference count associated with it for this purpose. When a block 
is allocated, it has a reference count (or refcount) of 1. To increment the refcount for a block of 
memory, use the mem_lock() function. 

void mem_lock(void *memory); 

To attempt to return a block of memory, use the free() function. You can use free() to return all 
allocated memory. 

void free(void *memory);

If free() is called with a block that has a refcount of 1, the block is returned to the memory pool 
from which it was created. If the refcount is greater than 1, free() decrements refcount and 
returns without doing anything further to the memory block. This mechanism allows any of the 
potential users of the memory block to be responsible for returning it without risking a memory leak. 
In this regard, free() is the logical equivalent of mem_unlock() when using locked blocks of 
memory.

4.3.10.1   Example: Lock Memory
One of the most common reasons to lock memory is to prevent a block of memory from being freed 
by another process. Although the Cisco IOS scheduler is a run-to-completion scheduler, there are 
windows of opportunity for scheduling breaks in areas of the code that do not immediately indicate 
it. For example, when dumping the contents of a structure that resides in an allocated memory block 
to a TTY device, it is often important to lock down the block that you are attempting to dump. This 
is necessary because the user interface routine runs from the context of the EXEC process that 
handles the TTY device to which a user connects, not the process actively managing the data 
Memory Managemen 4-17



 CISCO CONFIDENTIAL
structures being displayed. If the TTY device has automore configured, the display process can 
potentially suspend during any function call that displays text, waiting for the user to allow more 
output to be displayed.

However, there is usually another active process running in the system that manages these data 
structures. If, when the display process is suspended, it deletes and frees the structure that the display 
process was dumping, there will be problems, especially if the structure is in a linked list and 
contains a pointer to the next element.

To avoid these problems, you can lock the memory block while it is being displayed, as in the 
following example:

while (boojum)
/*
* Lock the structure while we are using it.
*/

mem_lock(boojum); 
/*
* Display structure information
*/
.
.
.

/*
* Unlock structure
*/

boojumnext = boojum->next;
free(boojum); 
boojum = boojumnext;

}

You must save the next pointer before calling free(). This is done in case the structure has been 
freed by the management process while you were displaying it. If that happens, the free() function 
at the end of the display loop physically hands the memory block back because the refcount is 1. 
This is the main reason that there there is no mem_unlock() function that effectively calls free(). 
(Many engineers have suggested adding this function.) By using free() to unlock memory blocks, 
the possible side effects of the unlock operation remain immediately obvious.

Do not use fields from the structure after the free() is called, because this produces an error that is 
not immediately caught.

4.3.11   Add Free List Sizes
The default free list contains the following memory sizes in bytes: 24, 84, 144, 204, 264, 324, 384, 
444, 1500, 2000, 3000, 5000, 10000, 20000, 32768, 65536, 131072, and 262144. 

If you call malloc() and free() frequently, you can register your most active and dynamic memory 
pool sizes to try to alleviate fragmentation and increase the efficiency of the memory pool using the 
mempool_add_free_list()  function.

boolean mempool_add_free_list(mempool_class class, ulong size); 
4-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Specify Low-Memory Actions

 CISCO CONFIDENTIAL
4.3.11.1   Example: Add Free List Sizes
The most common time to register memory pool sizes is when subsystems are initialized, as 
illustrated in the following example. In this example, each call adds a new size to the free list tree for 
MEMPOOL_CLASS_LOCAL , allowing efficient allocation and return of these free list sizes. 

/*
* Create some free lists.
*/

mempool_add_free_list(MEMPOOL_CLASS_LOCAL, sizeof(gdbtype));
mempool_add_free_list(MEMPOOL_CLASS_LOCAL, sizeof(mdbtype));
mempool_add_free_list(MEMPOOL_CLASS_LOCAL, sizeof(midbtype));

4.3.12   Specify Low-Memory Actions
Memory pool users might need to specify an emergency action to take if available memory becomes 
too low. In order for these memory pool users to function efficiently, they need an early warning that 
memory is running low. The Cisco IOS system code provides two thresholds that can be monitored 
to provide early warning: a low-memory threshold and a fragment threshold. 

4.3.12.1   Set the Low-Memory Threshold
The low-memory threshold is triggered when the amount of free memory in a pool drops below a 
specified amount. The default threshold for the MEMPOOL_CLASS_LOCAL  memory pool class is 96 KB. 
Other memory pool classes have no default thresholds. To set or change the low-memory threshold, 
use the mempool_set_fragment_threshold()  function. 

void mempool_set_fragment_threshold(mempool_class class, ulong size); 

4.3.12.2   Set the Fragment Threshold
The fragment threshold is triggered when the size of the largest block free in a memory pool is 
smaller than a specified amount. The default threshold for the MEMPOOL_CLASS_LOCAL  memory pool 
class is 32 KB. Other memory pool classes have no default thresholds. To set or change the fragment 
threshold, call the mempool_set_low_threshold()  function. 

void mempool_set_low_threshold(mempool_class class, ulong size); 

4.3.12.3   Determine Whether Memory Is Low
The mempool_is_empty()  function returns TRUE if the memory pool and its optional alternate have 
dropped below both the low-memory and fragment thresholds. This is a relatively expensive check 
because the free lists must be checked for fragment size and the memory pool totals must also be 
checked. 

boolean mempool_is_empty(mempool_class class); 

An alternative and much less CPU-intensive function is mempool_is_low(), which checks only the 
total number of bytes free in the pool against the low threshold if it is set. 

boolean mempool_is_low(mempool_class class); 
Memory Managemen 4-19



 CISCO CONFIDENTIAL
4.3.13   Search through Memory Pools
To search for particular memory pools by address or class, use the mempool_find_by_addr()  and 
mempool_find_by_class()  functions. 

mempool *mempool_find_by_addr(void * address); 

mempool *mempool_find_by_class(mempool_class class); 

4.3.13.1   Example: Search through Memory Pools by Memory Pool Address
The following example illustrates how to find the memory pool that manages a given memory 
address. This example returns TRUE if an address is managed by a memory pool. 

boolean address_is_managed (void *address)
{

mempool *mempool;

/*
* Find the mempool associated with address.
*/

mempool = mempool_find_by_addr(address);
return(mempool != NULL);

}

4.3.13.2   Example: Search through Memory Pools by Memory Pool Class
The following example searches the available memory pools based on the memory pool class: 

mempool *fast_mempool;

/*
* Find the memory pool of fast memory.
*/

fast_mempool = mempool_find_by_class(MEMPOOL_CLASS_FAST);

4.3.14   Retrieve Statistics about a Memory Pool
The mempool_get_free_bytes() , mempool_get_total_bytes() , and mempool_get_used_bytes()  
functions check the current state of a memory pool class and return statistics about memory pools. 
These functions are used by memory management functions to provide information about the current 
state of a memory pool class. 

ulong mempool_get_free_bytes(mempool_class class); 

ulong mempool_get_total_bytes(mempool_class class); 

ulong mempool_get_used_bytes(mempool_class class); 

4.4   Chunk Manager

4.4.1   Overview: Chunk Manager
The memory pool manager provides comprehensive support for managing areas of memory. This 
requires an overhead of context for every block managed, which is usually about 32 bytes per block. 
If a section of code is to manage many thousands of small blocks, the overhead quickly becomes 
substantial. To avoid this overhead, some sections of code allocate a large block of memory, 
4-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Guidelines for Using the Chunk Manager

 CISCO CONFIDENTIAL
subdivide it into chunks, and manage the subdivided chunks. These chunks are managed by the 
chunk manage . The chunk manager provides a standard method for managing specialized blocks of 
memory. 

In addition to being more efficient for managing small element sizes, using blocks managed by the 
chunk manager allows the memory pool manager to avoid the fragmentation that results from 
allocating thousands of small elements from a large memory pool regardless of whether a free list 
exists for that size.

4.4.2   Guidelines for Using the Chunk Manager
Follow these guidelines when using the chunk manager: 

• The blocks allocated from a chunk must all be the same size. 

• A chunk can grow dynamically, but it cannot grow from interrupt level. This restriction is a 
function of how the code for memory pools is allocated. The dynamic chunks are chained to the 
initial chunk structure, and, if they become full of free elements, they are “trimmed” to prevent 
bursts of chunk usage from causing long-term memory shortages.

• When creating new chunks, be careful about the number of chunk elements allocated for each 
chunk. Allocating too many elements per chunk might mean that more memory is wasted by the 
chunk manager than would be wasted by using the standard memory pool manager. This is 
because when you use the chunk manager, memory is allocated in one large block and the 
majority of the block is unused.

• Use the chunk manager only if the probability of memory corruption is low.

4.4.3   Create a Memory Chunk 
To allocate a chunk of memory to be managed by the chunk manager, use the chunk_create() 
function. If no memory pool is specified, the chunk is created out of the MEMPOOL_CLASS_LOCAL  
memory pool.

chunk_type *chunk_create(uint size, uint maximum, uint flags, mempool *mempool, 
ulong alignment, char *name); 

The flags parameter can be any combination of the flags listed in  Table4-8.

Table 4-8 Chunk Pool Flags

Use the show chunk command to verify that you are actually using the chunks that you created and 
that they are the proper size. 

Chunk Pool Flags Description

CHUNK_FLAGS_DYNAMIC Allows the chunk pool to grow automatically if it becomes exhausted. 
When the chunk pool grows, a new sibling chunk is created using the 
parameters supplied for the original chunk block and is made available 
for allocation.

CHUNK_FLAGS_LOCKABLE Allows elements supplied from the chunk pool to be locked by users 
with a reference count.
Memory Managemen 4-21



 CISCO CONFIDENTIAL
4.4.3.1   Example: Create a Memory Chunk
The following example creates a managed memory chunk that has RDB_CHUNK_MAX elements per 
chunk. No memory pool or special alignment is requested. Each element is sizeof(rdbtype) bytes 
long. Setting CHUNK_FLAGS_DYNAMIC  allows new elements to be allocated, chaining them to the end 
of rdb_chunks if it runs out of free elements. Each new chunk created contains RDB_CHUNK_MAX 
elements. 

/*
* Initialize IP route structures.
*/

rdb_chunks = chunk_create(sizeof(rdbtype), RDB_CHUNK_MAX, CHUNK_FLAGS_DYNAMIC, 
NULL, 0, “IP RDB Chunk”);

4.4.4   Allocate and Return a Memory Chunk Element
After a chunk has been created, you can allocate elements from it using the chunk_malloc() 
function. To return allocated elements, use the chunk_free() function. 

void *chunk_malloc(chunk_type * chunk); 

boolean chunk_free(chunk_type * chunk, void *element); 

You use these functions similarly to the way you use the analogous memory pool functions. The only 
difference is that you must always specify the chunk context to be used.

The chunk_malloc() function, like malloc(), can return NULL if no element can be obtained. You 
must always check the return value from chunk_malloc(). Failure to do this can result in memory 
corruption in systems that do not protect low memory. 

All the chunk memory allocation functions return a type of void *. Therefore, no typecasting is 
required, thus allowing for cleaner code. 

4.4.4.1   Example: Allocate a Memory Chunk
In the following example, an rdb entry is allocated by calling chunk_malloc(): 

rdbtype *rdb;

/*
* Get an rdb entry.
*/

rdb = chunk_malloc(rdb_chunks);
if (!rdb)

return;
...
chunk_free(rdb_chunks, rdb);

4.4.5   Lock a Memory Chunk
If the chunk pool was created with the CHUNK_FLAGS_LOCKABLE  flag set, each element in the chunk 
pool has a reference count associated with it that can be incremented by the chunk_lock() function. 

boolean chunk_lock(chunk_type *chunk, void *element); 

The locking of chunk elements with chunk_lock() is analogous to the mem_lock() function for data 
blocks allocated via malloc(), and the same examples and warnings apply.
4-22 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Destroy a Memory Chunk

 CISCO CONFIDENTIAL
4.4.6   Destroy a Memory Chunk
Occasionally, you might want to destroy a chunk structure if it is no longer required by the code. To 
destroy a chunk, call the chunk_destroy() function. 

boolean chunk_destroy(chunk_type * chunk); 

The chunk is destroyed only if all the elements that belong to the chunk chain have been returned 
before the destruction attempt. This restriction prevents memory corruption by users of the chunk 
that hold pointers to the memory returned to the memory manager.

4.5   Memory Management Example

4.5.1   Determine Amount of Memory Available
One reason to organize memory regions into a hierarchy is to allow the system code to easily 
determine how much memory is available without counting the memory in overlapping memory 
areas more than once. For example, the system code needs to know exactly how much main memory 
is installed on a platform in order to provide output to the show version EXEC commands. The 
following example of output from this command shows that 16384 KB of memory are available in 
the main region (this value is the sum of the sizes of all the parent REGION_CLASS_LOCAL classes) and 
4096 KB are available in the iomem region. (This value is the sum of all the parent 
REGION_CLASS_IOMEM  classes.)

Router# show version

Cisco Internetwork Operating System Software
IOS (tm) 4000 Software (XX-K-M), Experimental Version 11.0(16680) [smackie 138]
Copyright (c) 1986-1995 by cisco Systems, Inc.
Compiled Sun 21-May-95 22:40 by smackie
Image text-base: 0x00012000, data-base: 0x0052A5F8

ROM: System Bootstrap, Version 4.14(7), SOFTWARE

Router uptime is 18 hours, 55 minutes
System restarted by reload
System image file is “smackie/PortReady/xx-k-m”, booted via tftp from 171.69.1.129

cisco 4000 (68030) processor (revision 0xB0) with 16384K/4096K bytes of memory.
Processor board ID 5016716
G.703/E1 software, Version 1.0.
Bridging software.
X.25 software, Version 2.0, NET2, BFE and GOSIP compliant.
2 Ethernet/IEEE 802.3 interfaces.
2 Token Ring/IEEE 802.5 interfaces.
2 Serial network interfaces.
128K bytes of non-volatile configuration memory.
4096K bytes of processor board System flash (Read/Write)
Memory Managemen 4-23



 CISCO CONFIDENTIAL
The output of the show region EXEC command shows the locations and sizes, in bytes, of the 
memory regions. This command shows that the main region is 16777216 bytes. This memory region 
corresponds to the 16384 KB of memory reported by the show version command. The iomem region 
has 4194304 bytes, which corresponds to the 4096 KB reported by the show version command. 

Router# show region

Region Manager:

Start         End     Size(b)  Class  Media  Name
0x00000000  0x00FFFFFF    16777216  Local  R/W    main
0x00001000  0x00010FFF       65536  Fast   R/W    main:sram
0x00012000  0x0052A5F7     5342712  IText  R/W    main:text
0x0052A5F8  0x00552A9F      165032  IData  R/W    main:data
0x00552AA0  0x005B7B3B      413852  IBss   R/W    main:bss
0x005B7B3C  0x00FFFFFF    10781892  Local  R/W    main:heap
0x03000000  0x033FFFFF     4194304  Flash  R/O    flash
0x06000000  0x063FFFFF     4194304  Iomem  R/W    iomem

4.6   Virtual Memory 

As of Release 12.0, Cisco IOS software provides support for virtual memory (VM). Cisco IOS VM 
can “increase” memory by as much as 75% of the raw Cisco IOS image size. VM also extends 
memory protection safeguards beyond those available on platforms without VM. As such, VM is 
most suited for very low-end systems and systems that require high reliability. 

At the time of this writing (September 1998), VM was in its first “incarnation.” A project was 
already underway to reduce the porting and maintenance effort required by the current .link file and 
image creation methods. In addition, a more formal, detailed documentation is planned for the next 
iteration.

This chapter provides the information that you need to get started working with VM:

• Introduction to VM: the “Paging Game,” an entertaining but accurate introduction to concepts

• Overview of Cisco IOS VM: benefits and costs of using VM; requirements

• Engineering Effort: changes you will have to make to your platform

• VM Rules: rules that VM “lives by;” advice

• VM Primer: addressing basics

• Porting VM to a Platform: steps

• Wish List: planned improvements

• Style Considerations: list of VM coding and notation style

• Basic VM Terms and Concepts: definitions. Read this first if you are not familiar with VM theory 
and practice.

4.6.1   Introduction to VM
The Paging Game is a humorous but accurate introduction to virtual memory. It is part of the “Thing 
King” story, written by Jeff Berryman of the University of British Columbia. The “Thing King” story 
was distributed at a share meeting shortly after IBM announced virtual memory for the 370 series. 
See if you can match the players in the Paging Game with real-world VM counterparts.
4-24 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Overview of Cisco IOS VM

 CISCO CONFIDENTIAL
4.6.1.1   The Paging Game: Rules
1 Each player gets several million “things.”

2 “Things” are kept in “crates” that hold 4096 “things” apiece. “Things” in the same “crate” are 
called “crate-mates.”

3 “Crates” are stored either in the “workshop” or the “warehouse.” The workshop is almost always 
too small to hold all the crates.

4 There is only one workshop, but there may be many warehouses. Everybody shares these.

5 To identify things, each thing has its own “thing number.”

6 What you do with a thing is to “zark” it. Everybody takes turns zarking.

7 You can only “zark” your things or shared things, not anyone else’s.

8 Things can only be “zarked” when they are in the workshop.

9 Only the “Thing King” knows whether a thing is in the workshop or the warehouse.

10 The longer the things in a crate go without being zarked, the grubbier the crate is said to become.

11 The way you get things is to ask the “Thing King.” He only gives out things in multiples of 4096 
(that is, “crates”). This is to keep the royal overhead down.

12 The way you zark a thing is to give its thing number. If you give the number of a thing that 
happens to be in the workshop, it gets zarked right away. If it is in a warehouse, the Thing King 
packs the crate containing your thing into the workshop. If there is no room in the workshop, he 
first finds the grubbiest crate in the workshop (regardless of whether it is yours or someone else’s) 
and packs it off (along with its crate-mates) to a warehouse. In its place he puts the crate 
containing your thing. Your thing then gets zarked, and you never knew that it wasn’t in the 
workshop all along.

13 Each player’s stock of things has the same thing numbers (to the players) as everyone else’s. The 
Thing King always knows who owns what thing, and whose turn it is to zark. Thus, one player 
can never accidentally zark another player’s things, even though they may have the same thing 
numbers.

4.6.1.2   The Paging Game: Notes
Traditionally, the Thing King sits at a large, segmented table, and is attended by pages, the so-called 
“table pages,” whose job it is to help the Thing King remember where all the things are and to whom 
they belong.

One consequence of rule # 13 is that everyone’s thing numbers will be the similar from game to 
game, regardless of the number of players.

The Thing King has a few things of his own, some of which get grubbier, just as player’s things do, 
and so move back and forth between the workshop and the warehouse. 

4.6.2   Overview of Cisco IOS VM
This section discusses the requirements of VM on a Cisco IOS platform and potential benefits and 
costs.
Memory Managemen 4-25



 CISCO CONFIDENTIAL
4.6.2.1   Requirements
VM requires a platform with an MMU. If your platform does not have one, there is absolutely no 
way that you can use VM. If you do have an MMU, then you can add VM. 

Note Many CPUs have built in MMUs, for example, PPC, MIPS R4k, i386, and others. The older 
68k CPUs do not have an MMU.

4.6.2.2   Benefits and Costs
Adding VM to your platform yields two benefits: it decreases the minimum DRAM required to run 
the Cicso IOS software and it increases quality through improved memory protection beyond that 
supported by previously protected IOS platforms. The cost is a performance impact, which varies 
from zero to pretty much as high as you are willing to accept. Returns diminish starting at about 
10-15% CPU overhead.

In general, the improved memory protection has negligible impact on performance and offers the 
following safeguards:

• NULL and illegal address protection: panic on illegal writes, warn on illegal reads. The router 
can now stay up on NULL pointer reads.

• Free block protection: attempts to read or write memory already freed will warn or panic 
depending on how VM is initialized.

• Stack overrun protection: panic if a process uses too much stack.

• Stack growth: allocates stack on demand, up to the overrun limit.

• All the normal IOS protections as available on the few platforms that support VM, for example, 
read-only code sections.

VM “adds” roughly 50% to 75% of the raw image size in DRAM. In other words, if your platform 
has 16 MB of DRAM with an uncompressed image size of  8 MB, with VM, it would be as if your 
platform had 20-22 MB of DRAM. This feature does have a performance impact, typically less than  
10% overall CPU load.

Since VM only “adds” a fraction of the image size in DRAM, if you  have a medium-to-large 
platform where the amount of physical DRAM  is much greater than the image size, it is unlikely 
that VM will offer a significant DRAM benefit to your platform. For example, adding 8 MB  to a 
256-MB platform probably will not help much.

Using VM to increase available RAM to the greatest extent possible requires on-unit image storage 
(in flash, on disk, or in another such resource).  You can net-boot a VM image, but  your increase in 
available RAM will be much less. Zero-20% of image size is typical. Also, if you flash-boot, you 
cannot alter the flash image while the Cisco IOS software is running. This means that if you only 
have enough flash for one image, your customers must rely on something other than the Cisco IOS 
software to load  images, for example, TinyROM, ROMMON, boot helper, or others.

In summary, VM is primarily useful on very low-end systems or systems that require high quality. It 
only works on platforms that have an MMU. At best, VM offers an equivalent RAM increase of 
50-75% raw image size. The increase comes as the expense of performance and, perhaps, live Cisco 
IOS flash burn. A typical development effort takes 2 to 3 months. 

4.6.3   Engineering Effort
This section lists the things that you need to change on your platform to use VM. 
4-26 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



VM Rules

 CISCO CONFIDENTIAL
If you are using an MPC8xx (embedded PPC) platform, you are in luck. Nearly all the work has 
already been  done. You can either use the Mantis/c800 code directly or as a  reference. If you are 
using a different CPU/MMU, you need to do the following things:

• Port the VM subsystem: add CPU, MMU, Clock (optional, but very nice if you have a high 
resolution 32-bit HW clock), and page-in support code for your platform. There are stubs and 
abundant comments in the VM code to help you. (For this step, you need an ICE or patience and 
creativity). 

• Add VM support to gdb, core-dump, exception, and interrupt handlers. While the volume of work 
here is rather small, it requires a high degree of precision. (An ICE is helpful, too.)

• Convert your platform to use COFF, DWARF, ELF, or any other BFD-supported object format 
that supports multiple sections. (If you use a.out, this means you.)

• Create a .link file to produce a VM-format image. This requires fair knowledge of gnu-ld or the 
ability to acquire it. The Mantis/c800 VM .link file can serve as a seed.

• Create a VM-compression image production script. The Mantis/c800 script can serve here, with 
only slight modifications. You need to provide new image unpacking code if you are using 
ROMMON instead of TinyROM.

• Add virtual-to-physical conversion code to all of your device drivers that use DMA. Depending 
on the flexibility of your platform's code, this may require anything from very little change to a 
complete driver rewrite.

• Update your flash drivers and/or file system to prevent the Cisco IOS software from overwriting 
an image currently being used for paging.

• Fix addressing bugs in the Cisco IOS software. If your platform has memory protection already, 
this number will be very small, perhaps zero. If not, VM will probably uncover something on the 
order of 20-30 existing bugs. Nearly all will be very simple NULL pointer bugs. Perhaps 2 or 3 
will be hard corruption bugs.

• Any flash file system can be made to work. However, performance will suffer if the images in 
flash are ever discontiguous on anything except page boundaries.

• If you are in the hardware design stage and are considering VM, it is nice, but not required, to 
have a page of all zeroes and, sometimes, a page of illegal page table entries available. Usually, 
HW can provide both with no additional cost.

4.6.4   VM Rules
1 Only VM code is allowed to interact with the MMU. This rule includes enabling, disabling, 

updating, flushing, inspecting, everything. Vm cannot be implemented if any other code is 
interacting with the MMU.

2 All startup code must be in core and marked with PG_I in the memory map prior to calling 
vm_start(). Not only is it optional for ROMMON to load non-init and non-pager code into 
RAM—it might not even fit on all units—but VM will destroy all non-init code and data in RAM 
to ensure that this rule is followed. By startup code is meant all code and data referenced prior to 
calling vm_start(), which should be called as soon as possible before calling main().

3 Your .link file is required to define the symbols _[ben]* for every section referenced in the 
memory map, where _b* is the least valid virtual address, _e* is least invalid virtual address
(_b* <= _e*), _n* is the size in bytes, and <*> is the section name (without a leading dot).
Memory Managemen 4-27



 CISCO CONFIDENTIAL
4 Do not access data outside the pager sections when writing pager code, including strings for 
vm_printf() messages. Accessing date outside the pager sections will cause an endless page 
fault loop. Hopefully, you will not ever have to write pager code, but you should be aware of this 
rule in any case.

5 All VM external symbols and files, whether platform-dependent or not, should be prefixed with 
vm_. The prefix helps people answer the question, “Where the heck is the VM source?”

4.6.5   VM Primer
This section explains some basics about addressing, gives you advice about using VM on a Cisco 
IOS platform, and provides step-by-step instructions for porting VM to a platform.

4.6.5.1   Virtual Addresses vs. Physical Addresses
A physical address is the actual number that you place on the address bus in hardware. This number 
is limited. The primary motivator behind IBM’s initial development of virtual memory back in the 
late 60s was to allow programs to use more addresses than were actually available in hardware. Such 
programs are said to run in virtual space or virtual memory.

Since there are more virtual addresses than physical addresses, not all virtual addresses are available 
at all times. When the CPU references a virtual address that is not in core, an exception is generated 
(called a page fault) and the pager is invoked. The pager picks a page that has a physical address 
(hopefully one that will not be used again in a long while), pages it out, pages in the page that the 
CPU wants, then continues where it left off.

In a Cisco IOS system, page-out only picks read-only and non-dirty read-write pages and simply 
discards them. In the future, the system may compress dirty read/write pages to DRAM, but it does 
not do that now. The end result of regular paging is that, while the virtual address space looks just as 
it would on any Cisco IOS router, the physical address space is completely scrambled.

DMA uses physical addresses. On non-VM Cisco IOS platforms, physical addresses are the same as 
virtual addresses (or require just a simple mask to convert between the two), so drivers need not 
worry about a buffer being split in two. On VM Cisco IOS platforms, a physical buffer could be split 
on any page boundary. Large buffers may be split more than once, and even a 2-byte buffer could be 
split due to VM’s address scrambling.

Your DMA drivers all need to be able to support DMA into completely discontiguous buffers. Full 
scatter-gather support is ideal for zero performance degradation under VM. If your devices do not 
support scatter-gather, you either need to provide a special Virtual==Physical IO pool or copy data 
between a known contiguous region and the normal Cisco IOS buffers.

4.6.5.2   What is an “address interval”?
An address interval is simply a range of addresses. Mathematically, an interval is a bounded subset 
of another, usually well known, set. The subset can be inclusive or exclusive of the boundary values. 
Please refer to the section Style Considerations for descriptions of interval notation.

Cisco IOS VM sets consist of addresses, either physical or virtual; therefore, our intervals are all 
subsets of addresses. For example, [0,2^32) typically describes the entire virtual address space for a 
32-bit CPU and [0,N * 2^20) typically describes the entire physical address space for a system with 
N MB of DRAM.
4-28 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Porting VM to a Platform

 CISCO CONFIDENTIAL
4.6.5.3   Advice on Using VM
1 Taking the effort to properly tag functions and creating extra sections in your image based on 

locality of use will significantly enhance the performance of an image when low on RAM. The 
ideal candidates for tagging: rarely used code (init, parser, error handling, etc.) as well as the 
converse, heavily used code (ISRs, atomic code, etc.).

2 VM assumes you will be using the VM heap. You can use your own, but that is not recommended. 
Your unit will fail due to lack of memory when a VM heap system will just run slower, and your 
unit will run slower (perhaps much slower) when a VM heap system is lightly loaded. The only 
advantage to not using the VM heap is that performance will not vary much with reference to 
memory use. If you are sure you do not want the heap, do not link in vm_heap.o.

3 Make use of the default RAM limit feature for all non-release versions that you build. This 
feature was originally intended to test low RAM conditions and stress the pager, but it turned out 
to be very useful to ensure that the Cisco IOS software does not get too fat to run on older units. 
That is, you do not need a 4-MB unit to see if your image will run in 4 MB. Just set the default 
limit to 400h (assuming 4-KB pages).

4 Compiling with -DVM just enables VM section tagging. If your .link file is properly laid out, you 
can then enable or disable VM at link time just by linking it in or not.

4.6.6   Porting VM to a Platfor
Step Make it link and run using the various stub headers in vm_port.h (eg.  vm_mmu_none.h, 

vm_cpu_any.h, vm_clock_none.h, etc.). This will ensure that your .link file is pretty close 
to being properly set up and that you are indeed linking in all the right files.

The only thing that you can actually do with this image that you could not do before is 
that you can now use the vm command-line interface (CLI) command. It will not do 
anything yet, but at least you can see that it is there.

The steps you need to take here are as follows: 

(a) Edit vm_port.h to select the appropriate headers.

(b) Edit your platform .link file to add the new sections. See 
obj-mpc-c800/c800vm.link  for examples.

(c) Edit your platform makefile and/or makesubsys.platform  files to include the VM 
subsystem.

Step Make it link with the actual .[ch] files for your CPU and MMU. If your CPU and/or 
MMU is not already represented in existing code, you will need to write new headers and 
support modules for your CPU/MMU.

Follow the interfaces described in the none/any files you used in Step 1, but this time the 
functions must really do what they say they’re going to do. Refer to existing CPU/MMU 
modules if you are in doubt about what to do. They are heavily commented.

The quickest way to create every function that you need is usually to just copy the 
any/none files to your CPU/MMU files and fill in the blanks. It usually takes less than a 
day to code the CPU support and a couple of days for the MMU.

When you are done with this step, VM should be ready to run in simulation mode; that is, 
page from RAM. However, do not do it. You need to complete the next step before you 
are ready to run VM in simulation mode.
Memory Managemen 4-29



 CISCO CONFIDENTIAL
Step Update your driver code to use vm_v2p(). This is critical. Your platform almost certainly 
has devices that require physical addresses and not virtual addresses. You need to alter the 
drivers for these devices to use vm_v2p(), which converts a single virtual address interval 
into multiple physical address intervals.

You can refer to the c800 platform code for examples. The Ethernet code there is usually 
a good starting reference.

If you do not update your drivers, your image will probably crash mysteriously very 
shortly after starting VM. There is no address protection on devices that access physical 
addresses directly, so you will never know what went wrong.

Step Make VM run in simulation mode. Add a call to vm_start() into your startup code before 
you call main() but after exceptions are handled well enough to dump a stack trace. Add 
appropriate memory map definitions for your platform. See os/main_c800.c for 
examples as well as the comments on vm/vm_core.c:vm_start() .

Install as much RAM as your platform can support and run your VM image. This will 
enable VM in simulation mode; that is, it will page from RAM and use a simple loop for 
the decompression from flash. This will let you debug all the changes you introduced in 
Steps 1-3. It will also let you do performance testing.

You should ensure that your platform runs just fine in all respects before you move onto 
the next step.

Step Teach VM how to find the booted image in flash. Select an appropriate page-in method 
from those available in vm_port.h. You can write your page-in method, but there is not 
much to gain there unless you have hardware to exploit, for example hardware 
decompression. More information on this topic will be available later, as it is defined.

Step Build a VM-compressed image. You will need to use one of the standard 
VM-compression methods supported in vm_port.h to compress your image. Then, you 
will need to package your image in such a way that your ROMMON can load the image 
into flash. As long as flash contains the data exactly as produced by the VM-compression 
tool (extra headers and trailers are fine), VM will be able to page the image from flash. 
More information on this topic will be available after the tool has been defined.

Step Test paging from flash. Load your image and test it. It should work just like it did in Step 
4 (simulation mode). The difference is that now it is really paging from flash, so you can 
measure actual performance.

Step Tune and optimize. If you have a powerful CPU, you can support either a much higher 
fault rate or a much better compression method than those previously supported. Playing 
with the delay value in simulation mode will let you determine the acceptable 
performance limits for your router, which will allow you to decide if they justify adding 
a new page-in method.

You can also improve performance by introducing additional sections into your .link file.  
Moving rarely-used code into one section will reduce paging, as will moving frequently 
used code into one section. Typical candidates: parser code, initialization code, and code 
that is critical for performance, like fast switching.

4.6.7   Wish List
This section lists improvements that could be made to Cisco IOS VM, time and resources permitting.

1 Periodically check dirty pages to see if they are really changed. That is, writing a zero to 
something that is naturally zero would mark the page dirty, but it really would not be altered and 
we really could still page it. Very low likelihood of a gain.
4-30 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Style Considerations

 CISCO CONFIDENTIAL
2 Real page-out, that is, compress to RAM buffer. We could do this in software if we made the 
page-out a low priority background process or if we did it in hardware. We likely are not fast 
enough to do it on demand in software.

3 Split vm_core.c into vm_pager.c, vm_init.c, and vm_if.c. The reasons for a jumbo module no 
longer apply now that we are using the GNU toolset.

4 Better compression. One of our patent claims outlines a method for enhancing the compression 
ratio, perhaps significantly, with no impact on decompression rate at run-time. It is fairly easy to 
do, but would require tool enhancements as well as a new page-in, so it has to wait for a 
subsequent project.

5 Automatic section placement; that is, generate the final .link file with a program instead of by 
hand. This is quite possible using set intersection techniques on pager sections with user supplied 
rules for section inclusion and reference. It would take a fair amount of work to do this, though, 
so it needs to wait for a subsequent project.

6 Automatic section variables generated by gld. It would be nice if gld could create the _[ben] 
section variables for us. This is not hard to do. (Other linkers do this already).

7 Add support for “execute” permission, that is, PF_X. Not all MMUs can do this. For example, 
MPC8xx can only do it by marking all data regions guarded. (This feature would allow us to fault 
if we try to run from an otherwise valid address in something other than .text.)

8 Add support in the MPC MMU page table creation code to use larger page sizes for non-IO 
locked regions. This would help reduce the table walk overhead, but would require some changes 
to VM core to ensure that locked initially means locked forever. (We will need to do this anyway 
to support NP/P compression).

9 Kill off processes that do illegal page-faults instead of panicking. This is not terribly difficult and 
would be very nice to have.

4.6.8   Style Considerations
1 VM requires some minor style deviations from those in Cisco IOS software. They are permanent 

and have engineering reasons behind them. Here is a list:

— No > or >= . (ever)

— Braces must line up.

— Use 8-character (hard) tabs.

— Line length is never to exceed 79 characters.  

2 When modifying VM code, it does not matter if you follow the current VM style, use current 
Cisco IOS style, or another style as long as you do not reformat the code gratuitously. Please 
consider your reviewer and provide well formatted, well commented code.

3 VM code uses standard mathematical notations, both in the comments and for variable names.  
Table 4-9 provides a brief description:

Table 4-9 Mathematical Notations in VM Code

Symbol Meaning

=> Implies

x:y Onto mapping (sets, intervals) or ratio (constants)
Memory Managemen 4-31



 CISCO CONFIDENTIAL
4.6.9   Basic VM Terms and Concepts
In this section, basic VM concepts emerge as the following terms are defined: memory management 
unit (MMU), virtual memory, paging, physical address, virtual address, demand paging, prepaging, 
page fault, working set, and least recently used.

Note The following definitions are from the Free Online Dictionary of Computing 
(http://www.instantweb.com/~foldoc/contents.html). The intention is to provide an introductory 
discussion of the subject. Some details mentioned in the discussion may differ from those in the 
Cisco IOS virtual memory implementation.

• memory management unit (MMU)

A hardware device used to support virtual memory and paging by translating virtual addresses 
into physical addresses. 

The virtual address space (the range of addresses used by the processor) is divided into pages. 
The page size is 2^N, usually a few kilobytes. The bottom N bits of the address (the offset within 
a page) are left unchanged. The upper address bits are the (virtual) page number. The MMU 
contains a page table, which is indexed, possibly associatively, by the page number. Each page 
table entry (PTE) gives the physical page number corresponding to the virtual one. This is 
combined with the page offset to give the complete physical address.

{a,b} A set with elements a,b.

(a,b) An n-tuple (or record) with variables (fields) a, b, etc.

(li,gi) Open (exclusive) interval, least invalid < e < greatest invalid

[lv,gv] Closed (inclusive) interval, least valid <= e <= greatest valid

[lv,li) Open right interval, least valid <= e < least invalid

(li,gv] Open left interval, least invalid < e <= greatest valid

<s,n> Start/extent interval == [s,s+n) (<s,n> is a non-std notation)

iff If-and-only-if (necessary and sufficient, => and <=)

st. Such that

sb. Should be

wrt. With respect to

{}[]?* csh style filename globbing(for example, as used to describe VM canonical 
section naming)

Symbol Meaning
4-32 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Basic VM Terms and Concepts

 CISCO CONFIDENTIAL
A PTE may also include information about whether the page has been written to, when it was last 
used (for a least recently used replacement algorithm), what kind of processes (user mode, 
supervisor mode) may read and write it, and whether it should be cached.

It is possible that no physical memory (RAM) has been allocated to a given virtual page, in which 
case the MMU will signal a page fault to the CPU. The operating system will then try to find a 
spare page of RAM and set up a new PTE to map it to the requested virtual address. If no RAM 
is free, it may be necessary to choose an existing page, using some replacement algorithm, and 
save it to disk. This is known as paging. There may also be a shortage of PTEs, in which case the 
OS will have to free one for the new mapping.

In a multitasking system, all processes compete for the use of memory and the MMU. Some 
memory management architectures allow each process to have its own area or configuration of 
the page table, with a mechanism to switch between different mappings on a process switch. This 
means that all processes can have the same virtual address space rather than require load-time 
relocation.

An MMU also solves the problem of fragmentation of memory. After blocks of memory have 
been allocated and freed, the free memory may become fragmented (discontinuous) so that the 
largest contiguous block of free memory may be much smaller than the total amount. With virtual 
memory, a contiguous range of virtual addresses can be mapped to several non-contiguous blocks 
of physical memory.

• virtual memory

The address space available to a process running in a system with a memory management unit 
(MMU).

The virtual address space is divided into pages. Each physical address output by the CPU is split 
into a (virtual) page number (the most significant bits) and an offset within the page (the N least 
significant bits). Each page thus contains 2^N bytes (or whatever the unit of addressing is). 

The offset is left unchanged and the virtual page number is mapped by the memory management 
unit (MMU) to a physical page number. This is recombined with the offset to give a physical 
address - a location in physical memory (RAM).

Virtual memory is usually much larger than physical memory. Paging allows the excess to be 
stored on hard disk and copied to RAM as required. This makes it possible to run programs for 
which the total code plus data size is greater than the amount of RAM available. This is known 
as demand paged virtual memor . A page will be copied from disk to RAM if an attempt is made 
to access it and it is not already present. This paging is performed automatically by collaboration 
between the CPU, the MMU, and the operating system kernel. The program is unaware of it.

The performance of a program depends dramatically on how its memory access pattern interacts 
with the paging scheme. If accesses exhibit a lot of locality of reference, that is, each access tends 
to be close to previous accesses, the performance will be better than if accesses are randomly 
distributed over the program's address space, thus requiring more paging.

In a multitasking system, physical memory may contain pages belonging to several programs. 
Without demand paging, an OS would need to allocate physical memory for the whole of every 
active program and its data. Such a system might still use an MMU so that each program could 
be located at the same virtual address and not require run-time relocation. Thus virtual addressing 
does not necessarily imply the existence of virtual memory. Similarly, a multitasking system 
might load the whole program and its data into physical memory when it is to be executed and 
copy it all out to disk when its timeslice expired. Such swapping does not imply virtual memory 
and is less efficient than paging.
Memory Managemen 4-33



 CISCO CONFIDENTIAL
Some application programs implement virtual memory wholly in software, by translating every 
virtual memory access into a file access, but efficient virtual memory requires hardware and 
operating system support. 

• paging

A technique for increasing the memory space available by moving infrequently-used parts of a 
program's working memory from RAM to a secondary storage medium, usually disk. The unit of 
transfer is called a page.

A memory management unit (MMU) monitors accesses to memory and splits each address into 
a page number (the most significant bits) and an offset within that page (the lower bits). It then 
looks up the page number in its page table. The page may be marked as paged in or paged out. If 
it is paged in, the memory access can proceed after translating the virtual address to a physical 
address. If the requested page is paged out, space must be made for it by paging out some other 
page, that is, copying it to disk.

The requested page is then located on the area of the disk allocated for swap space and is read 
back into RAM. The page table is updated to indicate that the page is paged in and its physical 
address recorded.

The MMU also records whether a page has been modified since it was last paged in. If it has not 
been modified then there is no need to copy it back to disk and the space can be reused 
immediately.

Paging allows the total memory requirements of all running tasks (possibly just one) to exceed 
the amount of physical memory, whereas swapping simply allows multiple processes to run 
concurrently, so long as each process on its own fits within physical memory.

• physical address

The address presented to a computer's main memory in a virtual memory system, in contrast to 
the virtual address, which is the address generated by the CPU. A memory management unit 
(MMU) translates virtual addresses into physical addresses.

• virtual address

A memory location that is accessed by an application program that is running in a system with 
virtual memory. Intervening hardware and/or software maps the virtual address to real memory 
(physical memory). During the course of execution of an application, the same virtual address 
may be mapped to many different physical addresses as data and programs are paged out and 
paged in to other locations.

• demand paging

A kind of virtual memory where a page of memory will be paged in if an attempt has been made 
to access it and it is not already present in main memory. This normally involves a memory 
management unit (MMU), which looks up the virtual address in a page map to see if it is paged 
in. If it is not, the operating system will page it in, update the page map, and restart the failed 
access. This implies that the processor must be able to recover from and restart a failed memory 
access or must be suspended while some other mechanism is used to perform the paging.

Paging in a page may first require some other page to be moved from main memory to disk 
(paged out) to make room. If this page has not been modified since it was paged in, it can simply 
be reused without writing it back to disk. This is determined from the modified, or dirty, flag bit 
in the page map. A replacement algorithm or policy is used to select the page to be paged out, 
often the least recently used (LRU) algorithm.
4-34 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Basic VM Terms and Concepts

 CISCO CONFIDENTIAL
Prepaging is generally more efficient than demand paging.

• prepaging

A technique whereby the operating system in a paging virtual memory multitasking environment 
loads all pages of a process's working set into memory before the process is restarted.

Under demand paging, a process accesses its working set by page faults every time it is restarted. 
Under prepaging, the system remembers the pages in each process's working set and loads them 
into physical memory before restarting the process. Prepaging reduces the page fault rate of 
reloaded processes and, hence, generally improves CPU efficiency.

• page fault

In a virtual memory system, an access to a page (block) of memory that is not currently mapped 
to physical memory. When a page fault occurs, the operating system either fetches the page in 
from secondary storage, usually disk, if the access was legitimate or reports the access as illegal.
Memory Managemen 4-35



 CISCO CONFIDENTIAL
• working set

The set of all pages used by a process during some time interval. 

The working set frequently consists of a relatively small fraction of a process's total virtual 
memory pages. While a process's entire working set is in physical memory, the process will run 
without page faults. If the working set is too large for available physical memory, the process 
causes frequent page faults.

In a multitasking environment, the information about which pages are in each process's working 
set allows the memory management system to improve CPU efficiency by prepaging (sometimes 
called the working set model).

• least recently used

(LRU) A rule used in a paging system that selects a page to be paged out if it has been used (read 
or written) less recently than any other page. The same rule may also be used in a cache to select 
which cache entry to flush.

This rule is based on temporal locality, the observation that, in general, the page that has not been 
accessed for longest is least likely to be accessed in the near future.
4-36 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Pools, Buffers, and Partic l
5

Pools, Buffers, and Particles
5.1   Buffer Management: Overview

The principle purpose of a router or other network device is to send, receive, and forward packets to 
and from other network devices. Support for handling these packets is fundamental to the system 
software.

As network devices have become more widespread and varied, so have the media with which they 
connect to each other. Each media connection has a maximum transmission unit (MTU) size 
associated with it. This is the maximum size of any frame that can be transmitted on a particular 
media. MTU sizes can range from 1500 bytes for Ethernet to over 18 KB for Token Ring. This is a 
large spread of possible packet sizes, especially when considering that not every packet needs to be 
full. In fact, frames as small as 64 bytes are common on Ethernet. For the underlying packet support 
code to be efficient, it must handle this wide range of possible sizes without wasting memory, while 
at the same time not complicating the underlying code.

The Cisco IOS buffer management code uses pools to manage buffer resources. A generic pool 
manager allows resources to be managed effectively under various code execution constraints. Pools 
can be dynamic in size, allowing the number of items within them to grow and shrink on demand so 
that buffer resources can adapt to match the current packet load. The Cisco IOS buffer management 
code also provides nominal support for pool caches. These can be used to improve performance in 
performance-critical sections of code by creating fast lookaside lists for managed pool items.

The majority of the Cisco IOS protocol and application code assumes that the frame data presented 
to it are contiguous. The default buffer managed by the pool code has a contiguous area of memory 
for the frame data. In order to permit drivers to support scatter-DMA, the Cisco IOS software also 
allows frame data to be composed of individual blocks called particles. The use of particles is 
currently the exception rather than the rule in the Cisco IOS code base; before using particles in any 
code, seek design advice from senior Cisco IOS engineers. 

5.2   Generic Pool Management

Many aspects of the Cisco IOS code rely on the management of discrete resources such as buffers 
and queuing elements. The management of these elements is complicated by the demands placed by 
the clients of the resource pool. Resources must often be grown and trimmed while preserving the 
integrity of the pool against a client’s running, for example, at interrupt level. This balancing of 
resources can lead to the duplication of relatively complicated management structures. To simplify 
this situation, the Cisco IOS software supports generic pool management. All buffer and particle 
pools are structured on top of the generic pool framework. This framework is open so that other 
applications can use the core pool support to get the same pool management features as the buffer 
and particle pools.
e5-1



 CISCO CONFIDENTIAL
5.2.1   Pool Structure
The basic pool architecture is simple (see Figur e5-1). A pool is described by a single pooltype 
structure. From this structure, a queue of pooled items is constructed. All items in the queue are free 
and ready to be consumed by the pool users. All pool items are threaded together using the usual 
singly-linked list (queue) support, which means that the first longword of each data item on the 
queue points to the next item on the queue. The pools themselves are usually threaded together using 
the list manager support. (Queues and the list manager are discussed in the “Queues and Lists” 
chapter.) 

Figure 5-1 Structure of a Pool 

5.2.2   Pool Groups and Size
Two elements of a pool usually dictate its higher-level identification for the client applications of a 
pool: the size of item to be stored within the pool and the pool’s group number. 

The size of the item to be stored is a variable component within a group of pools and does not 
necessarily have to be the full size of the item. For example, in buffer pools, the size indicates the 
maximum number of bytes available for a network header. The full size of the buffer includes extra 
constant space for encapsulations and trailers.

Group numbers allow pools to be partitioned from each other while at the same time allowing partial 
association among pools. For example, three pools could belong to pool group 5 and four could 
belong to pool group 6. This concept of grouping allows pool users to partition the use of the pools. 
The pool group number 0 is reserved for public pools.

When a pool is created, a list is required onto which the pool being created can be inserted. Insertion 
into the list is based on a comparison of the pool size and group number. Pools are arranged in 
ascending order by group number and, within groups, by size.

5.2.3   Static and Dynamic Pools: Definition
Pools are classified as being either static or dynamic.

Static pools make no attempt to increase the number of items contained within them if the pool runs 
low. 

With dynamic pools, the pool attempts to meet the demands of its users. If the pool can grow items 
within the calling context of the caller, it attempts to do so. Otherwise, a critical background process 
is scheduled to run at the next available interval to fill the pool. 

5.2.4   Permanent and Temporary Items: Definition
Items in a pool are classified as being either permanent or temporary.

Pool

Item Item Item Item

S
44

32
5-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Create a Pool

 CISCO CONFIDENTIAL
Permanent items, as their name suggests, are always in the pool and are never destroyed unless the 
number of permanent items is changed. 

Temporary items are transient items that are created in dynamic pools whenever the free count of 
items in the pool drops below the minimum specified by the pool_adjust() function or by the pool 
user. These items can be removed from the pool if the number of free items rises above the maximum 
specified. 

5.2.5   Create a Pool
To create a pool, use the pool_create() function. This function creates only the pool container 
structure. No items are placed in the pool until it is populated and its parameters defined with the 
pool_adjust() function. 

pooltype *pool_create (char * name, int group, int size, uint flags, mempool *mempool,
list_header *list, pool_item_vectors *item); 

The key to a pool’s operational characteristics is the function vector block passed to it as the item 
parameter when the pool is created. This vector operates on an individual pool. It can be one of the 
values listed in Tabl e5-1. All these vectors are mandatory.

Table 5-1 Pool Item Vectors 

The following are the prototypes for the vectors: 

typedef void * (*pool_item_create_t)(pooltype *pool, pool_item_type type);
ty pedef void(*pool_item_destroy_t)(pooltype *pool, void *item);
typedef void * (*pool_item_get_t)(pooltype *pool);
ty pedef void(*pool_item_ret_t)(pooltype *pool, void *item);
ty pedef void(*pool_item_status_t)(pooltype *pool,

void *item,
pool_item_status *status);

typedef boolean (*pool_item_validate_t)(pooltype *pool, void *item);

typedef struct pool_item_vectors_ { 
po ol_item_create_tcreate;
po ol_item_destroy_tdestroy;
po ol_item_get_tget;
po ol_item_ret_tret;
po ol_item_status_tstatus;
po ol_item_validate_tvalidate;

} pool_item_vectors;

Vector Description

create (Mandatory) Creates and returns a new pool item.

destroy (Mandatory) Destroys a pool item.

get (Mandatory) Gets a pool item from the free queue. This vector can also create a 
new item if the free queue is empty and the pool is dynamic.

ret (Mandatory) Returns a pool item to the free queue. This vector can also destroy 
an item if the pool has more than maxfree items in it.

status (Mandatory) Fills in a status block for an item. Item status consists of its state 
(either temporary or permanent) and its age. 

validate (Mandatory) Validates a pool item for debugging support.
Pools, Buffers, and Partic l e5-3



 CISCO CONFIDENTIAL
5.2.6   Adjust a Pool 
Once a pool has been created, it must be populated before use.To fill a pool and establish the 
operating parameters for it, use the pool_adjust() function. This function sets the requested 
minimum number of free buffers for the pool, the maximum number of free buffers, and the number 
of permanent buffers. 

void pool_adjust(pooltype *pool, int mincount, int maxcount, int permcount,
boolean default); 

Most pool applications use the memory pool manager. (See the “Memory Pools, Memory Pool 
Manager, and Free Lists” section in the “Memory Management” chapter.) One of the main 
restrictions of the memory pool manager is that memory cannot be allocated at interrupt level. This 
effectively means that items cannot be created from an interrupt handler. The pool code, therefore, 
attempts to keep the minimum specified number of items in the pool whenever it can. If an item is 
requested from a pool and the free count is below the minimum, the pool code attempts to grow the 
pool to the minimum free count. The minimum count specified to the pool code can therefore be 
taken to be the maximum number of buffers that the pool has reserved for interrupt-level requests.

5.3   Pool Caches

5.3.1   Overview: Pool Caches
Many of the performance-critical sections of Cisco IOS switching code rely on the pools for 
supplying various items—either buffers or particles, or both. Allocating items by calling the pool get 
function vector can impose a considerable overhead in paths where every microsecond counts. To 
reduce this overhead, the pool code provides nominal support for pool item caches. A pool cache is 
effectively a lookaside list of free items that can be accessed quickly. 

Pool caches are not transparent, but rather require users of the code to manipulate the fetch from the 
cache themselves. However, when incorporated into a network driver, a pool cache can provide a 
noticeable performance boost to critical performance-sensitive paths. 

5.3.2   Structure of a Pool with a Cache
Figur e5-2 shows the typical structure of a pool that has a cache. The free list of items, shown across 
the top of the figure, matches the pool structure shown in Figure5-1 . The cache, shown at the bottom 
of Figur e5-2, is effectively an array block of pointers. This structure allows the list to be traversed 
faster, but at the expense of increased pool management risk. You must take great care to ensure that 
pool cache users have no resource contention or interrupt timing problems.
5-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Add a Pool Cache

 CISCO CONFIDENTIAL
Figure 5-2 Structure of Pool with a Cache 

5.3.3   Add a Pool Cache
To add a pool cache, use the pool_create_cache()  function. Adding a buffer cache to a pool 
initializes the structures and internal state required for the pool cache container but does not add an
buffers to the cache. To fill the cache, use the pool_adjust_cache()  function. 

bool ean pool_create_cache(pooltype* pool, i n maxsize, pool_cache_vectors *cache_item, 
in threshold); 

The pool cache uses a vector block similar to that used by the main pool functions to specify cache 
policy and cache item creation and deletion. The vectors can be one of the values lis ted in Table5-2. 
The create and destroy vectors are mandatory. The threshold vector is optional.

Table 5-2 Pool Cache Item Vectors

The following are the prototypes for the vectors: 

typedef void * (*pool_cache_get_t)(pooltype *pool);
ty pedef void(*pool_cache_ret_t)(void *item);
ty pedef void(*pool_cache_threshold_t)(void);

typedef struct pool_cache_vectors_ { 
po ol_cache_get_tget;
po ol_cache_ret_tret;
pool_cache_threshold_t threshold;

} pool_cache_vectors;

Vector Description

create (Mandatory) Creates a new pool cache item. This action usually just fetches an 
item from the main pool freelist for use in the cache.

destroy (Mandatory) Destroys a pool cache item. This action usually attempt s to return 
the item to the main pool freelist.

threshold (Optional) Provides flow control management. This vector is called when the 
pool cache rises above the optional threshold set for it on creation. 

Pool

Item Item Item Item

Cache

Item

Item

Item

Item

S
44

33
Pools, Buffers, and Partic l e5-5



 CISCO CONFIDENTIAL
5.3.4   Fill a Pool Cache 
After you have created a pool cache with the pool_create_cache() function, use the 
pool_adjust_cache()  function to fill the cache with items. This function sets the new size of the 
pool cache. 

void pool_adjust_cache(pooltype *pool, int new size); 

Items that are placed into the cache list are not available to any of the get vector functions on the 
pool. Some drivers use this principle to implicitly set aside either buffers or particles for handling 
incoming traffic to avoid having other users use all the cached items.

Pools that have caches attempt to fill them with any items returned to them. Therefore, no special 
precautions are required to handle items that have been sourced from a pool cache.

5.3.5   Destroy a Cache
To remove a cache from a pool, use the pool_destroy() function: 

void pool_destroy(pooltype *pool); 

5.4   Buffer Structure 

Cisco IOS buffers are split into two sections: 

• Buffer Headers

• Buffer Data Blocks

Figur e5-3 illustrates the packet structure.

Figure 5-3 Packet Structure 

5.4.1   Buffer Headers
A buffer header contains context and pointers for the data. The header is described by the paktype 
structure. The header usually resides in the main system memory and is usually managed as part of 
the MEMPOOL_CLASS_LOCAL  memory pool. 

5.4.2   Buffer Data Bloc
A buffer data block contains the packet data. The data is effectively an untyped block of memory that 
can reside in either the main memory or a shared area of memory, depending on whether the platform 
uses DMA devices. 

paktype
data_area

Data block

S
37

08
5-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Buffer Data Blocks

 CISCO CONFIDENTIAL
All references to the data block are through the paktype header. The data_area element in this 
structure points to the base of the data block. Buffer users always pass pointers to paktype. They 
never pass pointers to only the data block. 

5.4.2.1   Memory Organization within a Data Block
Within a data block, the memory is usually organized as shown in F igure5-4. This figure shows the 
bare minimum of state; far more context is held on the actual buffer. 

The three shaded areas in the figure indicate a single network frame in the buffer. All frames can be 
considered as three consecutive pieces in memory:

• An encapsulation (for example, an Ethernet ARPA header)

• A network header (for example, an IP header)

• A payload (for example, a UDP datagram)

The pointer in the buffer header to the start of the complete frame is datagramstart. The total size 
of the frame in memory is datagramsize. 

The pointer to the start of the network header is network_start. 

Figure 5-4 Memory Organization within a Data Bloc

In Figur e5-4, the network frame is not located at the start of the data area. This is to allow the 
encapsulation to grow in size while switching the frame without having to rewrite the network 
payload. This requirement arises from one of the chief objectives of all high-speed switching 
paths—that the data should never be accessed more than is required. Copying a payload involves 
touching almost all of the frame and is very expensive.

The size of the data area is (ENCAPBYTES + pool size). The value of ENCAPBYTES is defined as the 
largest encapsulation that the platform supports. The pool size is the variable-sized part of the 
equation and is usually taken to be the maximum size of a network header and its payload. When 
dealing with the buffer pool support code, the sizes used are almost always those of the network 
header and payload because an extra ENCAPBYTES is always assumed.

For optimal speed, the code always attempts to place the network header (pointed to by 
network_start) data location ENCAPBYTES bytes from the start of the data area. However, there is no 
guarantee that the network header is placed at this location. Therefore, consumers of a packet should 
always use network_start or other pointers to find the location of the actual data.

data_area

Encapsulation

datagramstart

network_start

datagramsize

Pool size

ENCAPBYTES

S
37

09

Network header

Payload
Pools, Buffers, and Partic l e5-7



 CISCO CONFIDENTIAL
5.5   Buffer Pools

5.5.1   Overview: Buffer Pools
The Cisco IOS software uses buffer pools to manage buffers. Buffer pools hold buffers that are the 
same size and have the same properties. Buffer pools are based on the generic pool manager. 

5.5.2   Public and Private Buffer Pools: Definition
Buffers pools are classified as either public or private. 

Public pools are available for everyone to allocate buffers from. All platforms allocate and fill a 
variety of public buffer pools at run time. 

Private pools are primarily used by interface drivers to manage their own MTU-sized pools for 
incoming traffic. They are visible only to applications with explicit knowledge of them. 

5.5.3   Create a Public Buffer Pool
To create a buffer pool, use the pak_pool_create()  function. 

pooltype *pak_pool_create(char * name, int group, int size, uint flags, mempool 
*mempool);

The pak_pool_create()  function is a wrapper around a call to the pool_create() function, with 
the wrapper specifying the correct vectors for a buffer pool. Public buffer pools all have a group 
number of 0, which is defined as POOL_GROUP_PUBLIC . Different public buffer pools are 
distinguished from each other by their size. If the size is 0, only buffer headers are created in the pool.

The pak_pool_create()  function creates a buffer pool only; no buffers are present in the pool. To 
fill the buffer pool, use the pool_adjust() function. 

5.5.3.1   Example: Create a Public Buffer Pool
The following example creates a public pool. The pool is called “Large” and has a size of LARGEDATA 
bytes. This means that the size of the data area available for writing network frames is 
(ENCA PBYTES+LARGEDATA ) because the size of the maximum encapsulation is always appended. 
The default flags for the pool are used. This means that the pool is dynamic and that the header and 
data blocks are from a memory pool. By specifying mempool as NULL, the default memory pool for 
buffer data is used to source data blocks; this is MEMPOOL_CLASS_IOMEM . 

large = pak_pool_create(“Large”, POOL_GROUP_PUBLIC, LARGEDATA,
POOL_DEFAULT_FLAGS, NULL);

5.5.4   Create a Private Buffer Pool
When creating a private buffer pool, you must pass a private group ID to the pool_create() 
function. Each private pool has a unique group ID, which is provided via the pool_create_group()  
function. 

int pool_create_group(void);
5-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Obtain a Buffer from a Public Buffer Pool

 CISCO CONFIDENTIAL
5.5.4.1   Example: Create a Private Buffer Pool
The following example creates a private buffer pool. This private pool is called “Ethernet,” and it 
contains buffers with enough space for network headers and a payload total of MAXETHERSIZE bytes. 
The pool is not dynamic and has only sanity checking enabled. The data area for each buffer is 
located in the default MEMPOOL_CLASS_IOMEM  pool. 

pool_group = pool_create_group();
buffer_pool = pak_pool_create(“Ethernet”, pool_group, MAXETHERSIZE, POOL_SANITY, NULL);

5.5.5   Obtain a Buffer from a Public Buffer Pool
Most applications in the system image use the public buffer pools as a source of buffers. To obtain a 
buffer from a public buffer pool, use the getbuffer() function. 

paktype *getbuffer(int size); 

The size parameter is the amount of space required for the network header and payload only; each 
buffer comes with enough space for the largest encapsulation. getbuffer() scans all the public 
buffer pools declares in an attempt to find a pool of the size specified. If the pool that it finds has 
fewer than the minimum number of free buffers and is dynamic, the buffer code attempts to increase 
the pool to the minimum value before returning a buffer. 

The buffer returned by getbuffer() has a variety of pointers already initialized. These include 
network_start and datagramstart, which point to the end of the nominal encapsulation area. This 
means that the pointers can be used immediately to build packets for transmission. 

Note Always check the return value from getbuffer(). Buffer pools run out, and getbuffer() 
will fail at some point under low-memory or heavy-burst situations in a running system.

5.5.5.1   Example: Obtain a Buffer from a Public Buffer Pool
The following example allocates a buffer from a public pool. In the example, getbuffer() requests 
a packet of size bytes. The code then checks whether a buffer exists, and if one does, a pointer to 
the XNS header to be built is provided via the XNSHEADSTART macro. This macro uses 
network_start to point at the XNS header. Once a pointer is found, the header is written into the 
buffer and the buffer is manipulated before packets are transmitted. 

pak = getbuffer(bytes);
if (pak == NULL)

return;
xns = (xnshdrtype *)XNSHEADSTART(pak);
xns->cksum = 0;
xns->len = bytes;
xns->tc = 0;

This example is typical of almost all the code that must build buffers using getbuffer() or its related 
functions. Note that getbuffer() does not zero the data area before handing a buffer to a user, and 
all parts of a network header and its payload must be written for each frame.

5.5.6   Obtain a Buffer from a Private Buffer Pool
To obtain a buffer from a private pool, use the pool_getbuffer()  function. The only parameter 
supplied to pool_getbuffer() is a pointer to the pool from which to obtain the buffer

paktype *pool_getbuffer(pooltype * pool); 
Pools, Buffers, and Partic l e5-9



 CISCO CONFIDENTIAL
5.5.7   Lock a Buffer
To increment the reference count field of buffer, that is, to indicate that refcount is in long-term use 
and should not be immediately returned, use the pak_lock macro. 

pak_lock(pak) 

To free the lock, call datagram_done()  with the buffer pointer

5.5.8   Return a Buffer to a Pool
To return a buffer to a pool, use either the datagram_done() or retbuffer() function. 

void datagram_done(paktype *pak); 

void retbuffer(paktype *pak); 

The difference between these two functions is small but significant. In the buffer header, the field 
refcount is a reference count that indicates the number of “users” of a buffer. Incrementing 
refcount using the pak_lock macro allows the system code to indicate that the buffer should not be 
returned until all users have relinquished their hold on the buffer

The retbuffer() function expects all buffers passed to it to have a refcount value of 1. This is the 
usual value for all buffers that have been freshly acquired through getbuffer(). If a buffer is passed 
to retbuffer() with a refcount value greater than 1, an error message is generated. 

The datagram_done() function can accept any value in refcount. If the value of refcount is greater 
than 1, datagram_done() decreases the value by 1, and when the value of refcount reaches 1, 
datagram_done() returns the buffer. In this sense, datagram_done() can be considered to be a type 
of “pak_unlock()” function that is used by applications to relinquish their hold on a buffer, with the 
last user to let go actually returning the buffer.

In a future release, the functionality of datagram_done() will be merged into retbuffer(). In the 
meantime, all applications that return buffers should use datagram_done().

5.5.8.1   Guidelines for Returning a Buffer
Follow these guidelines when designing code to return a buffer: 

• Do not make decisions based on the reference count, and do not add an explicit unlock. If a packet 
or buffer is being shared, you cannot make assumptions about what the other users are doing or 
what order the others will be done with the packet. No code should retrieve the reference count 
except the buffer management code itself. 

• Do not add any explicit unlocks, or there will be a risk of race conditions. Unlocking and freeing 
must be integrated.

5.5.9   Duplicate a Buffer

5.5.9.1   Overview: Duplicate a Buffer
Often, you need to duplicate a buffer so that it can be sent to multiple destinations or modified 
without the risk of changing a buffer that may be waiting in a transmit queue. Copying a frame is the 
only way to guarantee that its contents are valid. It can take several tens of milliseconds to transmit 
some frames after sending them to a driver, especially on slow serial links. This means that once a 
5-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Duplicate a Buffer

 CISCO CONFIDENTIAL
buffer is handed to a driver, no further manipulation on that buffer can take place. The only way to 
asynchronously manipulate the same basic buffer contents is to copy the buffer repeatedly before 
sending the frame and then to continue working on the duplicate.

The buffer management code provides a variety of functions for buffer duplication services. All the 
functions copy the buffer header and data and realign the internal pointers to the new buffer. 

Note Buffer duplication is a relatively complicated task, so it must be done with the functions 
provided by the buffer management code. Do not use bcopy() or its equivalent functions. This will 
result in memory corruption. 

Like getbuffer(), the buffer duplication functions can fail. Therefore, you must always check their 
return values.

5.5.9.2   Duplicate a Buffer Only
The pak_duplicate() function duplicates the buffer, without duplicating its context and without 
recentering the buffer’s header. A call to pak_duplicate() always copies all the data area from the 
source buffer to the duplicate. 

paktype *pak_duplicate(paktype * pak); 

Example: Duplicate a Buffer Only
The following example shows how to duplicate a buffer only. This example duplicates the buffer 
pointed to b pak and returns a pointer to it. The new header can then be rewritten without the risk 
of losing the incoming one. 

newpak = pak_duplicate(pak);
if (newpak == NULL)

return;
newxns = (xnshdrtype *)xnsheadstart(newpak);
newpak->if_output = pak->if_input;
newxns->cksum = 0;

5.5.9.3   Duplicate a Buffer and Its Context
Using pak_duplicate(), which always copies all the data area from the source buffer to the 
duplicate, can be inefficient if the contents of the original buffer are small. If the copy of the original 
buffer is not going to grow, it can be more efficient to use the pak_copy() function. This function 
copies the entire encapsulation area of the buffer plus datagramsize bytes of the network header and 
payload. Because datagramsize normally includes the encapsulation area, pak_copy() copies a 
little more data than is required. However, it can still be far more efficient than pak_duplicate(). 

To duplicate the buffer and its context, use the pak_copy() function. 

void pak_copy(paktype *source, paktype *destination, int size); 
Pools, Buffers, and Particl e 5-11



 CISCO CONFIDENTIAL
Example: Duplicate a Buffer and Its Context
The following example shows how to duplicate a buffer and its context. This example duplicates the 
buffer pointed to b pak. The new buffer is newpak.. 

newpak = getbuffer(pak->datagramsize);
if (newpak == NULL)

return;
pak_copy(pak, newpak, pak->datagramsize);
newxns = (xnshdrtype *)xnsheadstart(newpak);
newpak->if_output = pak->if_input;
newxns->cksum = 0;

5.5.9.4   Duplicate and Recenter a Buffer and Its Context
The network_start field in the buffer header points to the start of the network header and is usually 
set to be ENCAPBYTES from the start of the data area. However, the pointer can move, especially if 
there are multiple encapsulations. This can cause problems if the buffer contents are to be expanded 
towards the end of the data area, because the buffer might prematurely run out of space. The solution 
is to use the pak_copy_and_recenter()  function to duplicate buffers. This function attempts to 
realign the network_start of the duplicated buffer to the top of the encapsulation area. This 
effectively snaps the buffer contents back into their optimal position. 

void pak_copy_and_recenter(paktype * source, paktype *destination, int size); 

5.5.9.5   Comparison of Buffer Duplication with and without Recentering
Figur e5-5 compares the pak_copy() and pak_copy_and_recenter()  functions. The pak_center 
macro always points to the address at the end of the encapsulation area and is used to indicate the 
optimal place for network_start. 

Figure 5-5 Comparing the pak_copy() and pak_copy_and_recenter() Functions

Original data area Duplicate data area

pak_copy()

pak_copy_and_recenter()

pak_center()

network_start

network_start

S
37

06

pak_center()

network_start

network_start

pak_center()
5-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Find a Buffer Pool

 CISCO CONFIDENTIAL
5.5.10   Find a Buffer Pool
To find the public buffer pool that is the best fit for a given size of buffer, use the 
pak_pool_find_by_size()  function. 

pooltype *pak_pool_find_by_size(int size); 

5.5.11   Increase the Size of a Buffer
To increase the size of a buffer (packet), use the pak_grow() function. 

paktype *pak_grow(paktype *pak, int oldsize, int newsize); 

You must check the return value of the pak_grow() function, because it might allocate a new buffer 
and copy the packet contents into it, or in a low-memory situation it might return NULL. In any event, 
if pak_grow() returns non-NULL, the original packet pointer is invalid and should be discarded. If 
pak_grow() returns NULL, the original packet pointer is still valid.

5.6   Buffer Caches

5.6.1   Create a Buffer Cache
To add a buffer cache, use the pak_pool_create_cache()  function. Adding a buffer cache to a pool 
initializes the structures and internal state required only; it does not add any buffers to the cache. To 
fill the buffer cache, use the pool_adjust_cache()  function. 

bool ean pak_pool_create_cache(pooltype* pool, i ntmaxsize); 

5.6.1.1   Example: Create and Fill a Buffer Cache
The following example adds a buffer cache to buffer_pool that can contain a maximum of 
BUFFER_POOL_CACHE_MAX  buffers. If the creation is successful, BUFFER_POOL_CACHE_NUM  buffers are 
added to the cache. 

if (pak_pool_create_cache(buffer_pool, BUFFER_POOL_CACHE_MAX) {
pool_adjust_cache(buffer_pool, BUFFER_POOL_CACHE_NUM);

}

Pools, Buffers, and Particl e 5-13



 CISCO CONFIDENTIAL
5.6.2   Remove Buffers from a Buffer Cache
When removing buffers from the buffer cache, embed the following style of code into a private buffer 
fetch routine. This code allows the buffer cache policy to be set on a per-user basis. In this example, 
the code attempts to remove a buffer from the cache using the pool_dequeue_cache()  inline 
function. If this attempt fails, the code tries to obtain a buffer from the buffer pool free list. This code 
illustrates that the buffers that are placed into the cache list are not available to any of the 
getbuffer() calls on the pool.

static inline paktype *getbuf(pooltype *pool)
{

/*
 * Attempt to get a buffer from the cache.
 */
pak = pool_dequeue_cache(pool);

if (!pak)
pak = private_getbuffer(pool);

return(pak);
}

5.7   Manipulate Buffers on the Input Queue of an Interface 

5.7.1   Add a Buffer to the Input Queue of an Interface
To associate a buffer with an input interface, call the set_if_input() function. This generally needs 
to be done only by interface drivers that are managing a private buffer pool. 

void set_if_input(paktype *pak, idbtype *idb); 

To get a buffer from a public buffer pool and add it to the input queue of an interface, use the 
input_getbuffer()  function. This is equivalent to calling getbuffer() followed by 
set_if_input(). 

paktype *input_getbuffer(int size, idbtype *idb); 

5.7.2   Move a Buffer to the Input Queue of Another Interface
Whenever a packet should be charged against an interface other than the one through which it arrived 
in the platform, it should be moved to an interface other than the input interface. Moving a buffer 
commonly needs to be done in tunneling code, when the headers have been removed from a tunneled 
packet and it needs to be reassigned from a physical interface to the software-only virtual interface 
for that tunnel.

To move a buffer from one input interface to another, use the change_if_input() function. 

void change_if_input(paktype * pak, idbtype *newidbtype); 

5.7.3   Remove a Buffer from the Input Queue of an Interface
When a received packet has been partially processed and should no longer be counted against the 
limit for an interface, it should be removed from the interface’s input queue. For example, when TCP 
puts an out-of-sequence packet into a holding queue, it is no longer fair to charge the packet against 
an interface. TCP therefore calls clear_if_input() before saving the packet.
5-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Particles

 CISCO CONFIDENTIAL
To remove a buffer from an input interface, call the clear_if_input() function. 

void clear_if_input(paktype * pak); 

5.8   Particles

5.8.1   Overview: Particles
The Cisco IOS software provides an extension to the general buffer scheme called particles that 
allows network frames to be constructed from several data blocks rather than as one contiguous data 
block. This extension allows support for scatter-gather DMA schemes within drivers, which can 
allow more efficient use of memory for platforms that must support interfaces with large 
MTUs—such as Token Ring and FDDI—with a minimal amount of buffer memory. (With 
scatter-gather DMA, a DMA of a contiguous block of data is spread across multiple smaller pieces 
of memory, for example, a 1500-byte frame is contained in three 500-byte pieces.)

Currently, most of the Cisco IOS software expects to receive buffers that are contiguous. Therefore, 
all particle-based buffers sent to the process level must be coalesced into a contiguous buffer. This 
can impact process-level switching performance, and the use of particles within a platform’s driver 
structure must be carefully designed and examined.

Currently, the main use for particle-based buffers in Cisco IOS software is in driver architectures that 
need to use small, fixed-size blocks of memory to receive into and possibly fast switch with. 

5.8.2   Particle Structure
Particles consist of two fundamental blocks of memory, a particle header and an attached data block. 
The header is described by the particletype structure. Figure 5 -6, which illustrates the structure of 
a particle, shows a particle with valid data of size data_bytes that starts at data_start. The 
data_block pointer points to a small information field embedded at the start of the data block that 
contains a magic number for block sanity checking. The usable data in the block starts immediately 
after this embedded header. (Some space is left before the usable data to allow room to rewrite a 
larger encapsulation.)

Figure 5-6 Particle Structure 

When used with a buffer header, particles are chained together to form a complete frame, as 
illustrated in Figur e5-7. This figure shows a frame that consists of three chained particles. The 
shaded areas in the particle data indicate the extent of the valid frame data. Each particle header 
delimits the valid data in each particle data block, allowing flexible tailoring of the data considered 

particle

data_block

data_start

data
data_bytes

S
44

35
Pools, Buffers, and Particl e 5-15



 CISCO CONFIDENTIAL
to be actively part of the frame. When the frame data is being parsed by the buffer support code, only 
the data indicated by the start and size in each particle header is considered valid. You need to make 
sure that these pointers are updated, especially as encapsulations change.

Figure 5-7 Chain of Particles 

Note that the paktype header has no data block of its own, unlike prior descriptions. Creating a 
paktype pool with a size of 0 creates a pool of paktype headers suitable for use with particle 
attachments. 

5.9   Particle Pools

Particles are stored in pools in much the same way that normal buffers are. The particle manager is 
implemented on top of the generic pool support and allows the use of all the generic pool features, 
such as dynamic growth and pool caches. 

5.9.1   Create a Particle Pool
To create a pool to hold particles, use the particle_pool_create()  function. 

pooltype *particle_pool_create(char *name, int group, int size, uint flags, 
ulong alignment, mempool *mempool); 

5.9.2   Create a Particle Cache
To create a particle cache, use the particle_pool_create_cache()  function. This function provides 
the particle-specific function vectors to a call to the pool_cache_create()  function. Adding a 
particle cache to a pool initializes the structures and internal state required but does not add any 
particles to the cache until pool_adjust_cache()  is called. 

bool ean particle_pool_create_cache(pooltype* pool, i n maxsize); 

paktype

particle

particlequeue data_block

data_block

data_block

particle

data

data

particle
data

S
44

34
5-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Obtain a Particle from a Particle Pool

 CISCO CONFIDENTIAL
5.9.3   Obtain a Particle from a Particle Pool
To obtain a particle from a particle pool, use the pool_getparticle()  function. The only parameter 
supplied to pool_getparticle() is a pointer to the pool from which to obtain the particle. 

particletype *pool_getparticle(pooltype * pool); 

5.9.4   Return a Particle to a Pool
To return a particle to a pool, use the retparticle() function. 

void retparticle(particletype * particle); 

5.9.5   Add a Particle to the Buffer Header
To add a new particle to the end of the current list of buffer particles, use the particle_enqueue()  
function. 

void particle_enqueue(paktype *pak, particletype *particle); 

5.9.6   Remove a Particle from the Buffer Header
To remove a particle from the beginning of the current list of buffer particles, use the 
particle_dequeue()  function. 

particletype *particle_dequeue(paktype *pak); 

5.9.7   Coalesce Buffers Containing Particles
Currently, only small sections of the Cisco IOS code can handle buffers consisting of particles. When 
a frame is passed to the process level, for example, it must be coalesced into a contiguous block of 
data in order for the assumptions inherent in the higher levels of code to hold true.

A buffer can be coalesced using the pak_duplicate() function. If a particle-based buffer is provided 
to the function for duplication, a contiguous buffer allocated from a public buffer pool is supplied on 
the return. The original buffer can then be freed and its component sections returned to their 
respective pools.
Pools, Buffers, and Particl e 5-17



 CISCO CONFIDENTIAL
5-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Interfaces and Driver
6

Interfaces and Drivers
6.1   Interfaces: Overview

The Cisco IOS software defines an interface descriptor block (IDB) to describe the hardware and 
software view of an interface, and other information about the interface. 

6.2   Interfaces: Historical Background

Starting with Cisco IOS Release 11.0, the implementation of IDBs changed significantly from 
previous releases. This section provides some history about IDBs and describes some of the factors 
that influenced the redesign of IDBs. 

6.2.1   Growth of the IDB
Initially, the IDB contained all the information to describe the hardware configuration and 
application state of an interface, along with protocol-level and application-level feature variables to 
describe interface-specific bits of state, configuration, and status. Because of the proliferation of 
features, this type of implementation became unwieldy, leading to the following major problems:

• Almost all files in the Cisco IOS source code must include the h/interface.h header file in order 
to access the definition of their feature variables in the interface descriptor. Therefore, when 
h/interface.h is modified, every developer must recompile much or all their source when they 
incorporate updates into their development trees.

• The IDB structures have grown quite large and describe features that do not apply to every type 
of interface in the router. Some fields in the IDB structures might apply to none of the interfaces 
currently installed in the router. An example of this is the large number of variables in the hwidb 
structure that are not used on a LAN interface (Ethernet, Token Ring, or FDDI) or a serial 
interface that is not configured for LAPB or X.25 operation. This becomes an increasingly 
important issue as more features are added to the Cisco IOS software, yet the software has to fit 
into smaller hardware platforms, on which memory is the primary factor in the platform’s cost.

6.2.2   Proliferation of Application Variables
When there were not many features in the router, adding application variables was inconvenient but 
not a fatal design flaw. Although everyone had to recompile their entire tree when anyone added, 
deleted, or changed a protocol-specific or an application-specific field in the IDB description, this 
was tolerable when the total number of files being compiled numbered in the hundreds and there 
6-1



 CISCO CONFIDENTIAL
were fewer people per compilation server. Now that the Cisco IOS code has approximately 
11,000 source files, with 30 percent of them including the header files that define the global interface 
structure only to allow access to their application variable fields, this design is unworkable.

In Software Release 9.21, subinterfaces for Frame Relay were added to the Cisco IOS software, 
impacting how all software would view IDBs. In adding Frame Relay subinterfaces, the IDB was 
bifurcated into two IDBs—a hardware IDB and a software IDB—and it became possible to have 
more than one software IDB associated with a single hardware IDB. A software IDB now contains 
only that information that is of interest to, or generated by, level 3 applications in the router. For 
instance, while serial interface statistics and state information reside in the hardware IDB, X.25 and 
LAPB status, statistics, and state information reside in the software IDB. New routing features 
should be able to support software IDBs whether the IDB is the first software IDB on a hardware 
interface, a tunnel interface, or a subinterface.

New features added to the router should allocate a new statically assigned subblock identifier and 
Modular Interface Naming and Numberingshould not add variables to the interface descriptors.

6.2.3   Proliferation of Interfaces
Initially, the maximum number of interfaces that a router might have was 24 to 30, if you filled an 
AGS+ with MEC boards. In this case, looping across the queue of all IDBs in the router, looking for 
the interface that matched the one you were looking for, was not difficult. Now, a router can contain 
hundreds of interfaces. Channelized interface cards can be added to a router that increase the number 
of interfaces by 24 at a time. In the future, the addition of a channelized T3 card could add several 
hundred hardware interfaces to the router with the addition of only one interface card. Clearly, with 
hundreds of hardware IDBs in the router and possibly many more subinterfaces, tunnel interfaces, 
and loopback interfaces configured on the router, looping through the queue of all IDBs in the router 
is not a scalable methodology

6.3   Scalability Changes

The following changes were made to increase the scalability of the IOS software:

• Subblocks and Private Lists (Releases 11.3 & 12.0)

• Maximum Interfaces Constant No Longer a Global Value (R elease 11.3)

• Modular Interface Naming and Numbering (Release 12.0) 

• Extensible Plugin Driver API, for 3600, 7200, and VIP Platforms. See this new chapter in the 
device driver manual, Cisco IOS Device Drivers: Fundamentals of Architecture and Code. 
(Release 12.0) 

• Event-driven timers and queues. See “if_onesec Registry Removed” in the Scheduler chapter of 
this manual. (Releases 11.3 and 12.0)

6.3.1   Subblocks and Private Lists 
You can use two methods to improve the scalability of features that need to access IDBs. The first 
method stores private IDB data fields in an area of memory known as a subblock. All subblocks of 
the same type are linked in a list. Code that needs to access this private IDB data can loop through 
the list of same-type subblocks instead of looping through all the IDBs in the router. 
6-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Maximum Interfaces Constant No Longer a Global Value

 CISCO CONFIDENTIAL
These subblock lists are maintained by the system. If IDBs are unlinked or removed from the router, 
the subblocks that exist on those IDBs are removed from the subblock lists. If the particular feature 
or protocol is removed from the configuration of the IDB, the subblock can be deleted and removed 
from the subblock list. Subblocks are discussed in greater detail in this chapter in “IDB Subblock.” 

The second method is to maintain a private list of only those IDBs on which your routing protocol 
or feature has been configured or enabled. You then loop through only those IDBs in the private list. 
Private lists are discussed in this chapter, in “Iterate a List of Private IDBs.” 

The system software provides common facilities to allow protocols and features to add and delete 
subblocks and to maintain their own private lists of IDBs. See also “Common Subblock Header.” 

6.3.2   Maximum Interfaces Constant No Longer a Global Value
The MAX_INTERFACES constant specifies the maximum number of interfaces that can be loaded onto 
a platform. Interfaces are numbered from one, so zero is invalid. MAX_INTERFACES used to be a global 
value. It has been changed to a per-platform value and is defined as follows:

#define MAX_INTERFACES idb_maximum_units

The idb_maximum_units  variable is defined at compile time in the os/platform.c file. It is set to 
platform_MAXINTERFACES , which is defined in the various machine/cisco_xxx.h files. For this 
reason, you need to refer to the maximum interfaces constant slightly differently when defining a 
structure and allocating its space. For example, whereas before you referred to the constant in this 
way:

typedef struct footype {
     uint foo[MAX_INTERFACES];
} footype;

and in this:

fooptr = malloc(sizeof(footype));

now you need to do this instead:

typedef struct footype {
     uint foo[0];
} footype;

and this:

fooptr = malloc(sizeof(footype) + (sizeof(uint) * platform_MAXINTERFACES));

Having defined the structure and allocated the space in this manner illustrated above, you can access 
the maximum interfaces field as before.

Note The foo[0] field needs to be at the end of the structure.

If you are defining a variable that uses the maximum interfaces constant to determine the allocation 
at compilation time, you will now have to allocate it at runtime. For example, instead of defining the 
variable as before:

static hwidbtype *hwidblist[MAX_INTERFACES];
Interfaces and Driver 6-3



 CISCO CONFIDENTIAL
instead you need to define the variable with code such as this before you can use hwidblist:

static hwidbtype **hwidblist;

followed by this:

hwidblist = malloc(sizeof(hwidbtype *) * platform_MAXINTERFACES);

6.3.3   Modular Interface Naming and Numbering
One of the least modular aspects of the Cisco IOS software was the way that interfaces were named 
and parsed. As several different types of naming conventions were added to this code, it became less 
and less readable. In addition, it contained special code for different platforms among the code for 
all platforms. 

Most of the system code used the namestrings provided by the IDB to display the IDB name. There 
were two times when translation between a platform-specific name and a pointer to an IDB needed 
to be possible: when the name was created as part of idb_init_names() in if/interface.c, and 
when the name was parsed. The name is parsed either when a user typed it in or when the 
configuration was read during interface_action() in parser/parser_actions.c .

The major differences between platforms was how the interface numbering was handled between the 
point that the interface name was typed, such as ethernet or atm, and the point that a VC number 
or subinterface is handled, which was the same on all platforms. For example, some platforms have 
unit-based numbering, such as int ethernet 0, some have strict slot-based numbering, such as int 
fddi 3/0, some have extended slot- based numbering, such as int atm 0/2/0), and some hav
mixed slot/extended slot-based numbering.

The solution is to break out the way in which an interface number is created and parsed into a set of 
routines that a platform can include or create, depending on the platform.

6.3.3.1   Design
The basic design can be broken into two sections: creating the IDB names and parsing the IDB 
naming and numbering system.

6.3.3.2   Creating Interface Names
Creating the IDB names is rather simple to do: all interfaces currently call a routine called 
idb_init_names() to create an interface name when the interface is created.

A platform-dependent variable will be created, called platform_create_interface_name .  This 
variable should be initialized at compile/link time and must be set as a subroutine that will create 
both a namestring and a short namestring and will link the appropriate fields in the hardware IDB 
and software IDB. For the hardware IDB, the fields are hw_namestring and hw_short_namestring . 
For the software IDB, they are namestring and short_namestring .

The platform_create_interface_name  variable will be of this type:

void (*platform_create_interface_name)(idbtype *, boolean)

where the idbtype * argument contains a pointer to the software IDB to create the name from, and 
the Boolean argument indicates whether the interface is a physical hardware IDB type, in which case 
it has the complete numbering for the platform, or it is a dynamic interface, in which case it has a 
single number, for example loopback or dialer interfaces.  The second argument should be TRUE for 
dynamic style interfaces.

All name routines should require that the hwidb->name field be set before calling the routine.
6-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Modular Interface Naming and Numbering

 CISCO CONFIDENTIAL
6.3.3.3   Parsing the IDB Naming and Numbering Syste
The current method of parsing the numbering system for an IDB is handled in the routine 
interface_action() in parser_actions.c . The basic method is to determine the interface name 
and translate it to an iftype entry, then to determine all numbering characteristics, then finally to 
search all the hardware IDBs for the one that matches the numbering and name.

The basic problem is that the translation from the correct numbering scheme to a hardware IDB is 
jumbled and unreadable.

The solution taken was to keep the existing code up to the point after the interface name (atm, 
ethernet, etc), then to call through a platform-dependent variable to parse the numbering. This 
variable, called platform_find_interface() , has quite a few arguments but follows a very simple 
process to translate from numbering to an IDB.

The platform_find_interface()  routine will make several calls into the parser to match names, 
numbers, subinterface, etc. This is shown in more detail below.

The platform_find_interface()  routine has the following form:

boolean (*platform_find_interface)(parseinfo *csb,
                                   ifty pe *ift,
                                   in t *index,
                                   id btype **return_swidb,
                                   in terface_struct * const arg,
                                   ch ar *help)

It will return TRUE if an interface has been found, or FALSE if it has not been found. The arguments 
are as follows:

parseinfo *csb—Contains the input characters, among other fields.

iftype *ift—Pointer to table that has information about the type of interface (name, if it is 
dynamic or not, range of numbers, etc).

int *index —Pointer to an index for error processing.

idbtype **return_swidb—Where the software IDB that matches the numbering should be 
returned.

interface_struct * const arg—Pointer to the interface structure in the parse chain. 
Indicates whether or not the IDB should be created by this command.

char *help—Pointer to the help string.

The general format of this routine should be thus:

1 Determine the correct numbering format (dynamic or not).

2 Use the match_number() and match_char() routines to determine platform numbering. If you do 
not get a number or character, return FALSE.

3 If a VC is possible, determine that. If you do not get a number or character, return FALSE.

4 Call the match_subinterface()  routine to get a possible subinterface number (or to create a new 
subinterface), and to parse to the white space at the end.

5 If the PARSE_NO_IDB flag in arg->flag is set, call the dummy_interface()  routine and return 
TRUE.

6 If the flag is not set, search through the hardware IDBs for a match based on the numbering read 
above.
Interfaces and Driver 6-5



 CISCO CONFIDENTIAL
7  If a hardware IDB that matches is found, call the routine find_swidb_from_hwidb()  to 
determine the correct software IDB from the hardware IDB or to create a new software IDB.  
Return TRUE.

8 If no hardware IDB is matched, call the routine find_swidb_from_hwidb()  to see if we should 
create that hardware IDB/software IDB. Return TRUE.

6.3.3.4   How to Add This for a Platform
Each platform will be required to add a PLATFORM_NAME field into its makefile. The PLATFORM_NAME 
field is linked into the os_parser_lite_platform subsystem, which becomes part of the KERNEL 
subsystem.

6.3.3.5   Generic Suppo t
Several generic support routines and files have been added for platforms that use unit or slotted 
numbering systems. These are as follows:

if/interface.c 

The idb_init_unit_names()  routine will create a unit-based namestring, such as ethernet 0 or 
dialer 5.  It requires the unit field to be placed in the idb->unit field. This routine can be used to 
create dynamic interface names, which is why it remains in interface.c

New files:

if/if_name_unit.c

The parser_find_unit_interface()  routine can be the platform_find_interface  vector value 
for unit interfaces.

if/if_name_slot.c - This file will work for platforms that have the format <name> <slot>/<unit> 
or <name> <unit> for dynamic interfaces, where the <slot>/<unit> fields should match the 
hwidb->slot and hwidb->slotunit fields respectively. For dynamic interfaces, <unit> should 
match hwidb->unit.

This file contains two routines: parser_find_slotted_interface()  and 
idb_init_slotted_names() .

6.3.3.6   Platform-Specific Support
Platform-specific support has been added for the following platforms:

• 7000 and 7500:  src-rsp/if_name_rsp.c

• C5K RSM: src-rsp/if_name_c5rsp.c

• ls1010: src-4k-ls1010/if_name_ls1010.c

This is in addition to new numbering for the popeye chassis.

6.3.3.7   Other Information
The name_format field in the hardware IDB has been removed.

6.3.3.8   Testing
Testing for this change is pretty simple. If the configuration can be parsed at booting of this image, 
the code works.
6-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Extensible Plugin Driver API

 CISCO CONFIDENTIAL
6.3.3.9   Still To Be Done
There are two things that have not been addressed by this fix: naming controllers and removing the 
idb_name_format() routine from the system.

Controllers are used for channelized T1, E1, and T3 types of media to create the IDBs that are used 
within the T1 or E1. Very similiar changes could be made to the controller_action()  and 
int_cdb_name() routines to create platform-dependent routines.

The idb_name_format()  routine is still used in one place outside where it has been removed. The 
crypto routine crypto_chassis_has_slots()  uses it to check for high-end systems. This routine 
should be removed and the crypto subsystems should be altered to do the correct platform 
modularity.

6.3.4   Extensible Plugin Driver API
This API applies to the port adapter families: 3600, 7200, and VIP platforms. It allows the drivers 
on an adapter to share adapter resources when carrying out their responsibilities. See the chapter on 
the Extensible Plugin Driver API in the 12.0 edition of the device driver manual, Cisco IOS Device 
Drivers: Fundamentals of Architecture and Code. 

6.3.5   Other Scalability Changes
Several polling implementations have been transformed into event-driven mechanisms. For a 
summary of these changes, see the section “if_onesec Registry Removed” in the “Scheduler” chapter 
of this manual.

6.4   IDB Terminology

This section expands a bit upon the history of the IDB, then defines the terms related to interfaces 
and interface descriptor blocks (IDBs). It includes advice on which types of subblocks to use and 
gives some examples of subblock creation and release. 

6.4.1   Hardware and Software IDBs
A hardware IDB is an interface descriptor for a hardware interface. At least one software IDB is 
associated with each hardware IDB when it is created. The first software IDB is created and attached 
to the hardware IDB when the hardware IDB is created. More software IDBs can be added to a 
hardware IDB when subinterfaces are added. 

6.4.2   IDB Subblock
As mentioned in a previous section, historically the interface descriptor block (IDB) has been used 
and abused to carry all the variables bound to a specific interface. These variables included not only 
those that were applicable to all types of interfaces (such as the name or unit number of the interface), 
but also many that either were specific to one type of interface (such as TR/SRB variables, which are 
applicable only to Token Ring interfaces) or took up space even hen the feature was not enabled 
(such as variables for AppleTalk, IP, IPX, and other protocols). Using the IDB in this manner 
eventually caused it to grow quite large and consume too much memory.
Interfaces and Driver 6-7



 CISCO CONFIDENTIAL
An intermediate solution to this problem was to collect all the IDB fields that were associated with 
a given protocol, driver, or feature, define in a header file a structure to contain these fields, and then 
move them out of the IDB, leaving behind only a pointer to the new structure. The drawback to this 
approach was that a compile-time dependency on the IDB definition remained in the 
protocol-specific code. That is, the feature, protocol, or interface implementation code could not 
associate their structure pointers without including the definition of the IDB in the interface stream. 

To solve this last problem, subblocks were created. Subblocks remove the need to #include 
h/interface_private.h  to bind an application’s private variables to the IDB and then to reference 
them later. All that is required to retrieve a subblock is the IDB pointer and a subblock identifier. 

6.5   Subblock Identifier

A subblock uses a subblock identifier to associate subblock private memory with a particular IDB. 
This identifier is nothing more complicated than an unsigned integer number that is used as a key to 
allow fast access to the subblock at a later time. 

When an application receives a packet from an interface driver or drivers, the application typically 
determines the input interface from pak->if_input. After the input IDB pointer has been obtained, 
the application typically references various application-specific variables associated with this 
interface. raditionally, these variables were simply referenced as fields in the IDB. The following 
example shows how these variables were referenced to increment AppleTalk errors encountered on 
input:

idb->atalk_inputerrs++;

The intermediate solution to this would look like the following, where all AppleTalk variables for an 
interface have been collected into one structure and only a typed pointer to this structure was left in 
the IDB:

idb->atalk_variables->atalk_inputerrs++;

The solution using subblocks looks like the following. Pointers to subblocks are not typed. That is, 
you cannot dereference through them as you would a structure pointer contained within another 
structure. To reference an application’s variables associated with a particular IDB, the subblock must 
first be retrieved:

atalk_idbvars *at_idb_vars;

at_idb_vars = idb_get_swsb(idb, SWIDB_SB_ATALK);

at_idb_vars->atalk_inputerrs++;

6.6   Types of Subblocks

There are two types of subblocks, depending on how they are allocated:

• Preallocated

• Dynamically allocated

Pointers to preallocated subblocks are allocated as part of the IDB itself. They are faster to reference 
for reading or writing operations because accessing them requires nothing more than an array index 
and dereference. However, the kernel and IDB infrastructure must have a subblock identifier 
allocated (currently in h/interface.h) when the Cisco IOS kernel and infrastructure code is 
compiled. 
6-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Which Type of Subblock to Use

 CISCO CONFIDENTIAL
Pointers to dynamically allocated subblocks are allocated at run-time, and the identifier you use is 
generated when the pointer is allocated from a monotonically increasing number space. 

6.7   Which Type of Subblock to Use

When should you use one type of subblock over another? A very good question.

Preallocated subblocks require the addition of an enumerated value to h/interface.h, which then 
necessitates recompiling most of the Cisco IOS software. However, preallocated subblocks impose 
a lower overhead, both to get the subblock pointer from the IDB and in memory allocation. 

Dynamically allocated subblocks require no changes to any file in the Cis coIOS infrastructure 
code—no changes to h/interface.h, no changes to h/interface_private.h . This features offers 
the advantage that you can write code that attaches a value to an IDB without having to recompile 
the infrastructure portions of the Cisco IOS code. You have to recompile only the code that lays on 
topof the Cisco IOS infrastructure. 

6.7.1   Example: Creating a Subblock
The example in this section shows how a preallocated subblock is typically created, using AppleTalk 
as an example. 

The h/interface.h contains the enumeration for the AppleTalk subblocks:

typedef enum {
...
SWIDB_SB_APPLE,
...

} swidb_sb_t;

In atalk/at_globals.c, the atalk_init_idb()  routine, which initializes the AppleTalk subblock, 
is something like this. This is not the real code, but merely a stripped-down version of the real code. 
The atalk_init_idb()  routine is called from atalk_init(), which in turn is called by the registry 
initialization scheme. 

void
atalk_init_idb (idbtype *idb)
{ 

atalkidbtype *atalkidb;
swidb_sb_t sbtype;

atalkidb = malloc(sizeof(atalkidbtype));
if (atalkidb == NULL) {

return;
}

/*
* Set up pointers back and forth.
*/

sbtype = SWIDB_SB_APPLE;
if (!idb_add_swsb(idb, &sbtype, atalkidb)) {

free(atalkidb);
return;

}
atalkif_init(atalkidb, TRUE, TRUE);

}

Interfaces and Driver 6-9



 CISCO CONFIDENTIAL
6.7.2   Example: Retrieving a Subblock
To access the structure you have previously bound to the IDB with the idb_add_swdb() routine, you 
retrieve the subblock. Again, the code shown in this section is simplified example code, not the real 
code in the system. 

Typically, when a packet arrives in the system and your feature or driver thread gets control, the input 
interface field if_input is set in the packet descriptor. This is commonly coded as pak->if_input. 
Youneed only recover your subblock from the input interface found through the packet descriptor.

void 
etalk_enqueue (paktype* pak)
{ 

atalkidbtype *atidb;

boolean valid = FALSE;

atidb = idb_get_swsb(pak->if_input, SWIDB_SB_APPLE);

if (atidb && atalkif_InterfaceUp(atidb)) {
pak->transport_start = NULL;
atalk_pak_inithdrptr(pak);
if (atidb->atalk_enctype == ET_ETHERTALK)

valid = etalk_validpacket(pak);
else

valid = atalk_validpacket(pak);
if (valid) {

process_enqueue_pak(atalkQ, pak);
return;

}
}
protocol_discard(pak, atalk_running);

}

There are two ways to retrieve a subblock pointer. In the first way, you retrieve from the IDB a 
pointer to the subblock using code similar to the following. This method provides no blocking. If 
other threads manipulate the subblock, do not store or cache this pointer in data structures with an 
expectation of retrieving it later.

subblock-ptr = idb_get_swsb(idb, subblock-identifier);

The second way to retrieve a subblock pointer retrieves and locks a subblock. Code in this style 
increments the usage value in the subblock and prevents the subblock from being removed from the 
IDB by another thread until the usage count is decremented.

subblock-ptr = idb_use_swsb(idb, subblock-identifier);
...
idb_release_swsb(idb, subblock-identifier);

6.7.3   Common Subblock Header
In Cisco IOS Release 11.3, a common subblock header was created to facilitate subblock 
management by system software. This header contains a pointer to a subblock function table 
structure, a pointer back to the IDB that the subblock belongs to, and link pointers.

The addition of the common subblock header allows subblock lists to be created and managed by the 
system software. These lists are populated by all subblocks of the same type. For example, all 
Ethernet subblocks are members of the Ethernet subblock list. The registration of a new subblock in 
an IDB will automatically add the subblock onto the list of subblocks of the same type. Either 
deleting a subblock or unlinking the IDB removes the subblock from the list it is on. 

Also, in Cisco IOS Release 11.3, all subblocks on an IDB are members of a linked list. 
6-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Subblock and VFT Support in Release 12.0

 CISCO CONFIDENTIAL
New macros traverse all subblocks on a given hardware or software IDB.

6.7.3.1   Private IDB List
A private IDB list contains only those interfaces that have been explicitly added to the list. It is 
controlled by the Cisco IOS list manager list. You should only use a private IDB list if you cannot 
use a subblock list. See also “Comparison of Subblocks and Private IDB Lists” and “Manipulate a 
Private List of IDBs” in this chapter.

6.8   Subblock and VFT Support in Release 12.0

A further enhancement in Release 12.0 that further contributes to the scalability problems discussed 
earlier, involves placing a virtual function table (VFT) pointer in each subblock header. This addition 
allows subsystem functions to be invoked from common code without having to use a registry call. 
The aim of the VFT is to provide a well defined API between the generic IOS code and the 
protocol/feature code for common events, actions and requests. Prior to IOS Release 11.3, this was 
done through registry calls. The method of using registry calls did not scale when large numbers of 
interfaces were present. All entries in the registry list were invoked regardless of whether the 
interface was relevant to the called function. With a VFT, only the function(s) required are executed. 
Different VFTs exist for the SWIDB and the HWIDB. 

The subblocks on the IDB are in a linked list so that an IDB's subblocks can be traversed quickly. 
Subblock linked lists provide an alternative to the array structure that was in use for subblocks prior 
to IOS Release 11.3. The main advantage of this new IDB subblock structure is to allow code to walk 
the list of subblocks on an IDB and call the VFT entries. A secondary advantage is that subblocks 
do not have to be referenced through the IDB subblock array, allowing new subblock types to be 
added without touching the IDB structure. 

A subblock list and subblock VFT have been added to the IDB structure. The subblock list 
automatically provides a method of categorizing (for the purposes of iteration) the interfaces. 
Adding a new subblock to an IDB automatically places the subblock on the list of all subblocks of 
that particular type. 

For example, adding a new serial interface creates a serial subblock. When that serial subblock is 
added to the IDB, the serial subblock is placed on a list of all serial subblocks. This provides a 
method of accessing via one list all serial interfaces. The use of this list avoids instances of the 
FOR_ALL_HWIDBS macro, helping to resolve one particular scaling problem. 

With the addition of the VFT, actions that have been handled via a registry call (possible to many 
clients) can now be processed via the VFT functions. This can eliminate unnecessary CPU activity. 
To facilitate this process, the subblocks are maintained as a linked list off their IDB. 

6.8.1   Implementation Details
The structure of the common HWIDB and SWIDB subblock is: 

*next subblock of same type

*next subblock of this IDB

*IDB

usage count

*function table
Interfaces and Driver 6-11



 CISCO CONFIDENTIAL
application-specific data follows here . . . 

The function table structure is:

integer type

*destroy vector (routine)

*enqueue vector (routine)

*unlink vector (routine)

*textual name

The code to add a subblock is very similar to the existing code, except the VFT pointer is used 
instead of the enum value of the subblock type: 

          serial_sb = malloc(sizeof(struct serialsb)); 
          idb_add_hwsb(idb, &serial_vft, &serial_sb->sb); 

The client subsystem code no longer has to maintain a separate IDB list of the relevant interfaces; 
the subblock list can be used instead. A typical code pattern in IOS is the traversal of all the IDBs, 
with each iteration checking for a particular feature or protocol. This can be replaced with a traversal 
of the subblock list: 

FOR_ALL_HWIDBS(idb) { 
if (idb->dialerdb) { 

ddb = idb->dialerdb; 
* do something... */ 
} 

} 

The above code can be replaced by: 

FOR_ALL_HWSB(ddb, HWIDB_SB_DIALER) { 
               idb = ddb->sb.idb; /* If idb is required */ 
               /* Do something... */ 
          } 

Only the interfaces which contain the dialer subblock are traversed. 

This provides a powerful and simple framework for avoiding the dreaded FOR_ALL_HWIDBS 
macro, and yet the client code does not have to maintain its own list of interfaces. This is a major 
benefit on the scaling issue. 

When an event, such as a state change, occurs on the interface, pre-11.3 code typically invokes a 
registry list to process the event. The function reg_invoke_if_statechange_complete is called (among 
many others). Depending on the particular configuration of the platform, there may be up to a dozen 
different subsystems that have callbacks registered. Many of these callbacks are mutually exclusive, 
and so a typical handler checks for the relevance of the call as follows: 

          /* Frame relay callback*/ 
          static void fr_if_statechange_complete (idbtype *idb, hwidbtype *hwidb) 
          { 
               if (hwidb->frame_relay_stuff == NULL) 

return; /* not interested */ 
               /* Do something... */ 
          } 

In this situation, the registry granularity cannot detect that the callback is not relevant for this 
particular interface. The overhead of many such calls multiplied by the number of registries that are 
invoked causes an unnecessarily high CPU usage. 
6-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Migration Path

 CISCO CONFIDENTIAL
The presence of a VFT in the subblock means that this overhead can be eliminated, since actions on 
interfaces can now be processed by calling the VFT functions for the subblocks attached to the IDB. 
This limits the processing only to the functions relevant for this interface. Typically, this is done as 
follows: 

          FOR_ALL_SB_ON_HWIDB(sb, hwidb) 
               sb->transition(sb, TRAN_STATECHANGE_COMPLETE); 

It may be observed that this is providing an extra level of iteration instead of calling the registry list. 
In fact, the registry list itself is a level of iteration. So no extra levels are being executed, but the VFT 
case has far fewer entries. 

Functions that are not required in the VFT may be filled in with return_nothing() entries. 

6.8.2   Migration Path 
One important advantage of the subblock/vft scheme is that it can be incrementally implemented to 
avoid a major change to the existing code base. The initial code to implement the scheme is minimal. 
Since the existing code accessing the subblocks uses the standard accessor functions, there is little 
change to the bulk of the code. 

6.8.2.1   Migration Example
The following steps provide a typical migration path that minimizes the code disruption, allow 
incremental change, and support stepwise testing. Assume for the purposes of the discussion that a 
feature such as Frame Relay handling has been converted to use the subblock/vft scheme. The Frame 
Relay private data structure is attached to the HWIDB via a structure data pointer called 
frame_relay_stuff. No subblock exists for Frame Relay

1 Add a HWIDB subblock header ( hwsb_t) to the start of the Frame Relay private data structure. 

2 Create a HWIDB subblock VFT block, and populate it with return_nothing entries. 

3 In the code that allocates and assigns the data structure to frame_relay_stuff, add a call to 
idb_add_hwsb . In the code that deallocates the structure, add a call to idb_delete_hwsb. No other 
code needs to change; subsystem code that references the private data structure through 
frame_relay_stuff does not change. 

4 To use the subblock list, instead of doing FOR_ALL_HWIDBS, and checking for 
frame_relay_stuff, the following macro can be used: 

#define FOR_ALL_FR_SB(sb) \ 
FOR_ALL_HWSB(sb, HWISB_SB_FRAMERELAY) 

6.8.2.2   Migrating Data from IDB to Subblock
For subsystems that have fields existing in the IDB, there can be a multi-step approach to migrating 
the data from the IDB into the subblock: 

1 Create a subblock just containing the common header and add this to the IDB. This provides 
subblock iteration and also the VFT. The bulk of the code can still reference the fields within the 
IDB, so there is little code disruption or impact. 

2 Leave the VFT vacant, or migrate selected routines to the VFT as required. 

3 Migrate the field to the subblock and change the code to reference the subblock fields instead of 
the IDB. This can be done at some point later, perhaps at the start of a release. 
Interfaces and Driver 6-13



 CISCO CONFIDENTIAL
This gives an easy migration path and lays a foundation for future work. 

6.8.2.3   Comparison of Subblocks and Private IDB Lists
As a method of traversing lists of interfaces, subblocks are to be preferred over private IDB lists. The 
subblock/VFT approach maintains lists of subblocks. An alternative is for a subsystem to maintain 
its own private list, so that the relevant interfaces are accessible by traversing the list. It is expected 
that the subsystem will own the list, and the scope of the list will be limited to that subsystem. Private 
IDB lists are designed to be holding lists for IDBs of temporary interest. They are not intended to be 
an interface-classing mechanism. These are the main differences between this approach and the 
subblock lists: 

• The client subsystem must have extra code to create, add, and remove IDBs from the list. The 
subblock lists are automatically maintained by the standard routines that add and remove the 
subblock from the IDB. 

• The private list elements must be allocated from the heap, so extra checking must be present to 
ensure the list manipulation has been successful. 

• The list itself is external to the IDB, so there is no linkage from the IDB to the “owning” lists. 
The type of private list identifies the IDB. The IDB itself does not maintain private IDB list 
membership information. 

• The IDB lists can be maintained independently of the subblock, whereas the subblock lists rely 
on the allocation of a subblock for the list pointers. 

• The biggest difference is the conceptual one; private IDB lists maintain the IDB-centric nature of 
the software, whereas the subblock lists encourage the subsystem to take a private data viewpoint. 
Private IDB lists do not encourage modularity. More probably the reverse is true. Since private 
IDB lists maintain the centrality of the IDB as opposed to the subsystem's private data. 

• There are no provisions using private IDB lists to attach some kind of semantic meaning or 
specific actions to the class of interfaces represented by the list. That is the list is simply a list of 
IDBs, and there is no way of attaching meaning to the fact that the list may be all the interfaces, 
for example, all Ethernet interfaces. Contrast this with the VFT attached to a subblock type, 
which allows methods to be called that are specific to that class of interface. 

6.9   Manipulate IDBs

6.9.1   Create an IDB
Two functions are provided to create interface descriptor blocks (IDBs). The idb_create() function 
creates both a hardware IDB and the first software IDB. Additional software IDBs are created with 
the idb_create_subif()  function. 

hwidbtype *idb_create(void); 

idbtype *idb_create_subif(idbtype * idb, int subidbnum); 

The idb_create_subif()  function is called when a subinterface is configured on an already 
established hardware interface. 
6-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Create an IDB

 CISCO CONFIDENTIAL
IDBs are large data structures, and creating many of them on a router that already has limited 
memory can be a problem because IDBs cannot be deallocated after they are no longer needed. In 
the future, there will be a facility to allow the deletion of either a hardware or software interface, but 
for Cisco IOS Release 11.0 and earlier, creation of IDBs is a one-way operation. An IDB can be 
unlinked from the system data structures, but it cannot be deallocated.

When either a software or hardware IDB is created, it is assigned a monotonically increasing index 
or unit number. Do not change this number; it should be considered the property of the kernel. The 
master lists of hardware and software IDBs are kept in unit-number order for use by SNMP and other 
applications that need to scan all interfaces in the router in unit-number order. 
Interfaces and Driver 6-15



 CISCO CONFIDENTIAL
6.9.2   Link an IDB
After a new hardware-software interface pair has been created by calling idb_create(), use the 
idb_enqueue() function to link the new hardware-software interface pair to the lists of all interfaces 
in the router

void idb_enqueue(hwidbtype *new_idb); 

Call idb_enqueue() only after the IDB fields of unit number, type, encapsulation size, MTU, and 
major dispatch function vectors have been initialized. Once an interface pair has been passed to 
idb_enqueue(), it is available to the rest of the system. 

6.9.3   Iterate over a List of IDBs
To iterate over a list of IDBs, you can (in order of preference):

• Iterate the appropriate subblock list, by calling FOR_ALL_HWSB (hwsb,sb_type) and 
FOR_ALL_SWSB (swsb,sb_type).

• Iterate any private IDB list, by calling idb_for_all_on_hwlist(type, function, *argument) 
and idb_for_all_on_swlist(type, function, *argument).

• Iterate the list of all interfaces in the router, using the FOR_ALL_HWIDBS or FOR_ALL_SWIDBS 
macro.

6.9.4   Delete an IDB
There is no straightforward way to delete an IDB from the system. To delete an IDB, it is currently 
best to shut down the interface and simply ignore it. To unlink a hardware-software IDB pair from 
the lists of all hardware and software interfaces in the router and remove any or all software 
subinterfaces from the software interface queue, use the idb_unlink() function. 

void idb_unlink(hwidbtype *hwidb); 

Drivers that are performing error cleanup after they have allocated a hardware-software IDB pair and 
before they have called idb_enqueue() can use the idb_free() function to free a hardware IDB and 
the first software IDB on the subinterface chain. 

void idb_free(hwidbtype *hwidb); 

6.10   Manipulate IDB Subblocks

6.10.1   Subblocks Types
A subblock is a private data area that is attached to an IDB and is accessed through a globally 
assigned enumerator identifier defined in sys/h/subblock.h . The subblock is accessed from the 
IDB using this subblock identifier. A common subblock header (hwsb_t or swsb_t) is at the start of 
the data area of each subblock. This header is used by the system software to manage the subblock. 
This header also contains various pointers that allow the subblock to be linked onto the IDB and the 
subblock lists.

You access the subblock using a fast array lookup method or a slower search method. The method 
selected depends upon the specific subblock identifier used to access the particular subblock. If an 
identifier is defined in sys/h/subblock.h as greater than the HWIDB_SB_DYNAMIC (or 
6-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Subblock Function Table

 CISCO CONFIDENTIAL
SWIDB_SB_DYNAMIC)  value, the subblock will be accessed as a search on the linked list of subblocks 
attached to this IDB. If it is allocated as less than the dynamic identifier limit, the faster direct array 
lookup is used to access the subblock.

There is a trade-off between the fast and search access. The fast access increases the size of the IDB, 
because an array in the IDB is used to store the subblock pointers. If the subblock is to be accessed 
in time-critical or interrupt handler code, it should be accessed via the fast array lookup. Otherwise, 
access it via the slower search method.

When adding, removing, or retrieving a subblock pointer, you must use the appropriate subblock 
identifier as allocated in sys/h/subblock.h.

A subblock can contain one or more mgd_timer structures. Because subblocks are usually 
dynamically allocated, you must be sure that all mgd_timer structures in a subblock are stopped 
before freeing the subblock. Since it is harmless to call mgd_timer_stop() on a timer that is already 
stopped, you should always call mgd_timer_stop() on the timer before freeing the memory area. 
Failure to do this can cause router crashes with mgd_timer_set_exptime_internal()  in the 
backtrace.

6.10.2   Subblock Function Table
A function table pointer was introduced in Cisco IOS Release 11.3. This pointer is in the subblock 
header and references a table of values that include the subblock type identifier and a string 
identifying the subblock type. 

Each subsystem that uses subblocks must declare a subblock function table for each of its subblock 
types. Future versions of IOS will add new entries in this function table to provide a standardized 
API for the subblocks. 

A pointer to the function table is passed as a parameter to the routine that adds a subblock to the IDB.

6.10.3   Add an IDB Subblock
To add a subblock pointer or value to a hardware or software IDB, use the idb_add_hwsb() or 
idb_add_swsb() function, respectively

boolean idb_add_hwsb(struct hwidbtype_ *idb, hwsb_ft const *ft, hwsb_t *sb); 

boolean idb_add_swsb(struct idbtype_ *idb, swsb_ft const *ft, swsb_t *sb); 

Normally, when you work with the subblock as a private data area, you declare the common 
subblock header (hwsb_t or swsb_t) as the first element in the private subblock structure. When 
calling the add function, pass the address of this common header.

6.10.4   Return a Pointer to an IDB Subbloc
To obtain a pointer to a hardware IDB subblock if you are certain that your task will not suspend, 
use the idb_get_hwsb() or idb_get_hwsb_inline()  function. The idb_get_hwsb_inline()  
function operates with minimal overhead. If you are accessing a subblock with idb_get_hwsb() or 
idb_get_swsb(), you do not need to release the subblock when you are finished.

void *idb_get_hwsb(struct hwidbtype_ const *idb, hwidb_sb_t type); 

void *idb_get_hwsb_inline(hwidbtype const *idb, const hwidb_sb_t type); 
Interfaces and Driver 6-17



 CISCO CONFIDENTIAL
The idb_get_swsb() and idb_get_swsb_inline()  functions provide the equivalent functionality 
for software IDB subblocks. 

void *idb_get_swsb(struct idbtype_ const *idb, swidb_sb_t type); 

void *idb_get_swsb_inline(const idbtype *idb, const swidb_sb_t type); 

To obtain a pointer to a IDB subblock if your task could suspend, possibly allowing another thread 
to run that might delete the subblock, use the idb_use_hwsb() and idb_use_swsb() functions. 

void *idb_use_hwsb(struct hwidbtype_ const *idb, hwidb_sb_t type); 

void *idb_use_swsb(struct idbtype_ const *idb, swidb_sb_t type); 

You can also use the idb_use_hwsb_inline()  and idb_use_swsb_inline()  functions to minimize 
the overhead of returning the pointer. However, if you use these functions, you must #include 
interface_private.h , which will be a liability in the future. 

void *idb_use_hwsb_inline(hwidbtype const *idb, hwidb_sb_t type); 

void *idb_use_swsb_inline(idbtype const *idb, swidb_sb_t type); 

6.10.5   Traverse a List of Subbloc
To traverse all hardware or software subblocks of a certain type, call the FOR_ALL_HWSB or 
FOR_ALL_SWSB macro. These macros were introduced in software Release 11.3.

FOR_ALL_HWSB(hwsb, sb_type)
FOR_ALL_SWSB(swsb, sb_type)

6.10.6   Traverse Subblocks on an IDB
To traverse all subblock on a hardware or software IDB, use the FOR_ALL_SB_ON_HWIDB or 
FOR_ALL_SB_ON_SWIDB macro. These macros were introduced in software Release 11.3.

FOR_ALL_SB_ON_HWIDB(hwidb, hwsb)
FOR_ALL_SB_ON_SWIDB(swidb, swsb)

6.10.7   Release an IDB Subblock
Releasing an IDB subblock decrements the usage counter that is set by idb_use_hwsb() or 
idb_use_swsb().

Note If you are accessing a subblock with idb_get_hwsb() or idb_get_swsb(), you do not need 
to release the subblock when you are finished as you need to when you are accessing a subblock with 
idb_use_hwsb() or idb_use_swsb().

You release a subblock after you return a pointer to the subblock that increments the usage counter. 
To release an IDB subblock, use the idb_release_hwsb()  or idb_release_swsb() function. 

boolean idb_release_hwsb(hwidbtype  *hwidb, hwidb_sb_t type); 

boolean idb_release_swsb(idbtype  *idb, swidb_sb_t type); 
6-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Delete an IDB Subblock

 CISCO CONFIDENTIAL
You can also use the idb_release_hwsb_inline()  or idb_release_swsb_inline()  function to 
minimize the overhead of releasing IDB subblocks. However, if you use these functions, you must 
#include interface_private.h , which will be a liability in the future.

boolean idb_release_hwsb_inline(struct hwidbtype_ const *idb, hwidb_sb_t type); 

boolean idb_release_swsb_inline(struct idbtype_ const *idb, swidb_sb_t type); 

6.10.8   Delete an IDB Subblock
To delete a subblock value for a given identifier from a specified hardware interface, use either the 
idb_delete_hwsb()  or idb_delete_swsb() function. 

boolean idb_delete_hwsb(hwidbtype *idb, hwidb_sb_t type); 

boolean idb_delete_swsb(idbtype * swidb, swidb_sb_t type); 

Alternatively use, the hwsb_delete or swsb_delete function.

boolean hwsb_delete(hwsb_t *hwsb);

boolean swsb_delete(swsb_t *swsb);

Deleting a subblock will not free the subblock’s memory, but it will unlink the subblock from the 
IDB and remove it from its subblock lists.

6.11   Manipulate a Private List of IDBs

Prior to Cisco IOS Release 11.0, the standard technique used by applications for operations that 
needed to be performed on every interface was to loop across the list of all the hardware or software 
interfaces in the router, check a flag field in the interface descriptor, and if the application’s feature 
was enabled, perform the function necessary.

This technique worked adequately when there were only a few interfaces in the router. However
routers can now have hundreds of hardware interfaces, which implies at least one software interface 
per hardware interface, and possibly many more tunnel and software subinterfaces configured on top 
of hundreds of hardware interfaces. Looping across every interface descriptor in a router with 
hundreds of interfaces to find the few interfaces that have the feature in question enabled is highly 
inefficient. Either a shorter list or a new way of finding all interfaces with a particular feature enabled 
is required.

Private lists of IDBs allow router feature code to create and maintain a list of IDBs that is a list of 
only those IDBs that have the feature in question enabled. 

6.11.1   Create a Private List of IDBs
To create a private list of IDBs by defining a list manager header for a private list of hardware or 
software IDBs, use the idb_create_list()  function. The input parameter to this function specifies 
the type of private IDB list to create. The output parameter is a pointer to the list type. 

boolean idb_create_list(list_header *list_hdr, char *name); 
Interfaces and Driver 6-19



 CISCO CONFIDENTIAL
6.11.2   Add an IDB to a Private List
To add an IDB pointer to a previously created private IDB list, use the idb_add_hwidb_to_list()  
or idb_add_swidb_to_list()  function. The interface specified is inserted into the list in ascending 
unit-number order

boolean idb_add_hwidb_to_list(list_header *list_hdr, char *name); 

boolean idb_add_swidb_to_list(list_header *list_hdr, char *name); 

6.11.3   Iterate a List of Private IDBs
To iterate over a private list of IDBs, call the FOR_ALL_HWIDBS_IN_LIST  or 
FOR_ALL_SWIDBS_IN_LIST macro. The names of these macros imply that the idb argument must be 
a hardware or software IDB pointer, respectively. However, this is not true. This is merely a macro, 
and it would be possible to pass a pointer to either type of IDB in the idb parameter of either macro 
and to traverse (walk) a list of those IDBs. There are two macros for clarity. Typically, application 
software in the router walks a list of hardware interfaces or software interfaces, but not both at the 
same time. The duplication of functionality in the hardware and software variant of the same macro 
helps to make the coder’s intent more clear to the reader.

FOR_ALL_HWIDBS_IN_LIST(list_header *list_hdr, char *name) 

FOR_ALL_SWIDBS_IN_LIST(list_header *list_hdr, char *name) 

6.11.4   Remove an IDB from a Private List
To remove an IDB pointer from a previously created private IDB list, use the 
idb_remove_from_list()  function. 

boolean idb_remove_from_list(list_header *list_hdr, char *name); 

6.11.5   Delete a Private List of IDBs
To destroy a previously allocated private IDB list, use the idb_destroy_list()  function. 

boolean idb_destroy_list(list_header *list_hdr, char *name); 

6.12   Use IDB Helper Functions

Many functions fall into a class of functions that perform very common, but uncomplicated 
operations on IDBs.

6.12.1   Apply a Function over a Private IDB List
To perform a Lisp-like “apply” of a function over a private list of interfaces, use either the 
idb_for_all_on_hwlist()  or idb_for_all_on_swlist()  function. These functions walk the 
private IDB list, calling your function and passing a pointer to the IDB and an longword argument 
of your choice. 

boolean idb_for_all_on_swlist(idblist_t  type, swidbfunc_t function, v oid*argument);

boolean idb_for_all_on_hwlist(idblist_t  type, hwidbfunc_t function, v oid*argument); 
6-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Test an Interface for a Property

 CISCO CONFIDENTIAL
6.12.2   Test an Interface for a Property
Interfaces can have one or more properties or attributes for which you might want to test. Most of 
these properties are maintained in a bit field of the hardware IDB. Do not directly test bits in this 
field of the hardware IDB, but rather use one of the idb_is_*() functions. 

boolean *idb_is_atm(const idbtype  *idb);
boolean *idb_is_ethernet(const idbtype  *idb);
boolean *idb_is_fddi(const idbtype  *idb);
boolean *idb_is_framerelay(const idbtype  *idb);
boolean *idb_is_ppp(const idbtype  *idb);
boolean *idb_is_sdlc(const idbtype  *idb);
boolean *idb_is_smds(const idbtype  *idb);
boolean *idb_is_tokenring(const idbtype  *idb);
boolean *idb_is_tokenring_like(const idbtype  *idb);
boolean *idb_is_virtual(const idbtype  *idb);
boolean *idb_is_x25(const idbtype  *idb);

6.13   Encapsulate a Packet

You typically encapsulate a packet just before you transmit it.

To encapsulate a packet with a lower-level (board-level) encapsulation associated with the specified 
virtual circuit or address, use the idb_board_encap()  function. This function is typically called 
during system initialization, during the scan for devices. It is also called when the user configures a 
tunnel interface, although in this case, the hardware IDB does not point to a real hardware interface. 

boolean idb_board_encap(paktype * pak, hwidbtype *idb); 

To encapsulate a packet with a lower-level encapsulation associated with the specified L ayer3 or 
Layer 2 address, use the idb_pak_vencap()  function. 

boolean idb_pak_vencap(paktype  *pak, long address); 

6.14   Enqueue, Dequeue, and Transmit a Packet

To enqueue a packet that will be transmitted at some later time, use the idb_queue_for_output()  
function. This function is a wrapper around the idb->oqueue vector, and you should use it unless 
you have a compelling reason to call the idb->oqueue vector directly. 

void idb_queue_for_output(hwidbtype * hwidb, paktype *pak, enum HEADTAIL which); 

To dequeue the first packet that is waiting for transmission on idb->holdq, use the 
idb_dequeue_from_output() function. This function is a wrapper around the idb->oqueue_dequeue  
vector, and you should use it unless you have a compelling reason to call idb->oqueue_dequeue  
directly. 

paktype *idb_dequeue_from_output(hwidbtype * hwidb); 

To start sending packets that are waiting in process memory on either the output or hold queue, use 
idb_start_output()  function. This function is a wrapper around the idb->soutput vector, and you 
should use it unless there is a compelling reason to call the idb->soutput vector directly. 

void idb_start_output(hwidbtype * hwidb); 
Interfaces and Driver 6-21



 CISCO CONFIDENTIAL
6-22 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Platform-Specific Suppor
7

Platform-Specific Suppor
This chapter describes the programming interface and developer hooks for handling 
platform-specific initialization issues, and for obtaining platform-specific strings and values.

For a general description of system initialization, see the “System Initialization” chapter.

7.1   Platform-Specific Initialization: Overview

Although many aspects of system software support are platform independent, some features are 
particular to certain platforms. For example, configuring the various memory regions and pools on 
a hardware platform is specific to that particular platform. The initialization of various hardware 
devices, such as timers and interrupt controllers, is also platform specific. 

To allow platform differences to be dealt with in a nonspecific, generic way, the system code 
provides various general developer hooks. When the system is initialized, the system code calls these 
hooks to allow the platform code to initialize and configure hardware support. F igure7-1 shows the 
five initialization hooks that are supplied by the system code. The first three functions are called by 
the system code almost immediately after the system starts executing.

• platform_main() performs basic initialization actions, such as parsing cookie PROMs and 
turning on run LEDs. 

• platform_memory_init()  declares memory regions and pools to the system code using the 
functions supplied by the memory management code. 

• platform_exception_init()  initializes exception and interrupt handlers. 

The remaining two functions are called later during initialization.

• platform_interface_init()  initializes network interfaces. 

• platform_line_init()  initializes console and other terminal lines. 
7-1



 CISCO CONFIDENTIAL
Figure 7-1 Developer Hooks for Platform Support

7.2   Fundamental Initialization

The first platform function called after the system has loaded an image and started running is 
platform_main(). This function hook allows platforms to perform absolutely basic initialization 
actions, such as parsing cookie PROMs and turning on run LEDs. (The cookie PROM holds all the 
information that is unique to a particular physical platform, such as the chassis serial number, the 
MAC addresses reserved for the chassis to use, the vendor [for OEM hardware], and the type of 
interfaces present [for nonmodular platforms].) The cookie is mapped into the platform’s memory 
address space and is readable by the system code.

At this point in the system’s initialization, no system facilities are available for use. For example, no 
exception handlers have been installed, nor is any memory management available. You must take 
great care to do the absolute minimum in this function. 

When platform_main() is called, the only guaranteed state is that all interrupts are disabled and that 
BSS has been zeroed. No other state can be assumed.

7.2.1   Example: Fundamental Initialization 
The following example shows how the Cisco 7000 router uses platform_main() to perform 
fundamental initialization. This hook, which is a typical application for platform_main(), allows 
the Cisco 7000 to reset outstanding interrupts left by the ROM monitor before continuing with the 
initialization. 

void platform_main (void) 
{

/*
* Reset any devices left over from ROM bugs.
*/

reset_io_online();
}

7.3   Memory Initialization

One of the most critical parts of a platform’s initialization is memory initialization. The function 
hook platform_memory_init()  allows platforms to declare memory regions and pools to the system 
code using the functions supplied by the memory management code. (These functions are described 
in the “Memory Management” chapter.) 

main

system init

platform_main()

platform_memory_init()

platform_exception_init()

platform_interface_init()

platform_line.init()

Kernel Platform code

S
37

10
7-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Example: Memory Initialization

 CISCO CONFIDENTIAL
In a typical initialization of platform memory, the region manager declares all regions of RAM to 
the system code. In addition, the memory pool manager starts memory pools in the regions of 
memory that are to be managed as pools.

7.3.1   Example: Memory Initialization
The following example of using platform_memory_init()  shows the memory initialization code for 
the Cisco 7000 platform. This code initializes the main system memory and declares the main system 
heap. 

The first section of the memory initialization code interrogates the ROM monitor to find out how 
much memory is installed and declares “main” to be the region that describes all of system memory. 
The ROM monitor is responsible for sizing and initializing the main system memory in the 
Cisco 7000 and in most Cisco products. 

void platform_memory_init (void)
{

ulong memsize;

/*
 * Find out how much main DRAM the ROM monitor thinks we have.
 */
memsize = mon_getmemsize();

/*
 * Add a region to describe all of main DRAM. 
 */
region_create(&main_region, “main”, RAMBASE, memsize, REGION_CLASS_LOCAL,

REGION_FLAGS_DEFAULT);

The next section of the memory initialization code declares regions for each of the areas of memory 
related to the image. Declaring the text segment allows the system code to determine whether an 
instruction address is valid on certain platforms. The data segment information is used to locate and 
start subsystems. The heap, or processor memory pool, is usually positioned in the remaining 
memory for a platform. The following code declares the region from the end of BSS to the end of 
the main system memory to be a memory pool and starts the MEMPOOL_CLASS_LOCAL  memory pool 
there.

/*
 * Add regions to describe the loaded image. 
 */
region_create(&text_region, “text”, TEXT_START, ((uint)TEXT_END - 

(uint)TEXT_START),
REGION_CLASS_IMAGETEXT, REGION_FLAGS_DEFAULT);

region_create(&data_region, “data”, DATA_START, 
((uint)DATA_END - (uint)DATA_START), REGION_CLASS_IMAGEDATA,
REGION_FLAGS_DEFAULT);

region_create(&bss_region, “bss”, DATA_END, ((uint)_END - (uint)DATA_END),
REGION_CLASS_IMAGEBSS, REGION_FLAGS_DEFAULT);

/*
 * Declare a region from the end of BSS to the end of main DRAM
 * and create a “local” mempool based on it.
 */
region_create(&pmem_region, “heap”, _END, (memsize –(ulong)_END),

REGION_CLASS_LOCAL, REGION_FLAGS_DEFAULT);
mempool_create(&pmem_mempool, “Processor”, &pmem_region, 0, NULL, 0,

MEMPOOL_CLASS_LOCAL);
Platform-Specific Suppor 7-3



 CISCO CONFIDENTIAL
The final section of the memory initialization code aliases the remaining mandatory memory pools 
to point at MEMPOOL_CLASS_LOCAL , and all memory allocations from those pool classes will be 
redirected to come from MEMPOOL_CLASS_LOCAL . These memory pools can be aliased because the 
Cisco 7000 has a straightforward architecture so no areas of IO or fast memory need to be declared. 
All mandatory memory pools must be initialized in platform_memory_init() . This sample routine 
is a basic one. Architectures with a variety of memory configurations need much more elaborate 
initialization code.

/*
* Add aliases for mandatory memory pools.
*/

mempool_add_alias_pool(MEMPOOL_CLASS_IOMEM, &pmem_mempool);
mempool_add_alias_pool(MEMPOOL_CLASS_FAST, &pmem_mempool);
mempool_add_alias_pool(MEMPOOL_CLASS_ISTACK, &pmem_mempool);
mempool_add_alias_pool(MEMPOOL_CLASS_PSTACK, &pmem_mempool);

}

7.4   Exception Initialization

The last basic initialization operations that platforms need to perform are initialization of their 
exception and interrupt handlers. The platform hook platform_exception_init()  is provided for 
this purpose. At this point in the initialization, most platforms need to initialize their clock-tick 
handlers, error exception handlers, and so on. Also, the background clock, usually held in the clock 
variable msclock, must be initialized during the exception initialization. 

7.4.1   Example: Exception Initialization
The following example of using platform_exception_init()  shows the Cisco 7000 exception 
initialization. The call to init_clocktick_handler()  sets up the 4-millisecond NMI clock handler 
and various pointers for the msclock support, and zeros system time. The call to 
stack_hardware_init()  clears out interrupt handlers. Both these functions are provided by 
the 68000 CPU support in the system code. 

void platform_exception_init (void)
{

/*
 * Initialize the NMI handler.
 */
init_clocktick_handler();

/*
 * Initialize the basic exception handlers (spurious interrupts and so on).
 */
stack_hardware_init();

}

7.5   Interface and Line Initialization

The final two initialization hooks—platform_interface_init()  and 
platform_line_init()—initialize network interfaces and console lines. 

Almost all network drivers in the system code are started as free-standing subsystems so that they 
can be easily removed from a build. However, some platforms need to perform some initialization 
for their network interfaces.
7-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Example: Interface Initialization

 CISCO CONFIDENTIAL
The goal of any platform_interface_init()  hook should be that no references are made to actual 
drivers. This way, the network drivers are implemented as free-standing subsystems and are 
initialized via the subsystem initialization call. 

You use the platform_line_init()  hook to initialize any special TTY interfaces (such as software 
console support from a backplane) or make policy decisions on the number of virtual terminal (VTY) 
lines to be made available to the system. The console and AUX line initialization is fairly static on 
most Cisco platforms. Note that most parts of platform_line_init()  are relics from earlier 
versions of the Cisco IOS code. This part of the code will probably undergo significant cleanups in 
future releases. 

7.5.1   Example: Interface Initialization
The following example of using platform_interface_init()  shows the code that the Cisco 4500 
executes to initialize support for its interfaces. The initialization is straightforward. 

First, the code resets all the tables that are used to bind interface structures to physical slots in the 
chassis. Then the ASIC that controls the network interrupts (there are two interrupt levels) is 
initialized. All network interfaces need a stack defined for them to use while their interrupt handlers 
are executed. The call to createlevel() creates the stack that is used on the Cisco 4500. 

void platform_interface_init (void)
{

int i, j;
lev2_jumptable_t *ptr;

/*
 * Reset the vector table to a known state.
 */
for (i = 0; i < C4000_NUM_SLOTS; i++) {

ptr = &lev2_jumptable[i];
for (j = 0; j<MAX_IDB_PER_NIM; j++) {

ptr->idb[j] = (hwidbtype *)BAD_ADDRESS;
}

}

/*
 * Set the Nevada registers here.
 */
set_nevada_regs();

/*
 * Create the network interface interrupt stack.
 */
createlevel(ETHER_INTLEVEL, NULL, “Network interfaces”);
Platform-Specific Suppor 7-5



 CISCO CONFIDENTIAL
Once the stack has been initialized, the interrupts are enabled in hardware and the high-priority 
handler structures are set up. Finally, service routines are registered for Cisco 4500 platform support. 
Although not all of these calls are strictly related to the interface support, this is a convenient place 
to register platform service functions.

/*
 * We must now flick the switch in Nevada to enable reception of 
 * high and low interrupts. Note that set_nevada_regs() has already been
 * called, so the Nevada register is configured as a control register.
 */
IO_ASIC->sys_stat2 &= ~(SS2_LO_ENABLE|SS2_HI_ENABLE) & 0xff;

/*
 * Create and initialize the high IRQ interrupt dispatcher.
 */
nim_init_hi_irq_handler();

/*
 * Add platform registry services.
 */
reg_add_print_memory(platform_print_memory, “platform_print_memory”);
reg_add_net_cstate(nim_health_sierra_light, “nim_health_sierra_light”);
reg_add_onemin(check_for_sierra_overtemp, “check_for_sierra_overtemp”);
reg_add_subsys_init_class(nim_subsys_init_class, “nim_subsys_init_class”);

}

7-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Example: Line Initialization

 CISCO CONFIDENTIAL
7.5.2   Example: Line Initialization
The following example of using platform_line_init()  shows the code that the Cisco 4500 
executes to initialize its console and AUX port. This code first initializes the count of console, AUX 
and VTY lines to be used by the platform. It then initializes the AUX and VTY lines. (The Cisco 
IOS system code currently assumes that there is always one console line.) 

void platform_line_init (void)
{

/*
 * Some default function registrations.
 */
 reg_add_tty_xon(tty_xon_default, “tty_xon_default”);

/*
 * First discover the devices and count them.
 */
nconlines = 1;
nauxlines = 1;
maxvtylines = defvtylines = nvtylines = nVTTYs;

/*
 * Assign base indexes into the MODEMS[] data structure.
 */
AuxBase = freeLineBase;
freeLineBase += nauxlines;
VTYBase = freeLineBase;

if (protocolconversion)
/* There are a total of 200 processes. When the system is idle,
 * 20 of them are already in use. That leaves only 180 processes
 * available for PT sessions. So, maxvtylines should not exceed 180.
 */
maxvtylines = MAXLINES - VTYBase - MIN_NPROCS;

ALLlines = nconlines + nttylines + nauxlines + nvtylines;

/*
 * Initialize the MODEMS[] data structure.
 */
auxline_init();
vty_init();

}

7.6   Platform-Specific Strings

User interface commands often need to obtain platform revision, model number, and vendor 
derivative information. The code that handles user requests for information is common to every 
platform, and the platform_get_string()  function allows you to obtain platform-specific names. 
This generic function allows new platforms and vendors to be easily accommodated. 

To obtain platform-specific names, use the platform_get_string()  function. 

char *platform_get_string(platform_string_type stringtype); 

Table 7-1Table 7-1 lists the platform strings that you can specify in the parameter that is passed to 
the platform_get_string()  function. All platforms must supply the strings for 
PLATFORM_STRING_NOM_DU_JOUR , PLATFORM_STRING_DEFAULT_HOSTNAME , and 
Platform-Specific Suppor 7-7



 CISCO CONFIDENTIAL
PLATFORM_STRING_PROCESSOR . The other strings are optional because the platform may not be able 
to obtain them. All the strings returned have their own storage. Because a pointer is returned to the 
string required, the string must not be stored on the local stack.

The platform_get_string()  function returns NULL if the requested string is not implemented or is 
not applicable to a platform.

Table 7-1 Platform Strings 

7.6.1   Examples: Platform-Specific Strings
The following is an example of calling the platform_get_string()  function: 

char *hardware_rev;

printf(“%s %s (%s) processor”,
platform_get_string(PLATFORM_STRING_VENDOR),
platform_get_string(PLATFORM_STRING_NOM_DU_JOUR),
platform_get_string(PLATFORM_STRING_PROCESSOR));

hardware_rev = platform_get_string(PLATFORM_STRING_HARDWARE_REVISION);
if (hardware_rev)

printf(“ (revision %s)”, hardware_rev);

The preceding example produces the following output when you execute the show version EXEC 
command:

cisco RP1 (68040) processor

Platform String Flags Description

PLATFORM_STRING_NOM_DU_JOUR (Mandatory) Model number or name of the platform. Examples are “4000”and 
“RP1.”

PLATFORM_STRING_DEFAULT_HOSTNAME (Mandatory) Default hostname to be used for a platform if none is specified in the 
configuration. This string also appears in the user interface prompt.

PLATFORM_STRING_PROCESSOR (Mandatory) Name of the processor used by the platform. Examples are “68030,” 
“R4600,” and “Sparc.”

PLATFORM_STRING_VENDOR (Optional) Vendor derivative of the platform. Examples are “Cisco,” “Cabletron,” 
and “Bay Networks.”

PLATFORM_STRING_PROCESSOR_REVISION (Optional) Revision of processor used by the platform. Not all processors allow 
this information to be obtained.

PLATFORM_STRING_HARDWARE_REVISION (Optional) Hardware version of the platform. This is usually the motherboard 
revision number. Not all platforms allow you to obtain this number.

PLATFORM_STRING_HARDWARE_SERIAL (Optional) Serial number of the platform. This is normally held by the cookie. Not 
all platforms allow this to be obtained.

PLATFORM_STRING_HARDWARE_REWORK (Optional) Hardware rework version of the actual processor board. This is 
effectively a subrevision of the motherboard revision number.

PLATFORM_STRING_LAST_RESET (Optional) The reason for the last hardware reset event.
7-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Platform-Specific Values

 CISCO CONFIDENTIAL
The following example shows the platform_get_string()  function that is implemented on the 
Cisco 7000. In this example, no status can be obtained for the 68040 processor used by the RP1, nor 
is the hardware version or serial number available to the code. In this case, it is acceptable for 
platform_get_string()  to return NULL.

char *platform_get_string (platform_string_type type)
{

char  *value;

switch (type) {
case PLATFORM_STRING_NOM_DU_JOUR:

value = “RP1”;
break;

case PLATFORM_STRING_DEFAULT_HOSTNAME:
value = “Router”;
break;

case PLATFORM_STRING_PROCESSOR:
value = “68040”;
break;

case PLATFORM_STRING_VENDOR:
value = “cisco”;
break;

case PLATFORM_STRING_PROCESSOR_REVISION:
case PLATFORM_STRING_HARDWARE_REVISION:
case PLATFORM_STRING_HARDWARE_SERIAL:
case PLATFORM_STRING_HARDWARE_REWORK:
case PLATFORM_STRING_LAST_RESET:
default:

value = NULL;
break;

}
return(value);

}

7.7   Platform-Specific Values

The generic system code often needs to obtain platform values that are platform specific. Rather than 
compile these into the code, which would prevent that code from being truly generic, the values are 
obtained using the platform_get_value()  function. 

uint platform_get_value(platform_value_type valuetype); 

Table 7-2Table 7-2 describes the platform values that you can specify in the parameter that is passed 
to the platform_get_value()  function. If a request for a value cannot obtain a value, 
platform_get_value()  returns 0 by default.

Table 7-2 Platform Values 

Platform Value Flags Description

PLATFORM_VALUE_SERVICE_CONFIG (Mandatory) Effectively a boolean that controls whether the platform should 
always enable the service config global configuration command when it boots. 
This command enables autoloading of configuration files from a network server. If 
PLATFORM_VALUE_SERVICE_CONFIG  returns a value of 1, the system code 
always enables the service config command. 

PLATFORM_VALUE_FEATURE_SET (Optional) Feature set required by this platform. Use this value for feature control 
on platforms that use a preset cookie value to enable feature sets.
Platform-Specific Suppor 7-9



 CISCO CONFIDENTIAL
PLATFORM_VALUE_HARDWARE_REVISION (Optional) Hardware revision of a platform. Not all platforms allow this value to be 
obtained.

PLATFORM_VALUE_HARDWARE_SERIAL (Optional) Serial number of a platform. Not all platforms allow this value to be 
obtained.

PLATFORM_VALUE_VENDOR (Optional) VENDOR_xxx value for a platform. For multivendor platforms, this is 
usually obtained from the cookie.

PLATFORM_VALUE_CPU_TYPE (Mandatory) CPU_xxx value for a platform. This identifies the hardware class to 
the system code.

PLATFORM_VALUE_FAMILY_TYPE (Mandatory) FAMILY_xxx value for a platform. This identifies the family class of 
image that the platform runs and allows incorrect images to be identified.

PLATFORM_VALUE_REFRESH_TIME (Mandatory) Refresh time of the clock, in milliseconds. On Cisco platforms, this is 
usually 4 ms.

PLATFORM_VALUE_LOG_BUFFER_SIZE (Optional) Size of the logging buffer if a platform requires that one be created by 
default at initialization time. If zero, no buffer is created and buffered logging is 
intially disabled.

Platform Value Flags Description
7-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Examples: Platform-Specific Values

 CISCO CONFIDENTIAL
7.7.1   Examples: Platform-Specific Values
The following example shows how to call the platform_get_value()  function: 

/*
* Determine our processor and family type.
*/

cp u_type= platform_get_value(PLATFORM_VALUE_CPU_TYPE);
cpu_family = platform_get_value(PLATFORM_VALUE_FAMILY_TYPE);

The following example shows how the system software for the Cisco 7000 dynamically obtains the 
CPU and family types for a platform when the platform is initializing:

uint platform_get_value (platform_value_type type)
{

uint value;

switch (type) {
case PLATFORM_VALUE_SERVICE_CONFIG:

value = nvsize ? FALSE : TRUE;
break;

case PLATFORM_VALUE_FEATURE_SET:
value = 0x0000;
break;

case PLATFORM_VALUE_HARDWARE_REVISION:
value = 0x0000;
break;

case PLATFORM_VALUE_HARDWARE_SERIAL:
value = 0x0000;
break;

case PLATFORM_VALUE_VENDOR:
value = VENDOR_CISCO;
break;

case PLATFORM_VALUE_CPU_TYPE:
value = CPU_RP1;
break;

case PLATFORM_VALUE_FAMILY_TYPE:
value = FAMILY_RP1;
break;

case PLATFORM_VALUE_REFRESH_TIME:
value = REFRESHTIME;
break;

case PLATFORM_VALUE_LOG_BUFFER_SIZE:
value = EIGHT_K;
break;

default:
value = 0;
break;

}
return(value);

}

Platform-Specific Suppor 7-11



 CISCO CONFIDENTIAL
7-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Interprocess Communications (IPC) Services
8

Interprocess Communications (IPC) 
Services
8.1   Overview: IPC Services

The Cisco IOS Interprocess Communications (IPC) services provide a communication infrastructure 
so that modules in a distributed system can easily interact with each other. 

The IPC messaging system provides transparent network and local interprocess communications. To 
accomplish this, the following Cisco IOS IPC services are provided:

• Message transport

• Port naming and rendezvous

• Core entities, such as seat management

Multicasting will be added to the Cisco IOS IPC services in future releases of the software.

Several interfaces have been defined to provide access to IPC services. Some of these interfaces are 
intended for use by the upper-layer client, while others are useful at the lower layers for interfacing 
to other operating system or messaging system components. Figu re8-1 shows an overview of these 
interfaces.

Figure 8-1 IPC Message System Interfaces 

IPC API

Cisco IOS 

Device drivers

Creation
deletion

Multicasting Transmission
reception

Sorts
Fragmentation transport

and flow control

Naming

S
45

07
8-1



 CISCO CONFIDENTIAL
8.2   Operational Environment

IPC communication services can operate in and across various environments, as listed in Ta ble8-1.

Table 8-1 IPC Communication Services Environments 

To achieve the flexibility to operate across a variety of environments, IPC communication provides 
a port with interfaces to the user, the operating system, and the underlying communication transport. 
These interfaces are established and controlled by the creator of the port but are hidden from the 
principle users of the port. Hiding the different environmental characteristics from the users of the 
messaging system is essential for isolating the software so that it can be migrated and distributed 
without requiring major changes to the software base.

User access is provided by well-defined procedure calls when the port is created. These calls provide 
an interface to the underlying operating system and provide the appropriate behavior. Mechanisms 
can include context-switchless shared memory message passing, process blocking, and message 
handlers providing for high-speed access and processing under special circumstances.

Communication transport access include shared memory, shared bus (such as CxBus and CyBus), 
raw media (such as ATM and FDDI), and network protocols (such as UDP/IP and TCP/IP).

8.3   IPC Communication: Overview

All IPC communication takes place between two cooperating entities—a source and a 
destination—that exchange messages. Messages are sent from source ports and received on 
destination ports. Source ports are specified so that receiving entities can send return messages to the 
originator. Ports are identified by port identifiers. 

Generally, a port belongs to a single, unique entity that is responsible for processing any messages 
that arrive on the port. In the future, if the underlying hardware supports it, you will be able to group 
ports to form a multicast port so that a message can be sent to more than one destination with a single 
transmission. 

Ports are addressed using a port identifie . One of the important characteristics of port identifiers is 
location independence. The sender and receiver do not have knowledge of the physical location of 
the destination port. Port identifiers include information about which seat (CPU) the port is homed 
on. Communication services are responsible for determining the destination seat and for routing the 
message to its destination.

Environment Description

Unispace Communication occurs on the same processor and in the same address space. 
Both the source and destination entities reside in a single address space. 

Tightly coupled The entities exist on different physical processors that are closely related. The 
processors communicate using shared memory or across a local bus with 
minimal delay characteristics. 

Loosely coupled The entities exist on different processors that are not closely related. The 
communication mechanisms differ significantly from those use for tightly 
coupled environments, while still being locally proximate.

Networked The entities exist on different processors that are separated by networks. The 
interaction time between these entities is significantly longer than that of any of 
the other environments.
8-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



IPC Terminology

 CISCO CONFIDENTIAL
In order for an entity to send or receive messages, it must create local end points, or ports, and locate 
destination ports.

When the entity creates a local port, it must assign a name to the port and then register the port name 
with the seat manager. Once the port name has been registered, the port becomes visible to potential 
senders.

Before an entity can send messages to a port, it must locate the destination port using the port’s name.

8.4   IPC Terminology

8.4.1   Entity: Definition
An entity is a procedure or routine, such as a process, executing code, or a module, that makes use 
of IPC services. An entity uses IPC services to communicate with other cooperating entities to build 
distributed systems. An entity resides on a seat. 

8.4.2   Message: Definition
A message is the basic unit of communication exchanged between entities. It includes a header, 
source and destination addressing information, and the message data. A message is addressed and 
sent to a port identifier, which identifies a port on a particular seat. 

8.4.3   Port Terminology

8.4.3.1   Port 
A port is a communications end point. There are two basic types of ports, unicast and multicast. 
port is identified by a 32-bit number that uniquely identifies it within the communications system. 
For unicast ports, the port identifier uniquely indicates both the seat and unique port within that seat. 

8.4.3.2   Port Name
Each port can optionally have a port name associated with it. A port name is a textual name that is 
registered with the local seat manager and is associated with the port’s identifier. A port name is 
unique within a seat. 

8.4.3.3   Multicast Ports
Groups of ports can be aggregated and referenced as a single port so that messages can be transmitted 
from one source to multiple destinations. These groups of ports are called multicast ports. (Multicast 
ports are not yet supported.) 

8.4.4   Port Identifier: Definition
A port identifier is a 32-bit integer that uniquely references a communications end point. Users of 
IPC services send messages to port identifiers. Each port identifier is unique.
Interprocess Communications (IPC) Services 8-3



 CISCO CONFIDENTIAL
8.4.5   Seat Terminology

8.4.5.1   Seat
A seat is a computational element, such as a processor, that can be communicated with using IPC 
services. A seat is where entities and ports reside. 

8.4.5.2   Seat Manager
The seat manager is an entity responsible for the local seat. The seat manager is responsible for the 
following: 

• Assigning port numbers to all its ports 

• Ensuring that all local port names are unique

• Providing seat information to the zone manager

• Initializing IPC services on the seat

8.4.6   Zone Terminology

8.4.6.1   Zone
A zone is a collection of seats between which communications is directly possible. 

8.4.6.2   Zone Manager
The zone manager is responsible for a group of seats that can directly communicate with each other. 
When a seat does not know how to communicate with another seat, it queries the zone manager. The 
zone manager is also responsible for resolving interseat port names.

In the simplest operational environment, IPC communication is coordinated by the seat manager and 
the zone manager. For other environments, such as a tightly coupled communications design (that is, 
shared memory), a seat can communicate directly only with other tightly coupled seats in its group.

When seats within a zone cannot communicate directly with each other, the zone manager is 
responsible for connecting the seats to a message-routing service.

The zone manager is also known as the IPC master

8.5   Port Naming Services

The messaging system provides only a few well-known ports. This is to encourage dynamic 
rendezvous and limit the amount of hard-coded information in the message system. A combination 
of symbolic port names and symbolic port functions is used to rendezvous with another entity or 
service. A distributed database is used to provide this rendezvous service. Each seat manager is 
responsible for maintaining the mappings between names and port identifiers for its local ports. 
These names can be registered when a port is created (using the ipc_create_named_port()  
function) or after a port is created (using the ipc_register_port()  function).

Port naming services have been designed according to the following principles:

• Simple distributed database
8-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Port Name Resolution

 CISCO CONFIDENTIAL
• Both distributed and local environments

• Local function not dependent on remote services

8.5.1   Port Name Resolution 
A distributed database maps symbolic names to port identifiers that are usable by the rest of the IPC 
communications system. Port name resolution is performed hierarchically by the following port 
naming components:

• Distributed name client

• Seat name server

• Zone name server

When a request is made to map a name to a port identifier, name resolution is performed 
hierarchically. First, the seat name server attempts to resolve local names. If the seat name server is 
unable to resolve the name, the request is passed to the zone name server, which requests resolution 
from the appropriate seat name server. This design means that the resolution of local names occurs 
more frequently than the resolution of intrazone names. 

8.5.2   Port Name Syntax
A port name is an arbitrary string consisting of seat and function names. Each name can optionally 
be followed by an extension. The hierarchical naming structure of port names allows searches to take 
place. A port name’s fully qualified name has the following syntax: 

seat[.ext]:function[.instance]

The seat portion of the port name indicates where in the hierarchy the seat is located. This portion 
of the port name is referred to as the server name component. This component indicates which name 
servers to connect to and the level at which to allow resolution of the name server request. The 
function and instance portions of the name indicate a particular port on a seat and are referred to as 
the function name components. 

To allow extensibility of port names, an extension can be added to each server name component. 
When an extension is added, port name resolution is first performed by the primary name server 
denoted by the base name. This allows connection to the extended service to occur. Once connection 
to the extended service is accomplished, name resolution proceeds from there as in a normal 
resolution.

A port name can take any of the following forms. Higher levels of the port name hierarchy can be 
specified only if the lower levels are also specified.

function.instance
seat[.ext]:function.instance

8.5.2.1   Example: Port Name Syntax
The following is an example of port name syntax. In this example, the seat name is viper#1#6 and 
the port name is fastsw.mg .

viper#1#6:fastsw.mgr

8.5.2.2   Reserved Port Names
Table 8-2 lists the port names that are reserved for special functions. 
Interprocess Communications (IPC) Services 8-5



 CISCO CONFIDENTIAL
Table 8-2 Reserved Port Names 

8.6   IPC Message Format

IPC messages are defined with the ipc_message_header structure: 

typedef struct ipc_message_header_ {
ipc_type_header type_hdr;
ipc_port_id dest_port;
ipc_port_id source_port;
ulong port_index;
ipc_sequence sequence;
ipc_message_type type;
ipc_size size;
ipc_flags flags;
ulong msg_id_hi;/* Timestamp*/
ulong msg_id_lo;/* Message address */
uchar data[0];

} ipc_message_header;

Figur e8-2 illustrates the IPC message format.

Figure 8-2 IPC Message Format 

Name Reserved for...

IPC Master:Zone Zone manager port for this zone.

IPC Master:Echo Echo port for this seat.

IPC Master:Control Control port for this seat.

Destination port ID

Source port ID

Port index

Type

Flags

Sequence

Type Length

Size

Data

31 0

S
59

28
8-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



IPC Processing: Overview

 CISCO CONFIDENTIAL
8.7   IPC Processing: Overview

Figur e8-3 illustrates basic IPC processing.

Figure 8-3 IPC Processing 

8.8   Manipulate the Seat Tabl

8.8.1   Seat Table: Description
The seat table contains information about all seats in the IPC system. Entries in the table are indexed 
by each seat’s unique 16-bit identifier. 

Seat table entries contain the following information: 

• Seat identifier

• Seat name

• Transport information

— Type, such as whether the transport is local, via the ciscoBus, or via UDP

— Output vector

— Flags

• Protocol-specific information, such as ciscoBus slot and UDP socket information

• Information about the seat’s master port.

• Packet sequencing information

Validate sequence

Send ACK to source

Dispatch message

Call receive routine Hang on port queue

Yank message from
retransmit queue

Notify sender

Send NACK

Unblock processCall notification routine

DATA ACK

ip
c_
pr
oc
es
s_
me
ss
ag
e(
)

ip
c_
pr
oc
es
s_
ra
w_
pa
k(
)

Port table

Retransmission 
table

Seat table

seat->send_vector(message, dest_seat) S
39

09

Input
Queue
Interprocess Communications (IPC) Services 8-7



 CISCO CONFIDENTIAL
An IPC seat is defined with the ipc_seat_data_ structure:

struct ipc_seat_data_ {
    thread_linkage links;
    ipc_seat seat;/* The seat address */
    char *name;
    ipc_transport_type transport_type; /* Method used to get there */
    ipc_send_vector send_vector;
    boolean interrupt_ok;
    ipc_transport_t ipc_transport;

ipc_port_info *seat_master_info; /* Info for seats master port */
    ipc_sequence last_sent;/* Last sequence number assigned */
    ipc_sequence last_heard;/* Last valid sequence number heardfrom this seat */
    ipc_sequence last_ack;/* Last ack sequence number rcv'd */
};

8.8.2   Create a Seat
To create a seat and assign it a name, use the ipc_add_named_seat()  function. 

ipc_error_code ipc_add_named_seat(uchar * seat_name, ipc_seat new_seat, 
ipc_transport_type transport_type, 
ipc_send_vector send_routine, uint transport_data 

8.8.3   Get Information about a Seat
To retrieve information about a seat in the seat table, use the ipc_get_seat() function. 

ipc_seat_data *ipc_get_seat(ipc_seat seat_address); 

8.8.4   Reset a Seat
To reset the global IPC send and receive sequence numbers, use the ipc_resync_seat()  function. 

void ipc_resync_seat(ipc_seat_data * seat); 

To reset the internal seat structures, use the ipc_remove_seat()  function. 

void ipc_reset_seat(ipc_seat_data *seat); 

8.9   Manipulate the Port Table

8.9.1   Port Table: Description
The port table contains information about local ports available to users. The master server contains 
a complete list of ports on all servers. 

Entries in the port table are indexed by a globally unique 32-bit port identifier.

Port table entries contain the following information: 

• Port information

— Port identifier

— Port name

— Port type
8-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Create a Port

 CISCO CONFIDENTIAL
• Delivery information

— Delivery method, for example, whether received messages should be queued or an 
asynchronous notification should be sent

— Context pointer for asynchronous notification

— Asynchronous callback vector

— Sequencing information

An IPC port is defined with the ipc_port_data_ structure:

/*
 * Port Table (Table key = port ID)
 */
struct ipc_port_data_ {
    thread_linkage links;
    ipc_port_id port;
    char *name;
    ipc_receive_method method;
    void *receive_context;
    ipc_callback receive_callback;
    watched_queue *receive_queue;
    ulong flags;
    ipc_port_seq_struct port_seq_array[IPC_PORT_MAX_OPENS];
};

8.9.2   Create a Port
To create a port and assign it a name, use the ipc_create_named_port()  function. 

ipc_error_code ipc_create_named_port(char * name, ipc_port_id *port, ulong port_flags,
ipc_receive_method rx_method, void *context, 

void *ipc_rx_handler);

8.9.3   Register a Port
To register a port by its port identifier, call the ipc_register_port()  function. 

ipc_error_code ipc_register_port(ipc_port_id port); 

8.9.4   Open a Port
To open a port by specifying its port identifier, use the ipc_open_port() function. 

ipc_error_code ipc_open_port(ipc_port_id port_id, ipc_port_info *port_info); 

To open a port by specifying its name, use the ipc_open_port_by_name()  function. 

ipc_error_code ipc_open_port_by_name(char * name, ipc_port_info *port_info);
Interprocess Communications (IPC) Services 8-9



 CISCO CONFIDENTIAL
An IPC port is described with the ipc_port_info_ structure:

/*
 * Struct to describe port for later access by the send routine
 */
struct ipc_port_info_ {
    ipc_port_id port_id;/* IPC port id of open port */
    ulong port_features;/* What features to open port with */
    ipc_callback notify_callback; /* Callback routine for async ports */
    void *notify_context;/* Context for async ports */
    ipc_seat_data *output_seat; /* Output seat info */
    ipc_send_vector_t port_send_vector; /* IPC send vector */
    ipc_sequence last_sent;/* Last sequence number assigned */
    ipc_sequence last_heard;/* Last valid sequence number heard from this seat */
    ipc_sequence last_ack;/* Last ack sequence number rcv'd */
    ushort port_index;
};

Before calling these functions to open a port, the caller should initialize the following fields in the 
ipc_port_info structure:

• Port features-- Use this bitfield to set the port to IPC_PORT_FEAT_RELIABLE (reliable mode), 
IPC_PORT_FEAT_UNREL (unreliable mode), or IPC_PORT_FEAT_UNREL_NOT 
(unreliable with notification).

• Notify callback-- This field contains a function pointer to the callback routine to use with 
IPC_PORT_CALBACK.

• Notify context-- This field contains an optional context for the callback ack routine to use with 
IPC_PORT_CALLBACK.

8.9.5   Find a Por
To locate a port by name, use the ipc_locate_port() function. 

ipc_port_id ipc_locate_port(ipc_name * name); 

8.9.6   Close a Port
The close a port, use the ipc_close_port()  function. 

ipc_error_code ipc_close_port(ipc_port_info * port_info); 

8.9.7   Remove a Port
To remove a port and deregister it if necessary, use the ipc_remove_port()  function. 

ipc_error_code ipc_remove_port(ipc_port_id port); 
8-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate the Message Retransmission Table

 CISCO CONFIDENTIAL
8.10   Manipulate the Message Retransmission Table

8.10.1   Message Retransmission Table: Description
The message retransmission table contains all messages sent by the local seat that have yet to be 
acknowledged. Entries in the table are indexed by a unique combination of the seat identifier and the 
packet sequence number, defined as seat_id << 16 | sequence. When an acknowledgment arrives, 
the index is calculated and the original message is retrieved quickly from the message retransmission 
table. 

Message retransmission table entries contain the following information: 

• Retransmission information

— Sequence number

— Retransmit timer

— Packet pointer

• Notification

— Callback function

— Callback context

8.11   Send IPC Messages

8.11.1   Allocate a Message
To allocate and initialize an IPC message and its associated paktype data structures, use the 
ipc_get_pak_message()  function. 

ipc_message *ipc_get_pak_message(ipc_size size, ipc_port_info dest_port_info,
ipc_message_type type); 

To get a message using a user-defined buffer type, use the ipc_get_message() function. 

ipc_message *ipc_get_message(ipc_size size, ipc_port_id dest_port_info,
ipc_message_type type, void *ipc_data,
void *ipc_data_buffer, ipc_free_func_t ipc_free_func); 

8.11.2   Send a Message
To send a message, use the ipc_send_message_blocked()or the ipc_send_message()  function. 
The first function blocks until the message is successfully sent or it times out. The second function 
sends the message without blocking. 

ipc_error_code ipc_send_message_blocked(ipc_message * message,
ipc_port_info *dest_port_info); 

ipc_error_code ipc_send_message(ipc_message * message, ipc_port_info *dest_port_info);

To dispatch received packets containing IPC messages to their destination, use the 
ipc_platform_init()  function. 

void ipc_process_raw_pak(paktype * pak); 
Interprocess Communications (IPC) Services 8-11



 CISCO CONFIDENTIAL
8.11.3   Return a Message to the IPC System
To return a message to the IPC system, use the ipc_return_message()  function. This function 
returns a message to the IPC system and frees any memory buffers associated with the message. 

void ipc_return_message(ipc_message * message); 

8.12   Simulate RPCs

You can the IPC mechanism to implement communication between remote entities by simulating 
remote procedure calls (RPC).

To simulate the sending portion of a request–response operation in the IPC system, use the 
ipc_send_rpc() or ipc_send_rpc_blocked()  function. 

ipc_error_code ipc_send_rpc(ipc_port_info * dest_port_info, ipc_message *message);

ipc_message *ipc_send_rpc_blocked(ipc_port_info * dest_port_info,
ipc_message *message, ipc_error_code *error);

To simulate the synchronous response portion of a request–response operation in the IPC system, 
use the ipc_send_rpc_reply_blocked()  function. 

ipc_error_code ipc_send_rpc_reply_blocked(ipc_message * original_message,
ip c_message*reply_message); 

To simulate the asynchronous response portion of a request–response operation in the IPC system, 
use the ipc_send_rpc_reply()  function. 

ipc_error_code ipc_send_rpc_reply(ipc_message * original_message,
ip c_message*reply_message); 

To set the RPC timeout period in an IPC message, use the ipc_set_rpc_timeout()  function. The 
default timeout period is 1 0seconds. 

void ipc_set_rpc_timeout (ipc_message * message, int seconds); 

8.13   Write an IPC Application

In IPC communications, an IPC message is sent to an end point called an IPC port. In order for the 
port to receive messages, the port must exist and must have a callback routine associated with it.

To write an IPC application, perform the following tasks: 

• Create a Port

• Open a Connection to the Port

• Send a Message
8-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Create a Port

 CISCO CONFIDENTIAL
8.13.1   Create a Port 
To create a port to receive IPC messages and to assign a port name to the port, use the 
ipc_create_named_port() function. This function returns an enumerated error code value. The 
following example creates a port named “Slave Registration Port”: 

#define SIGNIN_PORT_NAME “Slave Registration Port”

ec = ipc_create_named_port(SIGNIN_PORT_NAME, &signin_port, IPC_PORT_UNICAST,
IPC_CALLBACK, NULL, slave_signin_handler); 

if (ec != IPC_OK) {
errmsg(&msgsym(IPC, RSP), “Master could not create named port”,

ipc_decode_error(ec));
return;

}

This code creates a port whose input is handled by the callback function slave_signin_handler().  
The functional declaration for this callback function is as follows:

static void
slave_signin_handler (ipc_message * req_msg, void *context, ipc_error_code ec)

8.13.2   Open a Connection to the Port
Before you can open a port, you must initialize the port_info structure so that it requests the proper 
port services. The following example sets signin_port_info.port_features  to use reliable 
transport mode (IPC_PORT_FEAT_RELIABLE ) and opens a reliable-mode connection to the “Slave 
Registration Port”: 

/*
* Open the port.
*/

signin_port_info.port_features = IPC_PORT_FEAT_RELIABLE;
ipc_error = ipc_open_port_by_name(SIGNIN_PORT_NAME, &signin_port_info); 

if (ipc_error != IPC_OK) {
errmsg(&msgsym(IPC, RSP), “Slave could not find registration port”, ““);
return;

}

8.13.3   Send a Message
You can send message either in blocking or nonblocking mode.

8.13.3.1   Send a Message in Blocking Mode
Send a message in blocking mode when a function must ensure that data was received by the remote 
IPC before proceeding. Blocking messages are similar to remote procedure calls (RPCs). 
Interprocess Communications (IPC) Services 8-13



 CISCO CONFIDENTIAL
The following example gets an initialized IPC message in a paktype structure, copies the data into 
the message, and sends the message in blocking mode to a previously created test port: 

/*
* Transmit a message
*/

message = ipc_get_pak_message (strlen(test_message)+1, &test_port_info,
IPC_TYPE_SERVER_ECHO);

if (message != NULL) {
printf(ipc_test_pass);

} else {
printf(ipc_test_fail);

}

strcpy(message->data, test_message);

error = ipc_send_message_blocked(message, &test_port_info);

if (error == IPC_OK) {
printf(ipc_test_pass);

} else {
printf(ipc_test_fail_resp, ipc_decode_error(error));

}

ipc_return_message(message);

8.13.3.2   Send a Message in Nonblocking Mode
Send a message in nonblocking, asynchronous-style mode when the acknowledgment to the original 
message can be received at any time (for example, you might send nonblocking messages when 
sending statistics) or when sending unreliable IPC messages. 

The following example of sending a message in nonblocking mode is a modified version of the 
blocking-mode example: 

message = ipc_get_pak_message(strlen(test_message)+1, &test_port_info,
IPC_TYPE_SERVER_ECHO);

if (message != NULL) {
printf(ipc_test_pass);

} else {
printf(ipc_test_fail);
return;

}

strcpy(message->data, test_message);

error = ipc_send_message(message, &test_port_info);
if (error != IPC_OK) {

ipc_return_message(message);
}

8.14   Implementing IPCs on the RSP Platform 

This section discusses some of the specifics for implementing IPCs on the RSP platform.
8-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



IPC CiscoBus Driver: Overview

 CISCO CONFIDENTIAL
8.14.1   IPC CiscoBus Driver: Overview
The IPC core software runs on the RSP1, RSP2 (both master and slave), CIP, and VIP (all flavors) 
cards. The RSP1 or the master RSP2 assumes the role of the master IPC.

Each IPC card has a hardware queue associated with it. When one IPC card sends messages to 
another, the sending IPC card inserts the message into the receiving IPC card’s hardware queue.

The queues on non-RSP IPC cards are not associated with any attention/interrupt. To receive its 
messages from the queue, the driver must poll its associated queue to fetch queued messages.

The queue on the RSP1/RSP2 (slave/master) card is associated with the high-level network interrupt. 
This interrupt is generated whenever the queue changes from empty to nonempty. Inside the interrupt 
handler, the RSP1/RSP2 copies the packet memory (MEMD) buffer to a DRAM buffer, then sends 
it to the IPC core for processing via the raw queue registration function.

A new global buffer pool is allocated for IPC message use only. The new buffer pool is managed by 
MEMD buffer-carving algorithm. The number of buffers is 2n, where n is the number of IPC cards 
that are present in the IPC system. The size of each buffe r is 4KB, which limits the size of the IPC 
application buffer to a maximum of 4 KB minus IPC message header overhead. Currently, there is 
no layer between the IPC core and CiscoBus driver that performs fragmentation and reassembly.

Some type of flow control is needed to police the buffer usage, allowing each IPC card to have its 
fair share of the global free MEMD buffers.

8.14.2   IPC Setup Procedure
This section describes the procedure for initializing the ciscoBus drivers on all IPC cards so that 
subsequent IPC operations can be performed. The procedure consists of the following phases:

• Discovery Phase

• Initialization Phase

• Registration Phase

8.14.2.1   Discovery Phase
In the discovery phase, the master IPC card discovers all the slave IPC cards that are present in the 
chassis. The master IPC card does this by scanning all slots, identifying the type of controller cards 
in the slots, and determining whether they have IPC capabilities. 

The master IPC card uses the slots[MAX_SLOTS] structure to scan the slots. In this structure, the 
controller type field is ctrlr_type, which has an enum type of ctrlr_type_t. Currently, the 
following controller types support IPCs: 

• FCI_RSP1_CONTROLLER

• FCI_RSP2_CONTROLLER  (master and slave)

• FCI_CIP_CONTROLLER

• FCI_RVIP_CONTROLLER

• FCI_SVIP_CONTROLLER

The master IPC card maintains a list all discovered IPC cards in a table indexed by slot. The master 
IPC card stores information about the IPC cards in the ipc_cbus_card_ and ipc_cbus_rec_ 
structures.
Interprocess Communications (IPC) Services 8-15



 CISCO CONFIDENTIAL
The ipc_cbus_card_ structure contains all the information about an individual IPC card. Some of 
the information might be duplicated from the slots structure. You can also use slotnum to get the 
information indirectly from the slots structure.

#def ine IPC_CARD_PRESENT 0x1/* Set if IPC card is present. */

typedef struct ipc_cbus_card_ {
ui nt control;/* Control information */
in t slotnum;/* Slot number of the IPC card */
ctrl r_type_t ctrlr_type;/* Controller type */
in t seat_number;/* Assigned seat number */
rc v_hw_queue;/* Associated hardware queue */
...

} ipc_cbus_card_t;

ipc_card_t ipc_cbus_cards[MAX_SLOTS];

The ipc_cbus_rec_ global structure contains other IPC information:

typedef struct ipc_cbus_rec_ {
bool ean is_cbus_master;/* Set to TRUE if we are cbus master */
boo lean is_cbus_slave;/* Set to TRUE if we are cbus slave */
qu euetype messageQ;/* Queue of input messages */

...
} ipc_cbus_rec_t;

ipc_cbus_rec_t ipc_cbus_rec;

8.14.2.2   Initialization Phase
In the initialization phase, the master IPC card issues an initialization command to each of the 
discovered slave IPC cards, preparing them for normal IPC operation.

The master IPC card assigns each IPC card a unique seat number. For each slave IPC card and for 
the master IPC card, the seat number is the same as the slot number. 

The master IPC card also assigns control port identifiers, which are used for different IPC control 
messages and applications. The master IPC card forms the port identifier by selecting a port number 
and concatenating it with the master IPC’s seat number.

The master IPC card issues the ccb initialization command to a slave IPC card. This command 
contains the following fields:

• cmd—Command (all 16 bits)

• done—Done flag

• arg0—Slave’s seat number

• res1—Master's seat number

• res0—Master’s control port identifier (concatenation of the seat number and control port 
number)

• res1—Slave’s hardware queue

• diag0—Master’s hardware queue

• diag1—Unused
8-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Invoke the IPC Setup Procedure

 CISCO CONFIDENTIAL
8.14.2.3   Registration Phase
After the slave IPC card receives an initialization command from master IPC card, the slave IPC card 
needs to initialize itself appropriately, then register with the master IPC card by sending an IPC 
control message to the master’s control port.

The IPC control message that the slave IPC sends to register with the master IPC contains the 
following information:

• Control port number of the slave IPC

• Other information

The slave IPC control message can be extended to include other control ports, such as the echo port.

When the master IPC receives a control message from a slave IPC, the master IPC updates its 
ciscoBus card record list and creates a seat for the slave IPC. The master IPC then propagates the 
information about the slave IPC to all the other slave IPC cards by sending a control message 
sequentially to them. This IPC control message contains the following information, which allows all 
the slave IPC cards to communicate with each other directly without going through the master IPC:

• All known slaves control port identifiers

• Seat numbers of all slaves

• Hardware queues of all slaves

The master IPC ciscoBus card record list remains unchanged until the next time the master IPC card 
issues a command to initialize a slave IPC card.

Once the IPC slave card has registered with the master IPC card, the ciscoBus driver can support 
full-duplex peer-to-peer IPC communication. At this time, all IPC cards—the master and all 
slaves—should have the following:

• Hardware queue for receiving IPC messages

• Control port identifier for receiving IPC control messages

• List of seat numbers of each of the other IPC cards

• Hardware queue for transmitting IPC messages to each of the other IPC cards

• Control port identifier for each of the other IPC cards

8.14.3   Invoke the IPC Setup Procedure
The IPC setup procedure is invoked from the EOIR handling process. Specifically, it is invoked at 
the end of the EOIR handling process, after CiscoBus analysis and MEMD carving have completed.

If a non-IPC card is inserted or removed, all messages in the IPC retransmit queue are delivered to 
their predefined destination after EOIR handling is completed. In the worst case, there might be 
some delay. 

If a slave IPC card is removed, the IPC messages in the retransmit queue destined for that IPC card 
eventually time out and are discarded. The master IPC card needs to remove from its registration 
table the ports that were on the removed IPC card. If any of the slave IPC cards have these ports saved 
in a local hash table, they need to remove them from the hash tables. Then, if an application attempts 
to transmit to these ports, the request is rejected and an error code is returned to the application. 

If the master IPC card is removed, the slave RSP2 card comes up and assumes the role of master IPC. 
All control messages in the retransmit queues are discarded because they point to the removed 
master IPC card. All other application messages are either retransmitted or transmitted as usual.
Interprocess Communications (IPC) Services 8-17



 CISCO CONFIDENTIAL
8.14.4   Microcode Reload Handling
Microcode reloading should be transparent to the IPC core operation.

8.14.5   Implementation of the IPC CiscoBus Interface 
The IPC core software on each IPC card maintains a list of its own seats and the seat on the other 
IPC cards.

8.14.5.1   Transmit Path
The ciscoBus driver is responsible for discovering all other IPC cards on the ciscoBus with which it 
needs to communicate. The driver creates seats for these IPC cards and places a transmit vector in 
the seat. When the IPC core software wants to transmit to a destination port identifier, the IPC 
software extracts the seat number, finds the corresponding seat structure, and then calls the transmit 
vector, passing the message and the seat structure pointer to it.

The registered ciscoBus transmit vector maps the seat to card structures that it maintains. These 
structures contain all ciscoBus-related transmission parameters, such as the hardware queue.

The local seat structure is an exception because it is on the same seat as the sender. This structure 
sends the message back to the IPC core software. This provides a communications channel between 
applications that are on different port numbers, but on the same seat.

In outgoing messages, the source port identifier contains the local seat number and a port number. 
For IPC control messages, the port number is 0. For other messages, the port number is that of the 
application that is sending the message. The destination port identifier of all messages contains the 
destination seat number and the port number of the application registered on the destination seat.

8.14.5.2   Receive Path
At the lowest layer, when the IPC hardware message queue changes from empty to nonempty, an 
event interrupt is generated. This interrupt invokes an event interrupt handler, which eventually calls 
a registry function registered from IPC ciscoBus subsystem. The registry function dequeues MEMD 
buffer headers (up to a certain number) from the hardware queue, copies data from MEMD buffers 
to system buffers, frees the MEMD buffers (headers), and places the system buffers into the 
messageQ in the IPC ciscoBus global structure ipc_cbus_rec.

A process created by IPC CBus subsystem initialization polls the messageQ. When it finds a 
message, the process handles IPC ciscoBus control messages locally and sends other messages to 
the IPC core software for processing using a registry function provided by IPC core software.

The IPC core software either processes the messages or demultiplexes them to different applications 
based on the destination port identifier.

8.14.6   IPC Name Service
IPC applications are aware of only the names of the remote IPC applications with which they want 
to communicate. These names need to map to a port identifier so that messages can actually be 
delivered. This mapping is provided by the IPC name service.

Currently, the IPC core software provides the following services:

• Name registration, which makes a newly created port known to the master IPC
8-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



IPC Name Service

 CISCO CONFIDENTIAL
• Name service, which is done by sending a query message to the master IPC and waiting for a 
response that contains the application’s port identifier

Initially, all applications use well-known port identifiers. Thus, name registration and name service 
are not required. This simplifies the implementation but results in a lack of flexibility. In the next 
stage of the RSP IPC implementation, the application will have to register the created port and 
request the port identifier of remote side. Ultimately, name services will be provided to applications 
transparently by the IPC core software. The IPC core software will be responsible for caching and 
maintaining the remote name and port identifier mapping information over events such as online 
insertion and removal. These events also require some service from the IPC ciscoBus driver. 
Figur e8-4 illustrates the ultimate layered structure of these components.

Figure 8-4 IPC Application Structure

IPC applications

Name management

IPC core

IPC CiscoBus driver Other IPC drivers

S
45

08
Interprocess Communications (IPC) Services 8-19



 CISCO CONFIDENTIAL
8-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

File Syste
9

File System
9.1   Overview

The IOS File System (IFS) provides a common interface to all users of file system functionality 
across all platforms. This code subsumes the RSP file system and its attempt to include network 
devices, and extends the common POSIX-like API to all platforms and all file systems. The IFS work 
also creates new file systems for each data point that may be the source or destination of a file 
transfer (i.e downloading the AS5200 modems or dumping the SSE memory).

9.1.1   Application Level API
The application level API for all file systems is presented below.

extern int ifs_open(const char * path, int oflags, mode_t mode);
extern int ifs_iopen(const char *prefix, ino_t ino, int oflags, mode_t mode);
extern int ifs_close(int fd);
extern int ifs_read(int fd, char *buf, size_t nbytes);
extern int ifs_write(int fd, char *buf, size_t nbytes);
extern int ifs_lseek(int fd, off_t offset, int whence);
extern int ifs_getdents(int fd, struct dirent *buf, size_t nbytes);
extern int ifs_chmod(const char * path, mode_t mode);
extern int ifs_rename(const char * frompath, const char *topath);
extern int ifs_remove(const char * path);
extern int ifs_mkdir(const char * path, mode_t mode);
extern int ifs_rmdir(const char * path);
extern int ifs_stat(const char * path, struct stat *stat_buf);
extern int ifs_fstat(int fd, struct stat *stat_buf);
extern int ifs_istat(const char * path, ino_t ino, struct stat *stat_buf);
extern int ifs_statfs(const char * path, struct statfs *statfs_buf);
extern int ifs_ioctl(const char * path, int function, void *arg);
extern int ifs_fioctl(int fd, int function, void *arg);

These routines are very close, but not always identical, to the corresponding POSIX definitions. 
(E.G. IFS has an ioctl function where POSIX has a devctl function.) There is also a need to provide 
router images running on UNIX systems, so it is convenient to have the IFS file system calls different 
from the UNIX file system calls.
9-1



 CISCO CONFIDENTIAL
9.1.2   Classes of File Systems
There are two classes of file systems under IFS. These are a file system containing a complete 
implementation of all the IFS driver vectors, and a “simple” file system that uses a framework for 
supporting most of the IFS functionality. The complete file system implementation should be used 
for any real file system (flash, disk, etc.) while the simple file system implementation is convenient 
for pseudo-file systems or RAM based file systems.

9.1.3   File System Types
The following general file system types are defined:

IFS_TYPE_FLASH
IFS_TYPE_NV
IFS_TYPE_NETWORK
IFS_TYPE_OPAQUE
IFS_TYPE_ROM
IFS_TYPE_TTY
IFS_TYPE_DISK

Type FLASH is for use by all file systems that use flash media. There are currently three different 
flash file systems in shipping product, and two more for obsolete products. Type NV is used for file 
system fronting NVRAM. There are currently two nvram file systems in the router. The first of these 
is present in all products and provides the startup configuration file and private configuration file. 
The second nvram file system is an overlay used on high end routers, and allows the full 
configuration to be saved to flash while saving a distilled configuration (no access lists) to nvram. 
Type NETWORK is used by all network based file systems. This currently consists of the FTP, RCP, 
and TFTP file systems. Type OPAQUE is used for all pseudo file systems that provide no real 
storage. These are often RAM based file systems such as the ATM accounting data, or interfaces to 
hardware devices such as the LEX card or modems. Type ROM is used by a file system on very old 
products that have ROM instead of bootflash. It provides access to the system images stored in the 
ROMs. Types TTY and DISK are for future use.

9.1.4   File System Features
The following file system feature flags are defined:

IFS_FEATURE_FORMAT
IFS_FEATURE_FSCK
IFS_FEATURE_VERIFY
IFS_FEATURE_UNDELETE
IFS_FEATURE_SQUEEZE
IFS_FEATURE_DIRECTORY
IFS_FEATURE_MKDIR
IFS_FEATURE_ERASE
IFS_FEATURE_RENAME

These feature flags simply indicate to IFS whether a file system supports a particular command, and 
whether this command needs to be provided to the user. If any file system in a router supports one 
of these commands the IFS will make the command available, but it will restrict the arguments to the 
command to those file systems that support it. For example if a router has a “slot0:” file system that 
does supports formatting and a “flash:” file system that doesn’t, IFS will provide the format 
command to the user. If the format command was entered, the only file system argument acceptable 
to the command would be the “slot0:” file system.
9-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



File System Flags

 CISCO CONFIDENTIAL
9.1.5   File System Flags
There are many flags defined for use in describing an IFS file system. They can be found in the file 
sys/ifs/ifs.h. Some of the more common are: IFS_FLAGS_ACCESS_RW  to indicate a read/write file 
system, IFS_FLAGS_MEDIA_REMOTE  to indicate that the file system lives on the slave processor of a 
C7500 router, IFS_FLAGS_PATH_XXX  to indicate that the file system accepts a certain component of 
a URL (e.g. IFS_FLAGS_PATH_USERNAME to indicate that a remote user name may be included), 
IFS_FLAGS_LOCATION_IP  to indicate that the file system is accessed via IP, and 
IFS_FLAGS_STRUCTURE_LINEAR  to indicate that a file system has a linear format and must be erased 
before reuse (e.g. the low end dev_io flash device driver).

9.2   Accessing File System

Accessing a file on an IFS file system is similar to accessing a file on any POSIX compliant 
operating system.

9.3   Implementing Simple File Systems

A simple file system provides a set of data structures describing a file (a directory, or a directory and 
set of files), and a set of one to four vectors for IFS to use in accessing these files. These vectors 
provide file system specific support for opening, closing, reading, and writing files. The framework 
provides generic code for these operations, plus code to handle seek, directory read, file status, file 
system status, and basic control functions. 

9.3.1   A Trivial IFS/File System

9.3.1.1   Defining a File System
At its simplest level, the simple file system API consists of two macros, two function calls, and up 
to four callback routines. The API definition for this very basic file system is presented below.

The macro and routine to create a file system are:

#define SIFS_DECLARE_FS(identifier, mode_t mode, size_t size)
fs id _tsifs_create_fs(const char *name, ifs_type_t type, ifs_flags_t flags,

ifs_feature_t feature, sifs_file *root, ulong blk_size,
ulong blks_total, ulong blks_free);

The arguments to these routines are fairly self explanatory. When declaring a file system with the 
SIFS_DECLARE_FS macro, pass the name for the data structure describing the file system (this string 
will have “_root” appended to it), the mode of the file system using a combination of the standard 
definitions for user privileges (S_IRWXU, etc.), and the block size for the framework to use when 
collecting data being written to a file in this file system. 

For example, the statement SIFS_DECLARE_FS(acct_ready, _IRUSR | S_IXUSR, 0)  declares a C 
data structure named acct_ready_root that contains data describing a new unnamed simple file 
system. This file system is read-only and has a zero size.

When calling sifs_create_fs()  to tell IFS about the file system, the first argument should be the 
textual prefix to use for this file system, the seconds and third argument are values from the API 
appropriate to this file system, the fourth argument should be a pointer to the data structure defined 
File Syste 9-3



 CISCO CONFIDENTIAL
by the SIFS_DECLARE_MACRO  (i.e. &name_root), the fifth argument the block size of this device, and 
the last two arguments the total number of blocks on the device and the number of free blocks 
remaining on the device.

The file system declaration implicitly uses a pointer to the vector block for this file system. This 
vector block is defined below, and must be named name_ifs_vector.

typedef int (*sifs_vector_open_t)(fsid_t fsid, ifs_fdent *fdent,
int oflags, mode_t mode);

typedef int (*sifs_vector_close_t)(ifs_fdent * fdent);
typedef int (*ifs_vector_read_t)(int fd, char *buf, size_t nbytes);
typedef int (*ifs_vector_write_t)(int fd, char *buf, size_t nbytes);
st ru ctsifs_vector_{

if s _ v e c t o r _ r e a d _read;
if s _ v e c t o r _ w r i t e _write;
sifs_vector_open_t open;
si f s _ v e c t o r _ c l o s e _close;

};

Its common for a file system to support only one or two of these vectors, and let the framework 
perform most of the work. The read and write routine are usually set to system provided routines for 
reading and writing to a memory buffer or chain of memory buffers. The file system specific work 
all occurs in either the open or close routines.

For example, the statement:

ifs_create_fs("atm-acct-ready", IFS_TYPE_OPAQUE, ACCT_IFS_FLAGS,
AC CT_IFS_FEATURE,&acct_ready_root, 1,

AC CT_FILEBUF_DEFAULT_SIZE,0);

takes the generic simple file system described by the data structure acct_ready_root, and asks IFS 
to install it in its tables with the name “atm-acct-ready”. This file system will be mark as opaque (i.e. 
other) with the specified flags and features.

9.3.1.2   Defining a File
The macro and routine to add a file to this file system are:

#define SIFS_DECLARE_FILE(identifier, const char *filename, ino_t inode,
mode_t mode)

bo olea nsifs_add_file_to_fs(const fsid_t fsid, const char *directory,
sifs_file *new_file);

The arguments to the create file macro are the name of the data structure describing the file (this 
string will have “_info” appended to it), the name of the file as it should appear in the file system, 
the inode number of the file, and the mode of the file using a combination of the standard definitions 
for user privileges (S_IRWXU, etc.). If desired, the file length and standard modification time values 
can be dynamically set in the initialization routine.

For example, the statement SIFS_DECLARE_FILE(running, “running-config”, 1, S_IRUSR | 
S_IWUSR) declares a C data structure named running_file that contains a description of a new 
simple file named “running-config”. This file will marked as inode 1 and will have read-write 
permissions.

When calling sifs_add_file_to_fs()  to install a file in the file system, the first argument should 
be the file system identifier for this file system (returned by the sifs_create_fs()  routine), the 
seconds should be the textual string of the directory where this file should be installed (usually “/”), 
and the last argument a pointer to the data structure created b SIFS_DECLARE_FILE (i.e. 
&name_info).
9-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A Trivial IFS/File System

 CISCO CONFIDENTIAL
For example, the statement sifs_add_file_to_fs(system_fsid, "/", &running_info) takes the 
file described by the data structure running_info and asks IFS to install it in the root directory of 
the file system identified by the value in system_fsid.

9.3.1.3   Example 1 - Reading a File
Here is the complete code that implements the file system for extracting ATM statistics from a router. 
This example shows how to create a file system that provides read access to a data buffer in memory.

First, define flags and other information used both by this file system and by its sister file system.

/*
* Common definitions
*/

#d ef ineACCT_IFS_FLAGS(IFS_FLAGS_ACCESS_RO | IFS_FLAGS_PATH_FILENAME)
#d ef ineACCT_IFS_FEATUREIFS_FEATURE_NONE

#d efi neACCT_IFS_FILE_NAME"acctng_file1"
#d ef i neACCT_FILE_INDEX1/* index for accounting code */

Now define the vector table that will be used for accessing this file system. Notice the null close 
vector indicating that there are no file system specific routines to perform on close. The read and 
write routines specified indicate that the file system uses a default “read from memory buffer” 
routine for reading, and it does not support writing to files.

/*
* Forward declarations
*/

static int acct_ready_ifs_open(fsid_t fsid, ifs_fdent *fdent,
int oflags, mode_t mode);

/*
* Local Storage
*/

static fsid_t acct_ready_fsid;
static sifs_vector acct_ready_ifs_vector = {

ifs_buffer_read,
ifs_null_write,
acct_ready_ifs_open,
sifs_null_close

};

Here is the declaration of the file system and of its single file.

/*
* IFS "simple" file declarations
*/

SIFS_DECLARE_FS(acct_ready, S_IRUSR | S_IXUSR, 0);
SIFS_DECLARE_FILE(ready_file1, ACCT_IFS_FILE_NAME, 0, S_IRUSR);

Here is the file system specific open routine. This routine will be called after the open routine of the 
framework has looked up the file name, checked permissions, etc. Note that all this routine really 
does is set the per-file data structure to start and length of the buffer used to hold the accounting data, 
and sets a flag to indicate to the framework that it should not free the buffer when the file is closed. 
The framework will provide the data when the application reads it, handle seeks back and forth in 
the file, handle a stat request on the open file descriptor, and free all resources when the file is closed.

/*
* acct_ready_ifs_open
*

File Syste 9-5



 CISCO CONFIDENTIAL
* Open atm accounting ready file for accesses
*/

static int acct_ready_ifs_open (fsid_t fsid, ifs_fdent *fdent,
int oflags, mode_t mode)

{
int filelen;

/*
* The jacket routines have checked the file permissions and guaranteed
* that only a file read open gets to this point.  Setup the data
* structures for receiving the data.
*/

if (fdent->index == ready_file1_info.inode) {
fdent->data = atmacct_getReadyFileAddrLen(ACCT_FILE_INDEX, &filelen);
fdent->size = filelen;
fdent->flags |= IFS_FD_FLAGS_NO_FREE;

} else {
/*
* Eh?  Should be impossible
*/

errno = ENOENT;
return(IFS_FD_ILLEGAL);

}
return(fdent->fd);

}

This is an auxiliary routine called by the ATM accounting code when it updates the buffer containing 
the accounting data. This shows how to update the file size and its modification timestamp.

/*
* acct_ifs_update_ready_size
*
* Update the file info for the ready file, and update the file system info
* as well. 
*/

void acct_ifs_update_ready_size (ulong size)
{

ready_file1_info.size = size;
if (clock_is_probably_valid())

ready_file1_info.mtime = unix_time();
}

Here is the initialization routine for this file system. This code creates a simple IFS file system using 
the pre-declared file system structure, and indicates that the file system contains a total of 
ACCT_FILEBUF_DEFAULT_SIZE  blocks of one byte each, and that none of the data blocks are free.

If the file system is successfully created, this routine will then set the size field in the previously 
declared file data structure, and add the file to the file system.

/*
* acct_ready_ifs_init
*
* Create a file system for "atm-acct-ready"
*/

void acct_ready_ifs_init (void)
{

int size;

ac ct_ready_fsid=sifs_create_fs("atm-acct-ready", IFS_TYPE_OPAQUE,
ACCT_IFS_FLAGS, ACCT_IFS_FEATURE,
&acct_ready_root, 1,
AC CT_FILEBUF_DEFAULT_SIZE,0);

if (acct_ready_fsid == IFS_FSID_ILLEGAL)
9-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A Trivial IFS/File System

 CISCO CONFIDENTIAL
return;

atmacct_getReadyFileAddrLen(ACCT_FILE_INDEX, &size);
ready_file1_info.size = size;
sifs_add_file_to_fs(acct_ready_fsid, "/", &ready_file1_info);

}

9.3.1.4   Example 2 - A More Complex Read
This example shows how to use the read routine to provide access to non-contiguous data buffers in 
memory. The file system is created similarly to the previous file system, but the read routine points 
to the following file system specific read routine.

/*
* rom_ifs_read
*
* Read up to given number of bytes from a system device
*/

static int rom_ifs_read (int fd, char *buffer, size_t nbytes)
{

ifs_fdent *fdent;
int        bytes_read;

fdent = ifs_fd_get_entry(fd);
switch (fdent->index) {

case ROM_IFS_IMAGE_INDEX:
/*
 * Attempt to read count bytes from the buffer
 */
if (((fdent->size - fdent->filepos) < nbytes) &&

(++fdent->rom_bank < romaddr->number)) {
bytes_read = ifs_buffer_read(fd, buffer, fdent->size);
fdent->size = romaddr->bank[fdent->rom_bank].len;
fdent->data = romaddr->bank[fdent->rom_bank].addr;
fdent->filepos = 0;
bytes_read += ifs_buffer_read(fd, buffer, nbytes - bytes_read);
return(bytes_read);

}
return(ifs_buffer_read(fd, buffer, nbytes));

default:
/*
 * Eh? Should be impossible.
 */
errno = EACCES;
return(-1);

}
}

This routine verifies that it is being called about the ROM Image file, providing error handling for 
all other files. If the read of the image file would reach the end of a bank of physical ROM and there 
are more physical ROMs present, the callers read request is split into two parts and the per-file data 
structures are updated to point to the next bank of physical ROM.

9.3.1.5   Example 3 - Writing a File
This example shows excerpts from the “system” file system for loading and parsing a new 
configuration file. This is a write *to* the system configuration file. A read from the system 
configuration file would return the current system configuration. The file system is created similarly 
File Syste 9-7



 CISCO CONFIDENTIAL
to the previous file systems with two exceptions. In the file system declaration a block size is 
provided for accumulating data from writes, and in the vector table definition a close vector is 
provided.

The file system declaration uses the size parameter to specify that a 16K buffer should be allocated 
when the configuration file is initially opened for write, and that if this buffer is filled up then 
additional 16K buffers will be allocated as needed until the write is complete.

#define SYSTEM_IFS_RUNNING_NAME "running-config"
#define SYSTEM_IFS_RUNNING_INDEX 1
#def ine SYSTEM_IFS_BLOCK_SIZESIXTEEN_K

SIFS_DECLARE_FILE(running, SYSTEM_IFS_RUNNING_NAME, SYSTEM_IFS_RUNNING_INDEX,
  S_IRUSR | S_IWUSR);

SIFS_DECLARE_FS(system, S_IRUSR | S_IWUSR | S_IXUSR, SYSTEM_IFS_BLOCK_SIZE);

static void system_ifs_subsys_init (subsystype *subsys)
{
    fsid_t system_fsid;

    /*
     * Create a file system for "system"
     */
    system_root.dir_info->block_size = SYSTEM_IFS_BLOCK_SIZE;
    system_fsid = sifs_create_fs("system", IFS_TYPE_OPAQUE, SYSTEM_IFS_FLAGS,

 SYSTEM_IFS_FEATURE, &system_root, 0, 0, 0);
    if (system_fsid == IFS_FSID_ILLEGAL)

return;

    /*
     * Setup the data file
     */
    sifs_add_file_to_fs(system_fsid, "/", &running_info);
}

9-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A Trivial IFS/File System

 CISCO CONFIDENTIAL
The file system open routine doesn’t have any work to do when opening the system “running-config” 
file for write. The framework sets up the data buffer that will be used, and the system provide 
ifs_buffer_write()  routine will allocate additional data blocks as necessary.

/*
* system_ifs_open
*
* Open system file for accesses
*/

static int system_ifs_open (fsid_t fsid, ifs_fdent *fdent, int oflags,
    mode_t mode)

{
ifs_sdent *sdent;
ifs_sysdent *sysdent;

/*
* The jacket routines have checked the file permissions and guaranteed that
* only a file read/write open gets to this point.  Setup the data structures
* for receiving the data.
*/

/*
* Set some basic values
*/

sysdent = malloc(sizeof(ifs_sysdent));
if (!sysdent) {

errno = ENOMEM;
return(IFS_FD_ILLEGAL);

}
sdent = fdent->fd_context;
sd e nt->fs_specific=sysdent;
…
…
/*
* Are we reading or writing this file?
*/

    if ((oflags & O_ACCMODE) != O_RDONLY) {
/*
 * The jacket routines already took care of setting up the write data
 * buffer.  There's nothing else to do.
 */
return(fdent->fd);

}
…
… set up a configuration read here …
…

}

File Syste 9-9



 CISCO CONFIDENTIAL
The work of parsing the new configuration file occurs in the close routine. This routine must first 
concatenate together all of the data blocks accumulated as the new system file was copied, and then 
pass them to the system supplied parse_configuration()  routine. This routine could (and should) 
be optimized to first check to see if the data is contained in a single buffer, and if so, to parse directly 
from that buffer and avoid the overhead of a buffer allocation and copy.

/*
 * system_ifs_close
 *
 * Close the opened system file
 */
static int system_ifs_close (ifs_fdent *fdent)
{
    ifs_sdent*sdent;
    ifs_sysdent*sysdent;
    char*buffer, *ptr;
    uinti, size;

    sdent = fdent->fd_context;
    sysdent = sdent->fs_specific;

    /*
     * Was this a file read or write?
     */
    if ((fdent->oflags & O_ACCMODE) == O_RDONLY) {

/*
 * Reading.  Very little to do.  The jacket routine will take care of
 * freeing most of the memory.
 */
free(sysdent);
return(0);

    }

    /*
     * Writing
     */
    switch(fdent->index) {
      case SYSTEM_IFS_RUNNING_INDEX:

/*
 * If we got an error during any running config write, this
 * bit'll be set. If it is, don't bother trying to do anything
 * with the buffer
 */
if (fdent->flags & IFS_FD_FLAGS_ERROR)
    break;

/*
 * Allocate a contiguous buffer to hold the text to be written
 * as a running config
 */
buffer = malloc(fdent->size);
if (buffer) {
    /*
     * Copy each block in turn into the contiguous buffer. The jacket routine 

* will free the individual data blocks when this routine returns.
     */
    for (i = 0, ptr = buffer; i <= fdent->block_count; i++) {

size = (i == fdent->block_count) ?
    fdent->block_filepos : SYSTEM_IFS_BLOCK_SIZE;
memcpy(ptr, fdent->block[i], size);
ptr += size;

    }
9-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Other Features

 CISCO CONFIDENTIAL
    /*
     * Parse the buffer as our new configuration
     */
    parse_configure(buffer, TRUE, sysdent->mode, sysdent->priv);
    free(buffer);
}
break;

      default:
break;

    }

    free(sysdent);
    return(0);
}

9.3.2   Other Features

9.3.2.1   Directories
A simple file system can support the notion of sub-directories. A sub-directory is simply a file data 
structure with some additional information tacked onto it that will be managed by the framework. 
The routines for defining and subdirectory is:

#define SIFS_DECLARE_DIR(name, filename, mode, size)

The arguments to the create directory macro are the name to be used for the created data structures, 
the name of the directory as it should appear in the file system, the mode of the directory using a 
combination of the standard definitions for user privileges (S_IRWXU, etc.), and the buffer block 
size to use when writing to files in this directory. This routine creates two data structures. The first 
is the file entry that will be installed in the parent directory (this data structure name will have “_dir” 
appended to it). The second is the data structure used internally by the framework for maintaining a 
list of files in the directory.

To install a directory, use the same routine as for installing a file.

bo olea n s ifs_add_file_to_fs(const fsid_t fsid,const char *directory,
sifs_file *new_file);
File System 9-11



 CISCO CONFIDENTIAL
Example 4 - Adding a directory
Here is an example of directory creation and installation from the system microcode file system.

SIFS_DECLARE_DIR(system_ucode, "ucode", S_IRUSR | S_IXUSR, 0);

/*
* system_ucode_ifs_subsys_init
*
* system_ucode_ifs subsystem init routine.
*/

static void system_ucode_ifs_subsys_init (subsystype *subsys)
{

fsid_t system_fsid;

/*
* Find the 'system' file system.
*/

system_fsid = ifs_lookup_prefix("system:");
if (system_fsid == IFS_FSID_ILLEGAL)

return;

/*
* Create the directory for all ucode files.
*/

if (!sifs_add_file_to_fs(system_fsid, "/", &system_ucode_dir))
return;

…
… install files here …
…

}

9.3.2.2   Timestamps
The simple IFS file system framework will update all file access and modification timestamps. These 
timestamps and the file creation timestamps can also be modified directly by the code. The file 
creation and update routines in Example 1 - Reading a File show a file’s modification timestamp 
being updated.

9.4   Implementing Complete File System

A complete file system must be completely written by a developer. The complete file systems in the 
IOS source are (as of October 1997) are the “dev_io” file system used on the C100x, C25xx, C4x00, 
and C5200 platforms; the “fslib” file system used on the C7000, RSP, and LS1010 platforms; and 
the “malibu” flash file system used on the C3810 and LS2080 platforms.

9.4.1   IFS/File System API
Complete file systems are created by calling the ifs_create() routine. The declaration of this routine 
is as follows.

extern fsid_t ifs_create(const char * prefix, ifs_vector *vector,
ifs_type_t type, ifs_flags_t flags,
ifs_feature_t feature, void *fs_context);

The first argument is the URL prefix name that will be used to reference this file system. The second 
argument is a pointer to the vector table for this functions supported by this file system. The next 
three arguments describe the type, capabilities, and features of this file system. The last argument is 
9-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



IFS/File System API

 CISCO CONFIDENTIAL
a magic cookie value that is defined and used only by the driver. It has no meaning to IFS, and is 
never referenced by IFS. Drivers can use this value to track multiple file systems that use a common 
set of drivers (i.e. bootflash, slot0, and slot1 on an RSP).

The vector table for a complete file system is much more complex than that for a simple file system. 
It includes vectors for supporting all the functions supported by the simple file system framework. 
The complete vector table definition is:

typedef int (*ifs_vector_read_t)(int fd, char *buf, size_t nbytes);
typedef int (*ifs_vector_write_t)(int fd, char *buf, size_t nbytes);
typedef int (*ifs_vector_open_t)(fsid_t fsid, const char *path, int oflags,

mode_t mode);
typedef int (*ifs_vector_close_t)(int fd);
typedef int (*ifs_vector_lseek_t)(int fd, off_t offset, int whence);
typedef int (*ifs_vector_chmod_t)(fsid_t fsid, const char *path, mode_t mode);
typedef int (*ifs_vector_remove_t)(fsid_t fsid, const char *path);
typedef int (*ifs_vector_rename_t)(fsid_t fsid, const char *frompath,

const char *topath);
typedef int (*ifs_vector_mkdir_t)(fsid_t fsid, const char *path, mode_t mode);
typedef int (*ifs_vector_rmdir_t)(fsid_t fsid, const char *path);
ty pe defint(*ifs_vector_getdents_t)(int fd, struct dirent *buf,

size_t nbytes);
typedef int (*ifs_vector_stat_t)(fsid_t fsid, const char *path,

struct stat *stat_buf);
typedef int (*ifs_vector_fstat_t)(int fd, struct stat *stat_buf);
typedef int (*ifs_vector_istat_t)(fsid_t fsid, const char *p refix,

ino_t ino, struct stat *stat_buf);
typedef int (*ifs_vector_statfs_t)(fsid_t fsid, const char *p refix,

struct statfs *statfs_buf);
typedef int (*ifs_vector_cleanup_t)(fsid_t fsid);
typedef int (*ifs_vector_ioctl_t)(fsid_t fsid, const char *path, int function,

void *arg);
typedef int (*ifs_vector_fioctl_t)(int fd, int function, void *arg);
typedef int (*ifs_vector_iopen_t)(fsid_t fsid, const char *path, ino_t, int oflags,

mode_t mode);

struct ifs_vector_ {
    ifs_vector_read_t     read;
    ifs_vector_write_t    write;
    ifs_vector_open_t     open;
    ifs_vector_close_t    close;
    ifs_vector_lseek_t    lseek;
    ifs_vector_chmod_t    chmod;
    ifs_vector_remove_t   remove;
    ifs_vector_rename_t   rename;
    ifs_vector_mkdir_t    mkdir;
    ifs_vector_rmdir_t    rmdir;
    ifs_vector_getdents_t getdents;
    ifs_vector_stat_t     stat;
    ifs_vector_fstat_t    fstat;
    ifs_vector_istat_t    istat;
    ifs_vector_statfs_t   statfs;
    ifs_vector_cleanup_t  cleanup;
    ifs_vector_ioctl_t    ioctl;
    ifs_vector_fioctl_t   fioctl;
    ifs_vector_iopen_t    iopen;
};

All of the vectors in this table are optional.
File System 9-13



 CISCO CONFIDENTIAL
9.4.2   Common Data Structures
The following data structure is the internal representation of a file system used by IFS. It is provided 
here only for completeness, and should never be referenced directly. The majority of the fields are 
set in the call to create a file system, and there are accessor routines available for retrieving or 
manipulating the other field.

struct ifs_fsent_ {
if s_prefix*prefix;
if s_vector*vector;
if s_flags_tflags;
if s_type_ttype;
if s_feature_tfeature;
in t16num_open;
vo id*fs_context;
co ns tchar*filename_prompt;
vo id*show_vector;
if s_copy_vector*copy_vector;

};

The following data structure is the internal representation of a file used by IFS. 

struct ifs_fdent_ {
in tfd;
in tnative_fd;
fs id_tfsid;
ui nt32filepos;
ui nt32size;
ch ar*data;
ui nt16flags;
ui nt16oflags;
pi d_tpid;
in tindex;
vo id*fd_context;

ui ntblock_count;
ui ntblock_index;
ui ntblock_filepos;
ui ntblock_size;
ch ar*block[IFS_MAX_BLOCKS];

};

The fd and fsid fields should be the file descriptor and file system identifier numbers as assigned by 
IFS. The oflags field should contain a copy of the flags specified in the call to the open routine, and 
the pid field should contain the id of the process that opened the file. The filepos and size fields are 
expected to maintain the current offset and total size of the file. The other fields are available for the 
driver to use. The native_fd and index fields are complementary; generally the native_fd field will 
contain the fd used by any underlying driver, or the index field will contain the file inode number 
used by the controlling driver. The fd_context field can be used to point to a driver specific data 
structure, and the flags field is used to maintain any flags that are common across multiple drivers. 
The data field may be used to maintain a local data buffer, and when it is the filepos field is generally 
an offset into this buffer. The block_xxx fields are all used by the simple file system driver described 
earlier.
9-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Implementation

 CISCO CONFIDENTIAL
9.4.3   Implementation
The majority of these vectors support the standard file system functions specified by the POSIX 
standard, and the others support standard UNIX file system functions. Only one routine is cisco 
specific. Any function that does not operate on an already open file descriptor will have an initial 
argument containing the file system identifier, allowing a single driver to support multiple file 
systems. After this initial file system identifier argument, these functions all take the same arguments 
as their POSIX or UNIX counterparts, and should perform the same functions.

The open routine is based on the POSIX open routine and takes four arguments. These are a file 
system id as determined by IFS from the path name, the path name itself (including the prefix if the 
file system has the IFS_FLAGS_PATH_PREFIX  flag set), open flags from the standard set (O_RDONL , 
etc.), and the open mode. The open routine should first allocate a file descriptor using the routine 
ifs_fd_create(), and then may retrieve a pointer to the per-file data structure by using the routine 
ifs_fd_get_entry() . This file descriptor (and data structure) must be freed in the corresponding 
close routine by a call to ifs_fd_destroy(). At a minimum, this function should initialize the 
filepos (current position) and size (total size) fields in the file descriptor data structure. This 
function shall return the file descriptor for the file opened, or IFS_FD_ILLEGAL (and set errno) if the 
file is not found or an error occurred. The iopen vector is the equivalent of the open vector, only it 
takes an inode number as its second argument, using this instead of using a path name to specify a 
file.

The close routine is based on the POSIX close routine and takes a file descriptor as its only 
argument. It should perform any file system specific closing functions, and then free the system data 
structures with a call to ifs_fd_destroy() . This function shall return 0 for success, or -1 (and set 
errno) if an error occurred.

The read routine is based on the POSIX read routine, and takes three arguments. These are the file 
descriptor from which to read, a pointer to the buffer in which to place the data read, and the number 
of bytes to be read. This routines must update the filepos fields in the file descriptor data structure 
as it reads through the file. This routine shall return the number of bytes read, or -1 (and set errno) 
if an error occurred.

The write routine is based on the POSIX write routine, and also takes three arguments. These are 
the file descriptor to which the data shall be written, a pointer to the buffer containing the data to be 
written, and the number of bytes to be written. This routines must update the filepos and size fields 
in the file descriptor data structure as it writes to the file. This routine shall return the number of bytes 
written, or -1 (and set errno) if an error occurred.

The lseek routine is based on the POSIX seek routine. It takes three arguments: the file descriptor 
to manipulate, the number of bytes to move the file data pointer, and an enumeration indicating 
wither the new file position should be based on the current file position, the start of the file, or the 
end of the file. This routines must update the filepos field in the file descriptor data structure. This 
routine shall return the new byte offset from the beginning of the file, or -1 (and set errno) if an error 
occurred.

The chmod routine is based on the POSIX chmod routine, and also takes three arguments. These are 
a file system id as determined by IFS from the path name, the path name of the file to be changed 
(including the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set), and the new file 
mode. This routine shall return the 0 for success, or -1 (and set errno) if an error occurred.

The remove routine is based on the POSIX remove routine. Its arguments are a file system id as 
determined by IFS from the path name, and the path name of the file to be removed (including the 
prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set). This routine shall return the 0 for 
success, or -1 (and set errno) if an error occurred.
File System 9-15



 CISCO CONFIDENTIAL
The rename routine is based on the POSIX chmod routine, and also takes three arguments. These 
are a file system id as determined by IFS from the path name, the old path name of the file (including 
the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set), and the new path name of the 
file (also including the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set). This 
routine shall return the 0 for success, or -1 (and set errno) if an error occurred.

The mkdir routine is based on the POSIX mkdir routine, and takes three arguments. These are a file 
system id as determined by IFS from the path name, the path name of the new directory to be created 
(including the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set), and the mode bits 
for the new directory. This routine shall return the 0 for success, or -1 (and set errno) if an error 
occurred.

The rmdir routine is based on the POSIX rmdir routine, and takes two arguments. These are a file 
system id as determined by IFS from the path name, and the path name of the directory to be 
destroyed (including the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set). This 
routine shall return the 0 for success, or -1 (and set errno) if an error occurred.

The getdents routine (based on the UNI X getdents routine) is essentially a read routine for 
directories that is used in conjunction with the open and close routines. The POSIX equivalent is 
the opendir(), readdir(), closedir() set of functions. The getdents function takes three 
arguments. These are an open file descriptor for a directory entry, a pointer to a dirent data structure, 
and the size of the dirent data structure (i.e. a pointer to a buffer and the number of bytes to read). 
This routine shall return the number of bytes read, or -1 (and set errno) if an error occurred. ALl 
reads must be in multiples of the size of a dirent data structure.

The stat routine is based on the POSIX stat routine, and takes three arguments. These are the file 
system id as determined by IFS from the path name, the path name of the file for which information 
is desired (including the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set), and a 
pointer to a stat data structure. This routine shall return 0 for success, or -1 (and set errno) if an 
error occurred. The fstat routine is an equivalent routine that operates on open file descriptors. It 
takes two arguments, an open file descriptor and a pointer to the stat buffer, and performs the same 
actions and returns the same values as stat. The istat routine is another equivalent which uses an 
inode number to select the file for which information is desired. Its arguments are the file system id 
as determined by IFS from the path name, and the prefix name of the file system (essentially 
redundant information), the inode number of the file for which information is desired, and a pointer 
to a stat data structure.

The statfs routine is based on the UNIX statfs routine, and returns information about a file system. 
It takes three arguments: the file system id as determined by IFS from the path name, the prefix name 
of the file system (essentially redundant information), and a pointer to a statfs data structure. This 
routine shall return 0 for success, or -1 (and set errno) if an error occurred. 

The cleanup routine is the only function that is unique to IOS. When a file system has been removed 
(or is marked as such), closing the last open file on the file system will invoke the cleanup vector for 
that file system. This allows the file system to perform any local cleanup operations before IFS 
destroys all of its data structures defining the file system. If the cleanup hook returns an error code, 
the file system information is not destroyed.

The ioctl routine is based on the UNIX ioctl routine, and takes four arguments. These are the file 
system id as determined by IFS from the path name, the path name of the file for which information 
is desired (including the prefix if the file system has the IFS_FLAGS_PATH_PREFIX  flag set), a value 
indicating the function to be performed, and a pointer to a function specific data structure. This 
routine shall return the 0 on success, or -1 (and set errno) if an error occurred. The fioctl routine 
is the equivalent function that operates on an open file descriptor. Instead of the first two arguments 
used by ioctl, it has a single argument for the file descriptor.
9-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Additional File System Hooks

 CISCO CONFIDENTIAL
9.5   Additional File System Hooks

9.5.1   Copy Prompt Hook
The “copy prompt” hook allows a file system to modify the label used for the final component of a 
path name. This label is only used by the system “copy” command, and is used when prompting the 
user to input more information. The default label used is “filename”. The modem file system, for 
example, uses this hook to change the copy command prompt from “filename” to “modem list”. This 
label is more appropriate for the destination of a copy to the modem file system, since the modem 
file system does not emulate one file per modem, but copies any downloaded file to multiple 
modems. This hook should be set with the ifs_fsid_set_filename_prompt() routine.

9.5.2   Copy Behavior Hook
The “copy behavior” hooks allow a file system to modify the way that the copy command functions 
on a given file system, or to take it over entirely. There are three hooks used in different parts of the 
copy operation. The hook data structure is defined belo

ty pe defboolean(*ifs_copy_vector_setup_valid_t)(boolean prompt);
ty pe defboolean(*ifs_copy_vector_check_args_t)(void /*ifs_pathent*/ *src_pathent,

void /*ifs_pathent*/ *dst_pathent);
ty pe defint(*ifs_copy_vector_copy_t)(void /*ifs_pathent*/ *src_pathent,

void /*ifs_pathent*/ *dst_pathent, boolean erase,
boolean verbose);

typedef struct ifs_copy_vector_ {
    i fs_copy_vector_setup_valid_tcheck_setup;
    i fs_copy_vector_check_args_tcheck_args;
    ifs_copy_vector_copy_tcopy;
} ifs_copy_vector;

These hooks should be set with the ifs_fsid_set_copy_vector()  routine.

The check_setup hook should perform any validation necessary to determine if the copy hooks have 
all necessary resources available to function. It takes a single argument, a boolean indicating whether 
or not the user can be prompted for information. If TRUE, the user may be prompted; if FALSE the 
copy command was generated programmatically and there is no user present to respond to a query. 
If this routine returns FALSE, the copy command is aborted. The check_args command is called 
after both source and destination filenames have been fully parsed (and the user prompted to enter 
missing pieces), and have been checked to insure that they are different files. The check_args 
routine is passed pointers to the pathent data structures describing both source and destination file 
names.If this routine returns FALSE, the copy command is also aborted. The final vector, cop , is 
called to perform the actual data copy instead of the system supplied default routine. It is passed 
pointers to both the source and destination pathent data structures, a boolean indicating whether the 
destination file system should be erased, and a boolean indication whether it may print any output. 
This routine, if it returns, must return the number of bytes transferred. Any of these hooks may be 
null if the corresponding access to the copy command isn’t needed.

The best example of the use of these hooks is the “flash load helper” support used on some of the 
low end router products. When the router is executing directly from flash memory, the flash is 
configured in read-only mode and cannot be modified. The “flash load helper” file system applies a 
set of copy hooks to the flash file system, so that any attempts to write to flash are handled properly. 
The check_setup hook is used to verify that flash load helper support is present in the router. The 
check_args hook is used to validate that the source path uses a protocol that is known to the particular 
File System 9-17



 CISCO CONFIDENTIAL
version of flash load helper available on that system. The copy hook is used to reformat the 
arguments into the form used by the flash load helper code, reboot the router, and invoke the 
bootstrap image or rom image’s copy routine.

9.5.3   “Show Flash” Hook
The “show flash” hooks are used to provide a common API for accessing data about (not on) a flash 
file system. These hooks are used to implement, obviously, the “show flash” command.

typedef void (*ifs_show_flash_all_t)(const char *prefix);
typedef void (*ifs_show_flash_chips_t)(const char *prefix);
typedef void (*ifs_show_flash_default)(const char *prefix);
typedef void (*ifs_show_flash_detailed_t)(const char *prefix);
typedef void (*ifs_show_flash_err_t)(const char *prefix);
typedef void (*ifs_show_flash_filesys_t)(const char *prefix);
typedef void (*ifs_show_flash_summary_t)(const char *prefix);

typedef struct ifs_show_flash_vector_ {
void  ifs_show_flash_all_tshow_flash_all;
void  ifs_show_flash_chips_tshow_flash_chips;
void  ifs_show_flash_default_tshow_flash_default;
void  ifs_show_flash_detailed_tshow_flash_detailed;
void  ifs_show_flash_err_t show_flash_err;
void  ifs_show_flash_filesys_tshow_flash_filesys;
void  ifs_show_flash_summary_tshow_flash_summary;

} ifs_show_flash_vector;

These hooks should be set with the ifs_fsid_set_show_flash_vector()  routine.

A flash file system may supply a data structure containing any or all of these hooks. IFS will supply 
a “show <fsname>” command for each flash file system contained in a router. If the file system has 
supplied the above vector, and non-null entry in the vector will cause the appropriate command 
option to appear in the show flash command for that file system. This allows IFS to restrict the 
available options to those that are actually pertinent to the file system in question. A C7000, for 
example, will present different options for the “show flash:” and “show slot0:” commands because 
these two file systems use different flash drivers.

9.6   References

ISO/IEEE 9945-1 1996 (ANSI/IEEE Std 1003.1, 1996 Edition) POSIX Part 1: System Application 
Program Interface (API) [C Language], ISBN 1-55937-573-6.
9-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Socket Interface
1 0
Socket Interface
This Cisco IOS socket interface implements a subset of the standard UNIX socket functions. The 
Cisco IOS functions work over TCP and UDP, and perform identically or almost identically to their 
counterparts in the standard UNIX socket library. The function names are the same as those in the 
standard UNIX socket library, except that the string socket_ has been added to the beginning of each 
name. 

Table 10-1 lists the socket function calls supported by the Cisco IOS socket implementation, along 
with their standard UNIX equivalent.

Table 10-1 Cisco IOS Socket Functions and Macros

Function Name Standard UNIX Function Name

socket_accept() accept()

socket_bind() bind()

socket_close() close()

socket_connect() connect()

socket_gethostbyname() gethostbyname()

socket_get_localname() getsockname()

socket_get_option() getsockopt()

socket_get_peername() getpeername()

socket_inet_addr() inet_addr()

socket_inet_network() inet_network()

socket_inet_ntoa() inet_ntoa()

socket_listen() listen()

socket_open() socket() and open()

socket_recv() recv()

socket_recvfrom() recvfrom()

socket_select() select()

socket_send() send()

socket_sendto() sendto()

socket_set_option() setsockopt()

socket_share_fds() None

socket_shutdown() shutdown()

socket_strerror() strerror()

socket_watch_other_events() None
10-1



 CISCO CONFIDENTIAL
Note The following functions are yet to be documented in the Cisco IOS API Reference. In the 
meantime, please refer to the standard UNIX socket library for information about them: 
socket_gethostbyname(), socket_inet_addr(), socket_inet_network(), 

socket_inet_ntoa(), socket_recvfrom() , and socket_sendto().

For information about the standard socket interface, refer to the following publications:

• Richard Stevens, UNIX Network Programming

• Douglas Comer Internetworking with TCP/I , Volumes I and III

• Richard Stevens and Gary Wright, TCP/IP Illustrated, Volumes 1 and 2

Macro Name

FD_CLR

FD_ISSET

FD_SET

FD_SETSIZE

FD_ZERO

Function Name Standard UNIX Function Name
10-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

ANSI C Library
1 1
ANSI C Library
Starting with Release 11.2, the Cisco IOS software is formalizing its use of ANSI C library 
functions. The “ANSI C Library” chapter in the Cisco IOS API Reference describes these library 
functions.
11-1



 CISCO CONFIDENTIAL
11-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  3
Kernel Support Services





C H A P T E R

 CISCO CONFIDENTIAL

Subsystems
1 2
Subsystems
This chapter describes the programming interface and developer hooks for defining subsystems.

12.1   Overview: Subsystem

Subsystems provide independent entry points into the system code. They can be independent of the 
linker, or they can be freestanding code or part of code that always links and runs together. 
Subsystems allow images to be compiled that have the minimum of link requirements. Each 
subsystem itself is a discrete code module that supports various functions of an embedded system. 

12.1.1   Subsystem Classes
Subsystems are organized into classes. Classes provide a sorting order, which is primarily used when 
initializing the system software. This is the only difference between classes. In all other respects, 
they provide the same functionality. 

Currently, the following subsystem classes exist. These are listed in the order in which they are 
started when the system code is initialized. 

• Registry

• Kernel

• Driver 

• Protocol

• Library

• Management

Most subsystems currently are in the driver and protocol classes. In the future, some kernel 
subsystems (such as console drivers) and library subsystems (such as media encapsulation and 
de-encapsulation) will be created.

12.1.2   How to Choose a Subsystem Class
The class of subsystem you choose for your code depends primarily on when it should be initialized 
when the platform starts up. For example, picking a kernel or driver subsystem class reflects the fact 
that the subsystem provides elements that are intrinsically part of the running system. In general, the 
more abstract a function the subsystem provides to the system (and the further up in the protocol 
stack it resides), the later it should be initialized. 
12-1



 CISCO CONFIDENTIAL
12.2   Subsystem Properties 

Subsystem properties specify initialization dependencies. There are currently two types of 
properties: 

• Sequencing—Defines the sequence in which subsystems must be initialized 

• Requirements—Defines the other subsystems required by this subsystem 

The subsystems listed in the sequencing and requirements properties do not need to be similar to 
each other nor do they need to be a subset of one another. In fact, they can be completely different if 
the subsystem does not care about the initialization order of the subsystems it requires.

12.2.1   Subsystem Property Definitions
Subsystem properties are defined in a header file. A subsystem property consist of a property 
identifier followed by one or more subsystem names. The property identifiers are seq: for 
sequencing properties and req: for requirements properties. The names are separated by white space 
or commas. White space in and around names is ignored when parsing individual items.

The subsystem definition can contain one or two property lists. If it has two lists, the two can be 
different (that is, one sequencing and one requirements list) or they can be two for the same property. 
For example, you can specify two sequencing property lists. If this case, the two lists are 
concatenated to form a single property list. The order in which you specify property lists does not 
matter.

If a subsystem does not need to use a seq: or req: property string, specify NULL for these properties. 
Do not specify seq: or req: by themselves with no subsystem name. This causes the code to do extra 
work to find out that there is nothing to process. 

12.2.1.1   Subsystem Property Definitions: Examples
The following example defines a sequencing property for the subsystem stating that if the sub1, 
sub2, or sub3 subsystems are present, they must start before this subsystem:

“seq: sub1, sub2, sub3”

The following example defines a requirements property for the subsystem that states that sub1 must 
be present in order for this subsystem to operate:

“req: sub1”

12.2.2   Sequencing Property
The sequencing property defines the sequence in which subsystems must be initialized. You use this 
property to list the subsystems that must be initialized before the current subsystem can be 
initialized. All the subsystems in this list do not have to be present, but if they are present, they must 
start first. 

For example, the ip protocol subsystem must be present in order for the ipserver protocol 
subsystem to function.

Sequencing properties need mention only subsystems that are in the same class. This is because the 
subsystem class structure itself dictates the larger granularity of subsystem initialization order when 
the system starts up. The order of subsystem class startup is as follows:

1 SUBSYS_CLASS_REGISTRY 
12-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Requirements Property

 CISCO CONFIDENTIAL
2 SUBSYS_CLASS_KERNEL 

3 SUBSYS_CLASS_DRIVER 

4 SUBSYS_CLASS_PROTOCOL 

5 SUBSYS_CLASS_LIBRARY 

6 SUBSYS_CLASS_MANAGEMENT 

This means, for example, that creating a SUBSYS_CLASS_MANAGEMENT  subsystem that has a seq: 
property that references a subsystem of a class of SUBSYS_CLASS_PROTOCOL  makes no sense. 
Although referencing another subsystem class effectively does no harm, it takes CPU time to process 
this dependency and is redundant.

The subsystem code displays a message if it finds cross-class sequence dependencies when the 
subsystems are being initialized. You should remove these extraneous dependencies from the code.

Do not overuse the sequencing property when creating subsystems. A large sequence list is a very 
strong indicator of a broken initialization structure. Referencing many subsystems in a seq: property 
forces the sequence list to be changed whenever a new subsystem is added to the system, which 
might disrupt the initialization order. Extensive referencing between subsystems does not scale and 
should be avoided.

12.2.3   Requirements Property
The req: property defines the subsystems that must be present in order for this subsystem to operate. 
All the subsystems listed must be present. The subsystems listed in the requirements property can 
be in any subsystem class. 

12.2.4   Error Messages
When starting the system, the subsystem code checks the header structures that it finds to make sure 
that they are valid before initialization. If a subsystem specifies another subsystem in a req: that 
cannot be found, the following message is logged. The subsystem code will ignore the subsystem 
with the incomplete requirement dependency and will remain unstarted. 

SUBSYS-2-NOTFOUND: Subsystem (xxx) needs subsystem (yyy) to start

The following messages can be produced by the code if a subsystem header is broken. A subsystem 
header contains information about the revision of system software it was compiled with and the 
format of the subsystem header it uses. This information is checked, and bounds on the subsystem 
class are also checked. Any deviation or inconsistency will cause the subsystem code to log an error
These messages are rare and require serious investigation into the cause.

SUBSYS-2-BADVERSION: Bad subsystem version number (4) - ignoring subsystem
SUBSYS-2-MISMATCH: Kernel and subsystem version differ (10.2) - ignoring subsystem
SUBSYS-2-BASCLASS: Bad subsystem class (10) - ignoring subsystem

12.3   Define a Subsystem

You define a subsystem in a subsystem header definition by calling the SUBSYS_HEADER macro. In 
this macro, you define the entry point to the subsystem and the subsystem class. You also define any 
other subsystems on which this system depends. 

SU BSYS_HEADER(char*name, ul o nmajor_version, u l o nminor_version, u l o nedit_version,
vo id*init, ul o nclass, c har*property1, c har*property2); 
Subsystems 12-3



 CISCO CONFIDENTIAL
The subsystem header definition must appear in the group of source files that represent the 
subsystem module. The header definition must be compiled into the data segment because that is the 
block of memory scanned for the subsystem information.

Every subsystem has an init routine or entry point. Subsystem entry points take a parameter. The 
entry point has the following form:

xxx_init (subsystype *subsys)

The pointer to the subsystem being initialized is passed through. This can allow the subsystem 
initialization routine to make the decisions about subsystem startup rather than using the default 
rules, which are governed by the req: property

12.3.1   Examples: Define a Subsystem
The following example defines a driver subsystem named snark, which is initialized by calling the 
entry point snark_subsys_init() . This is an example of a subsystem that can be initialized in a 
random order without needing any other subsystems to be present. 

# d efine SNARK_MAJVERSION1 
# d efine SNARK_MINVERSION0 
# de fine SNARK_EDITVERSION1

SUBSYS_HEADER (snark, SNARK_MAJVERSION, SNARK_MINVERSION, SNARK_EDITVERSION,
 snark_subsys_init, SUBSYS_CLASS_DRIVER, NULL, NULL); 

The following example defines a driver subsystem called snark, which is initialized by calling the 
entry point snark_subsys_init() . The seq: portion of the macro indicates that when the code is 
being initialized, the snark subsystem must be initialized after the boojum and wibble subsystems. 
The req: portion of the macro indicates that the snark subsystem requires the boojum subsystem to 
be present for snark to work properly.

# d efine SNARK_MAJVERSION1 
# d efine SNARK_MINVERSION0 
# de fine SNARK_EDITVERSION1

SUBSYS_HEADER (snark, SNARK_MAJVERSION, SNARK_MINVERSION, SNARK_EDITVERSION,
 snark_subsys_init, SUBSYS_CLASS_DRIVER, “seq: boojum, wibble”,
 “req: boojum”);
12-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Fill In the Subsystem Structure

 CISCO CONFIDENTIAL
12.4   Fill In the Subsystem Structure

SUBSYS_HEADER is a macro definition that fills in the portions of the subsystem structure that are 
visible to the developer. The following is the subsystem structure: 

struct subsystype_ {
ulong magic1;
ulong magic2;
ulong header_version;
ulong kernel_majversion;
ulong kernel_minversion;
char *namestring;
ulong subsys_majversion;
ulong subsys_minversion;
ulong subsys_editversion;
subsys_init_type *init_address;
ulong class;
ulong ID;
char *properties[SUBSYS_PROPERTIES_MAX];

};

The variables magic1 and magic2 comprise a 64-bit magic number that is used to find the subsystem 
headers in the data segment. 

The kernel_majversion  and kernel_minversion  variables define the kernel version levels. The 
system sets these levels when it compiles the module. When the code starts running, the system 
checks the version levels again to ensure that the subsystem is the correct version to run with the 
kernel.

The ID variable is a unique numeric value that is assigned to each subsystem when it is discovered 
by the kernel.

12.5   Tips for Creating a Subsystem

This section discusses the following programming tips for creating and working with subsystems: 

• Create a New Subsystem

• Rework System Processes

• Reexamine Header File Dependencies

• Use New IDB Subblocks to Store Private Variables

12.5.1   Create a New Subsystem
To determine whether to create a new subsystem, follow these steps: 

Step Identify a logical unit of functionality. A logical unit is one that is strongly cohesive, that 
is, the operations within the unit are closely related. 

Step Determine whether each unit should be considered part of the core system or made into a 
separate and dependent subsystem. Generally, a unit should be made into a subsystem if 
its functionality is not required for basic operation and the unit is loosely coupled with 
others. For example, starting with Cisco IOS Release 11.1, AppleTalk Enhanced IGRP 
has been divided out into a separate subsystem called ATEIGRP, and MacIP, AURP, and 
IPTalk have been placed into another subsystem called ATIP.

For each unit that you decide to make into a subsystem, consider the following:
Subsystems 12-5



 CISCO CONFIDENTIAL
• Decide which functions and data variables belong in the new subsystem. These items might need 
to be relocated into a common set of files.

• Include the parse chains for the feature in the subsystem. These include, but are not limited to, 
global, interface, debug, and show commands. The commands are linked into the parser chain 
through the parser_extension_request  array, which is passed to the 
parser_add_command_list()  function. To minimize the proliferation of files, combine all the 
parse chains into one xxx_chain.c file. For information about dynamically adding commands to 
existing parse chains, see the “Command-Line Parser” chapter.

• Check for reasonable subsystem dependencies. Make sure you are aware of the other subsystems 
that are required when you establish a dependency to another subsystem. For example, if your 
subsystem requires the IPSERVICES subsystem, you should be aware that IPSERVICES requires 
IPHOS . Gwynne Franzino has developed a tool that generates a dependencies report to assist you. 
For more information, see http://wwwin-swtools/~gwynne .

• Define the new subsystem by declaring the subsystem header, SUBSYS_HEADER. You need to 
specify subsystem dependencies in this header. You can optionally define a subsystem 
initialization routine that is called once at system startup. This routine typically allocates required 
memory, adds the subsystem’s service routines into various registries, and calls any 
subsubsystem initialization routines, such as debug and parser support. For more information, see 
the “Fill In the Subsystem Structure” section in this chapter.

The subsystem header consumes 14 longwords.

• Rework the makefile. You need to define the new subsystem in the relevant makefile and 
makesubsys files. If you are defining a new subset image, you need to modify makeimages. See 
these files for examples of how this is done. Follow by example.

• Use registries judiciously. Calls from fully dependent subsystems into the core system generally 
do not need to use registries, but you get bonus points if you do. Calls from the core out to the 
subsystem do need to use a registry. When establishing hooks into a subsystem strive for a 
minimal but complete interface. Avoid stubs at all costs. For more information about registries, 
see the “Registries and Services” chapter.

Each service created in a registry consume the following amount of run-time memory:

— Case service with a case table: (2 * case table size) + 13 longwords

— All other services: 13 longwords + 2 longwords per added service

For example, the AppleTalk registry incurs the following overhead:

Service Number of Longwords

 List with 4 service routines 21 

 List with 1 service routine 15

 List with 1 service routine 15

 List with 1 service routine 15

 List with 2 service routines 17

 List with 2 service routines 17

 List with 1 service routine 15

 List with 2 service routines 17

 List with 4 service routines  21

 List with 1 service routine 15

 List with 2 service routines  17
12-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Create a New Subsystem

 CISCO CONFIDENTIAL
• Decide whether operations within the subsystem should be managed by a separate system 
process.

• The following is a suggested organization for files, where xxx is the name of the subsystem:

—  xxx_chain.c: Parser chain support

—  xxx_init.c: Subsystem header and initialization

—  xxx_debug.c, xxx_debug.h: Debug support

 List with 2 service routines  17

 List with 2 service routines  17

 Retval with 1 value 15

 Stub 15

 Stub 15

 Loop with 1 service routine 15

 Loop with 1 service routine 15

TOTAL 294 

Service Number of Longwords
Subsystems 12-7



 CISCO CONFIDENTIAL
—  xxx_parse.c: Parser actions support

—  xxx_*: Actual subsystem files

12.5.2   Rework System Processes
You must rewrite all older systems processes to use the new Cisco IOS event-driven scheduler 
primitives. You can now set up processes to be driven by a large class of events, including managed 
timers, semaphores, signals, and messages. Rewriting these processes increases overall system 
performance. For an example, see the Banyan VINES code.

For information about processes and the scheduler, see the “Scheduler” chapter.

12.5.3   Reexamine Header File Dependencies
Including many header files in files is often redundant. To eliminate unnecessary interdependencies 
between files, remove header files when possible. Be sure, however, to build all subset images to 
determine you have not removed required header files.

12.5.4   Use New IDB Subblocks to Store Private Variables
It is no longer necessary or desirable to store private variables in the main IDB structure. Use 
subblocks instead. For more information, see the “Interfaces and Drivers” chapter. For an example, 
see the Banyan VINES code. 
12-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Registries and Service
1 3
Registries and Services
This chapter describes the programming interface and operation of Cisco IOS registries and services.

13.1   Overview: Registries and Services 

Registries and services form a generic, linker-independent mechanism that permits subsystems to 
install or register callback functions, discrete values, or process IDs for a service provided by the 
Cisco IOS kernel or other modules.

A registry is a collection of services and is used as a container to hold services for a similar functional 
area (such as IP, AppleTalk, or X.25). These services provide an interface into a subsystem that is 
independent of linker relationships. This design allows subsystems to be compiled independently 
into an image but still be able to access services in another subsystem when both are present. 

Services can be one of eight different types. In its simplest form, a service can be thought of as a 
managed function vector. However, the real power available through services comes from the ability 
to declare the function call semantics of a particular service invocation. These semantics are unique 
to each service type and allow common C constructs to be emulated in a generic and extensible way. 
For example, a case service point allows a switch() statement to be built dynamically, and a loop 
service allows a while() loop to be likewise emulated.

By allowing these service points to be defined and grown dynamically at run time, registry and 
service clients can build extensible code hooks that allow new protocols and features to be integrated 
into the existing code base with the minimal amount of disruption.

13.2   Registry Compiler: Description

The engine of the registry code is simple and entirely generic. In order to define registries and 
services, a registry compiler is used to compile a registry definition into several files that is used 
during the build process to provide prototypes and definitions. The chief job of the registry compiler 
is to provide wrapper functions for registry services that force full typechecking of registry call 
invocations. This typechecking is essential to prevent programming errors from producing subtle, 
elusive, and ultimately catastrophic bugs.
13-1



 CISCO CONFIDENTIAL
13.3   Registry Files

Table 13-1 describes the registry files associated with the Cisco IOS registries. You create some of 
these files, and others are created by the registry compiler. 

Table 13-1 Registry Files

13.4   Registry Compilation Process

The generic registry and service handling code does not perform strong typecasting on the 
parameters passed through it, because it has no knowledge of the actual service itself. Therefore, 
some form of protection is required to prevent errant code from passing incorrect parameters. This 
protection is achieved by automatically building wrappers around the registry addition, deletion, and 
invocation functions that are used to manipulate the services. In order to build these wrappers, which 
take the form of inline functions, the services that make up a registry are described in an intermediate 
metalanguage in the .reg file.

13.4.1   11.3 Changes
In 11.3, the back end of the registry compiler was completely rewritten, and generates entirely 
different code from the previous version.  The fundamental difference is that each registry module 
now provides an independent global structure instance with a single extern symbol for the linker to 
resolve.

File Suffix Source Contents

.reg Created by programmer Actual definitions for a registry and the services provided by it. This file is 
compiled by the registry compiler to create the .regc and .regh files. The 
.reg file is under source control.

.regh Autogenerated by 
registry compiler

All the wrapper functions for registry services. This file is autogenerated by 
the registry compiler. All clients of the registry use these wrappers to add, 
delete, and change functions, values and PIDs for services. This file also 
provides the wrappers for service invocation. Users of the registry module 
must not #include this file directly. The .regh file is not under source 
control.

.regc Autogenerated by 
registry compiler

Initialization code for the registry and its services. The owner of the actual 
directory #includes and executes the .regc file. No user modules except 
the xxx_registry.c may #include the .regc file. Ignoring this 
restriction can cause bizarre image problems. This file is not under source 
control.

.h Created by programmer User interface to clients of a given registry. This file #includes the 
generated .regh and all prerequisite .h files, declares the reg_invoke, 
reg_add, and other registry functions for each service point in the registry. 
The clients of the registry must #include this .h file, not the .regh file. 
Clients include the .c files that contain the registry initialization code and 
any .c files that need to acceess the registry service points in registry 
module.

.c Created by programmer Registry initialization code, of a fixed pattern. Each registry module is a 
separate subsystem of the SUBSYS_CLASS_REGISTRY  class, thus ensuring 
that the module is initialized prior to its use. The .c file #includes the 
registry .h and .regc files.
13-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



.reg File Metalanguage

 CISCO CONFIDENTIAL
13.4.1.1   registry.c
The concept of generating inline code to access generic services in registry.c is retained, but the 
generated code is considerably smaller, and provides many of the services without calling on helper 
routines in registry.c.   Where helper routines are called, they are called with fewer parameters 
than previously, and the helper routines themselves are smaller.  For instance, of the reg_invoke 
inlines, neither STUB, LIST nor FASTCASE service points use helper routines, while CASE, RETVAL and 
PIDLIST do.

13.4.1.2   registry.h
The old support had an enum in h/registry.h.  Each registry module had an entry in this 
enumeration.  This enum no longer exists, and is no longer necessary.  This means that registry.h 
no longer contains a knowledge of all the registry modules in the system, and so has now become a 
stable interface.  It reflects only the design of the registry infrastructure, and not the users of it.

In fact, none of the content of registry.h is to be referenced by user code.  The only references to 
it should be from registry-compiler-generated code.  It now defines only structures and inlines 
internal to the registry infrastructure.

13.4.1.3   Static and dynamic registries:
There is no longer any concept of static and dynamic registries.  Each registry module is either 
referenced in an image or not, and is now of a minimal size so that none of it can be regarded as 
wasted space.  If it is referenced then it will be included in the image.  Along with this is the dropping 
of the requirement to call create_registry(REG_MODULE_ENUM) , and the removal of the need to 
remember a dynamic regcode value.  The registry modules are now identified solely by a single name 
through the linker.  This is a name like _registry_xxx and is a global instance of a struct containing 
everything necessary to support the service points in that registry module.  The leading '_' is an 
indicator that this name is for internal use by the registry infrastructure, and is not to be referenced 
by user code.

13.4.1.4   Generated Code
The generated code now provides for stronger type checking by the compiler of the provided 
parameters in reg_ calls, especially for the FAST_CASE registry type.

Most of the FAST service types are now identical with their non-FAST counterparts.  FASTCASE is the 
one remaining different one.  It remains faster than CASE by virtue of avoiding the range check.

For more details of the generated code, see any of the generated .regh files, eg 
atm/atm_registry.regh .

13.5   .reg File Metalanguage

The metalanguage used in the .reg file follows these formatting rules: 

• Place each item on its own line. 

• To continue a line, end it with a backslash (\).

• Begin comment lines with pound sign (#).

• Name the registry to be created in the BEGIN REGISTRY statement. The name of the registry must 
be in all uppercase letters. For example:
Registries and Service 13-3



 CISCO CONFIDENTIAL
BEGIN REGISTRY REGISTRY_NAME

• Terminate the definition of a registry with an END REGISTRY statement.

• Define each service point, along with its attributes, between a DEFINE and an END statement. The 
name of the service point must be in all lowercase letters. For example:

DEFINE service_point_name
.
.
.
END

• Position items within the DEFINE statement as follows:

— The first item is a required comment, specified in standard C format. For example:

/* comment */

The comment is reformatted to fit the output lines unless it is written in comment bar format. 
Comment bars are copied as is. For example:

/*

* comment 

*/

— The next item is an optional DATA block. All text between DATA and END DATA is copied and 
placed between the comment bar and the function declaration. This text is used to include 
additional types that are required by the function definition.

— The next item is the type of service. It must be CASE, LIS , LOO , PID_LIS , RETVAL, STUB, or 
VALUE. For definitions of the service types, see the section “Types of Services” in this chapter.

— Next is the type declaration of the value returned by the called function. It must be void for 
LIS , PID_LIS , and CASE services. It must be boolean for LOOP services. It must be ulong 
for VALUE services.

For a VALUE service, no additional parameters can be specified. For all other services, you 
specify the prototype list for the called function. If a particular service requires no 
parameters, use a hyphe n(-).

CASE, and RETVAL services require two additional parameters. The first is the number of cases 
for the case registry, and the second is the type for the variable specifying the case.

— The last item, which is present for PID_LIST services only, is the message identifier to be sent 
to each process.
13-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Example: .reg File Format

 CISCO CONFIDENTIAL
13.5.1   Example: .reg File Format
The following is an example of a .reg input file: 

BEGIN REGISTRY SAMPLE
DEFINE sample_service1
/*
 *A list service
 */

LIST 
void 
- 

END

DEFINE sample_service2 
/*
 * A loop service that requires a structure definition
 */
DATA

typedef struct boojum_ {
int a;
int b;

} boojum; 
END DATA 
LOOP 

boolean boojum *snark, int delta
END

DEFINE sample_service3
/*
 *A stub service
 */ 
STUB 

void 
int count, char *name 

END

DEFINE sample_service4 
/*
 * A case service
 */ 
CASE 

void 
boolean onoff, int no_packets 
MAX_CASES 
ushort protocol 

END

DEFINE sample_service5 
/*
 * A retval service
 */ 
RETVAL 

char * int errors, int drops, int collisions, int transmits 
MAX_CASES 
ulong media 

END

DEFINE sample_service6 
/*
 * A value service
 */ 
VALUE 

ulong 
END
Registries and Service 13-5



 CISCO CONFIDENTIAL
DEFINE sample_service7
/*
* A pid_list service
*/

PID_LIST
void
idbtype swidb
MSG_SERVICE7

END

END

END REGISTRY 

13.6   .h File Contents

The following is an example of the contents of the .h file for a registry module. For the .regh file to 
compile, you must declare the parameter types and define the size of any case registries.

#ifndef __SAMPLE_REGISTRY_H__
#define __SAMPLE_REGISTRY_H__

#include “registry.h”

#include “sample_registry_prereqs.h”

#include “sample_registry.regh”

#endif
13-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



.c File Contents

 CISCO CONFIDENTIAL
13.7   .c File Content

The following is an example of the contents of the .c file for a registry module. In this example, the 
registry subsystem initialization calls create_registry_sample() , which initializes the structures 
generated by the registry compiler to support the defined registry services.

#include “master.h”
#include “subsys.h”
#include “sample_registry.h”
#include “sample_registry.regc”

/*
* sample_registry_init
*
* Initialize sample registry.
*/

static void sample_registry_init (subsystype *subsys)
{
create_registry_sample();
}

/*
* Sample Registry subsystem header
*/

#define SAMPLE_REGISTRY_MAJVERSION 1
#define SAMPLE_REGISTRY_MINVERSION 0
#define SAMPLE_REGISTRY_EDITVERSION 1

SUBSYS_HEADER(sample_registry,
SAMPLE_REGISTRY_MAJVERSION, SAMPLE_REGISTRY_MINVERSION,
SAMPLE_REGISTRY_EDITVERSION,
sample_registry_init, SUBSYS_CLASS_REGISTRY,
NULL, NULL);

13.8   Placement of xxx_registry.o in makefiles

Former usage often packaged the xxx_registry.o modules with subsystems which were reg_add 
clients of the xxx registry.

It is now required to package them where they will be included in images with *all* clients - whether 
reg_add, reg_invoke or other.  With well-designed registry usage, this typically means that they 
would be packaged with the subsystem which contains reg_invoke calls for the registry functions.  
With not-so-well designed registry modules, this can be very difficult to figure out.  To solve this 
problem, a registry library has been set up.  Placing a registry module in the registry library ensures 
that it will be included in all images where it is needed.

Because of the irregular content of existing registry modules, and the difficulty of locating a single 
generic subsystem which would be a suitable home for each existing registry module, the conversion 
effort placed all registry modules in the registry library.

If registry owners find it possible to place some of them more explicity in suitable subsystems, they 
can be removed from the registry library.  Some effort of this nature is already occurring in the 11.3 
and later codebases.
Registries and Service 13-7



 CISCO CONFIDENTIAL
13.9   Services: Overview

A service is a data structure that describes how a collection of one or more C functions, discrete 
values, or process IDs should be handled when the service is invoked by a service client. All 
members of a specific service have the same properties, such as calling and return conventions. The 
actual instance of a service is referred to as a service point. 

For example, the REG_SYS registry supports the SERVICE_RAW_ENQUEUE  service, which allows a driver 
module to enqueue a datagram destined for the router onto a particular protocol input queue. When 
a protocol subsystem initializes itself, one of the functions it registers is the protocol-specific 
enqueuing function. If that protocol is not present in the system, nothing is registered, and a default 
action occurs when the service is invoked with a datagram belonging to that protocol. In this case, 
the datagram is quietly discarded.

13.10   Types of Services

The registry support provides the following types of services. The names refer to the way in which 
the registered functions are invoked. 

• List. A list service is the run-time replacement for a list of C functions that are executed 
sequentially. It reads through a list of functions, calling one function at a time. 

• Pid_list. A pid_list service is similar to the list service except that it reads through a list of process 
identifiers, sending the same message to each process. 

• Case. A case service is a run-time replacement for a C switch statement. It reads through a list 
of functions until it finds the matching service. 

• Retval. A retval service is identical to the case service except that it returns a value instead of a 
void. 

• Loop. A loop service is a run-time replacement for a C while loop. Each function registered for 
the loop service is called until one of the functions returns TRUE. 

• Stub. A stub service takes zero or one functions (like a list service) and can return a value (like a 
retval service). 

• Value. A value service is a lookup table of 32-bit values. 

13.11   'show registry' Support

The format of the show registry command output changed in 11.3 to reflect the new internal 
structure.  This is not fully described here, but is largely self-explanatory when the functionality of 
the different registry types is understood.

The content of the data structures for each registry service point is printed.  In the printout, hex 
addresses are always the addresses of routines which have been installed in the corresponding 
service point.  These addresses are most usefully cut and pasted into an rsym input window, to show 
the real function names.

The service point numbers are listed in the show registry output, and these can be correlated 
manually with the service point names through the table generated at the top of the relevant 
xxx_registry.regh  file.  Service points appear in this list sorted first by type of service point, and 
then by order of appearance in the definition xxx_registry.reg  file.
13-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate List Services

 CISCO CONFIDENTIAL
13.12   Manipulate List Services

A list service is the run-time replacement for a list of C functions that are executed sequentially. 
When a list service is invoked, it reads through a list of functions, calling one function at a time. 

13.12.1   Define a List Service
To define a list service for a registry, use the following syntax: 

DEFINE name
LIST 
void 
arguments 
END

The return value from a list service is always void. 

On the arguments line, you specify the arguments for the service, and, as a consequence, the 
prototype of the functions called.

From the list service definition, the registry compiler generates all the wrappers needed to 
manipulate the list service. The following wrapper functions are generated for a list service: 

void reg_invoke_name(arguments);
void reg_add_name(service_name_type callback, char *textual_name);
void reg_delete_name(service_name_type callback);

The registry compiler substitutes name in the above functions and in prototype names for the service 
name declared on the DEFINE line of the service definition. The registry compiler also uses the 
arguments declared in the service definition for the prototype of the invocation wrapper and 
callback. 

13.12.1.1   Example: Define a List Service
The following is an example of a list service definition. This service is called when the fast-switching 
state is initialized for an interface. It takes only one argument, which is a pointer to a hardware IDB. 

DEFINE fast_setup
LIST
void
hwidbtype *hwidb
END

This list service definition generates the following wrappers:

void reg_invoke_fast_setup(hwidbtype *hwidb);
void reg_add_fast_setup(service_fast_setup_type callback, char *name);
void reg_delete_fast_setup(service_fast_setup_type callback);
Registries and Service 13-9



 CISCO CONFIDENTIAL
13.12.1.2   Example: Add To a List Service
When adding a list service for the fast_setup service, the registry compiler takes the parameters 
from the reg_add_fast_setup()  function and uses them to generate a strongly typecast wrapper:

typedef void (*service_fast_setup_type) (hwidbtype *hwidb);

#define reg_add_fast_setup(a,b) _reg_add_fast_setup(a)
static inline void _reg_add_fast_setup (service_fast_setup_type callback)
{

registry_add_list(callback, &_registry_sys.fast_setup);
}

The following code uses the list service addition wrapper to add the atalk_fast_setup()  function 
to the fast_setup service: 

reg_add_fast_setup(atalk_fast_setup, “atalk_fast_setup”) ;

Then, whenever the fast_setup service is invoked, the atalk_fast_setup()  function is called.

13.12.1.3   Example: Invoke a List Service
When invoking a list service for the fast_setup service, the registry compiler takes the parameters 
from the reg_invoke_fast_setup()  function and uses them to generate a strongly typecast 
wrapper:

static inline void reg_invoke_fast_setup (hwidbtype *hwidb)
{

reg_list_struct *list = _registry_sys.fast_setup;
while (list) {
(*(service_fast_setup_type)list->function) (hwidb);
list = list->next;
}

}

The following code illustrates how to invoke all the functions registered for the fast_setup service: 

reg_invoke_fast_setup(hwidb);

13.13   Manipulate Pid_list Services

A pid_list service is similar to a list service in that it is used as the run-time replacement for a list of 
C functions that are executed sequentially. This service reads through a list of process identifiers, 
sending the same message to each process. The advantage of using a pid_list service over a list 
service is that the messages are received and all processing is performed on the recipient’s stack and 
in the recipient’s execution thread. This eliminates problems caused by multiple execution threads 
accessing the same data structures.

13.13.1   Define a Pid_list Service
To define a pid_list service for a registry, use the following syntax: 

DEFINE name
PID_LIST 
void 
arguments
msgtype
END
13-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Define a Pid_list Service

 CISCO CONFIDENTIAL
The return value from a pid_list service is always void. 

On the arguments line, you specify the arguments for the service, and, as a consequence, the 
prototype of the functions called.

On the msgtype line, you specify the message minor event to pass through with the process handler.

From the pid_list service definition, the registry compiler generates all the wrappers needed to 
manipulate the list service. The following wrappers are generated for a pid_list service: 

void reg_invoke_name(arguments);
void reg_add_name(pid_t pid, char *textual_name);
void reg_delete_name(pid_t pid);

The registry compiler substitutes name in the above functions and in prototype names for the service 
name declared on the DEFINE line of the service definition. The registry compiler also uses the 
arguments declared in the service definition for the prototype of the invocation wrapper and 
callback.

13.13.1.1   Example: Define a Pid_list Service
The following is an example of a pid_list service definition. This service is called when an interface 
state changes to allow routing protocols to adjust their internal routes. It takes only one argument, 
which is a pointer to a software IDB. 

DEFINE route_adjust_msg
PID_LIST
void
idbtype *swidb
MSG_ROUTE_ADJUST
END

This pid_list service definition generates the following wrappers:

void reg_invoke_route_adjust_msg(idbtype *swidb);
void reg_add_route_adjust_msg(pid_t pid, char *name);
void reg_delete_route_adjust_msg(pid_t pid);

13.13.1.2   Example: Add To a Pid_list Service
When adding a pid_list service for the route_adjust_msg  service, the registry compiler takes the 
parameters from the reg_add_route_adjust_msg() function and uses them to generate a strongly 
typecast wrapper:

#define reg_add_route_adjust_msg(a,b) _reg_add_route_adjust_msg(a)
static inline void _reg_add_route_adjust_msg (pid_t pid)
{

registry_add_pid_list(&_registry_sys.route_adjust_msg, pid);
}

The following code uses the pid_list addition wrapper to add the vines_rtr_pid process to the 
route_adjust_msg service: 

reg_add_route_adjust_msg(vines_rtr_pid, “vines_router”);

Then, whenever the route_adjust_msg service is invoked, the process with the PID given by 
vines_rtr_pid is sent a message of minor type MSG_ROUTE_ADJUS .
Registries and Service 13-11



 CISCO CONFIDENTIAL
13.13.1.3   Example: Invoke a Pid_list Service
When invoking a pid_list service for the vines_rtr_pid process, the registry compiler takes the 
parameters from the reg_invoke_route_adjust_msg()  function and uses them to generate a 
strongly typecast wrapper:

static inline void reg_invoke_route_adjust_msg (idbtype *swidb)
{

registry_pid_list(&_registry_sys.route_adjust_msg, swidb);
}

The following codes illustrates how to send MSG_ROUTE_ADJUST  messages to all the processes 
registered for the route_adjust_msg  service: 

reg_invoke_route_adjust_msg(swidb);

13.14   Manipulate Case Services

A case service is a run-time replacement for a C switch statement. This service reads through a list 
of functions until it finds the matching service. 

13.14.1   Define a Case Service
To define a case service for a registry, use the following syntax: 

DEFINE name
CASE
void
arguments
maximum
index
END

The return value from a case service is always void. 

The prototype of the variable used to index the case service is defined on the index line. If maximum 
is nonzero, a lookup table is generated to allow faster indexing to function lookups. Faster indexing 
is performed at the expense of memory. 

On the arguments line, you specify the arguments for the service, and, as a consequence, the 
prototype of the functions called.

From the case service definition, the registry compiler generates all the wrappers needed to 
manipulate the case service. The following wrapper functions are generated for a case service: 

void reg_invoke_name(index, arguments);
void reg_add_name(index, service_name_type *callback, char *textual_name);
void reg_add_default_name(service_name_type *callback, char *textual_name);
void reg_delete_name(index, service_name_type *callback);
static inline void reg_delete_default_ name(void);
boolean reg_used_name(index);

The registry compiler substitutes name in the above functions and in prototype names for the service 
name declared on the DEFINE line of the service definition. The registry compiler also uses the 
arguments declared in the service definition for the prototype of the invocation wrapper and 
callback.
13-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Define a Case Service

 CISCO CONFIDENTIAL
13.14.1.1   Example: Define a Case Service
The following is an example of a case service definition for the raw_enqueue service. This service 
is called by the incoming encapsulation demultiplexer to allow packets to be routed to the correct 
protocol. It takes only one argument, which is a pointer to the packet to be handled. 

DEFINE raw_enqueue
CASE
void
paktype *pak
LINK_MAXLINKTYPE
int linktype
END

This case service definition generates the following wrappers:

#define reg_add_raw_enqueue(a,b,c) _reg_add_raw_enqueue(a,b)
void _reg_add_raw_enqueue(int linktype, service_raw_enqueue_type callback);
#define reg_add_default_raw_enqueue(a,b) _reg_add_default_raw_enqueue(a)
void _reg_add_default_raw_enqueue(service_raw_enqueue_type callback);
void reg_delete_raw_enqueue(int linktype);
void reg_delete_default_raw_enqueue (void);
boolean reg_used_raw_enqueue(int linktype);
void reg_invoke_raw_enqueue(int linktype, paktype *pak);

13.14.1.2   Example: Add a Case Service
When adding a case service for the raw_enqueue service, the registry compiler takes the parameters 
from the reg_add_raw_enqueue()  function and uses them to generate a strongly typecast wrapper:

typedef void (*service_raw_enqueue_type) (paktype *pak);

#define reg_add_raw_enqueue(a,b,c) _reg_add_raw_enqueue(a,b)
static inline void _reg_add_raw_enqueue (int linktype, 

service_raw_enqueue_type callback)
{

registry_add_case(linktype, callback, &_registry_sys.raw_enqueue);
}

The following codes uses the case service addition wrapper to add the etalk_enqueue() function to 
the raw_enqueue case service: 

reg_add_raw_enqueue(LINK_APPLETALK, etalk_enqueue, “etalk_enqueue”);

Then, whenever the raw_enqueue service is invoked with an index of LINK_APPLETALK, the 
etalk_enqueue() function is called.

13.14.1.3   Example: Add a Default Case Function
When adding a default case service for the raw_enqueue service, the registry compiler takes the 
parameters from the reg_add_raw_enqueue()  function and uses them to generate a strongly typecast 
wrapper:

#define reg_add_default_raw_enqueue(a,b) _reg_add_default_raw_enqueue(a)
static inline void _reg_add_default_raw_enqueue (service_raw_enqueue_type callback)
{

_registry_sys.raw_enqueue.default_function = callback;
}

Registries and Service 13-13



 CISCO CONFIDENTIAL
Cisco IOS Programmer’s Guide/Architecture Reference

The following code illustrates how to add the netinput_enqueue()  default function to the 
raw_enqueue case service: 

reg_add_default_raw_enqueue(netinput_enqueue, “netinput_enqueue”);

Whenever the raw_enqueue service is invoked with an index that has no function explicitly bound 
to it, netinput_enqueue()  is called. This behavior mimics the default case in a C switch statement.

13.14.1.4   Example: Invoke a Case Service
When invoking a case service for the raw_enqueue service, the registry compiler takes the 
parameters from the reg_invoke_raw_enqueue()  function and uses them to generate a strongly 
typecast wrapper:

static inline void reg_invoke_raw_enqueue (int linktype, paktype *pak)
{

service_raw_enqueue_type function = 
registry_case(linktype, &_registry_sys.raw_enqueue);

(*function) (pak);
}

The following code illustrates how to invoke a case service for a specified index. In this example, if 
a function is registered for the value of pak->linktype, the function is called when this statement is 
executed. If no function is called, the default function is executed. If no default is registered, the 
service returns without executing anything. 

reg_invoke_raw_enqueue(pak->linktype, pak);

13.15   Manipulate Retval Services

A retval service is identical to a case service in its description, addition, default addition, and 
invocation. However, a retval service returns a value instead of void. 

13.16   Manipulate Loop Services

A loop service is a run-time replacement for a C while loop. Each function registered for the loop 
service is called until one of the functions returns TRUE. 

13.16.1   Define a Loop Service
To define a loop service for a registry, use the following syntax: 

DEFINE name
LOOP
boolean
arguments
END

The return value from a loop service is always boolean. 

On the arguments line, you specify the arguments for the service, and, as a consequence, the 
prototype of the functions called.
13-14  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Define a Loop Service

 CISCO CONFIDENTIAL
From the loop service definition, the registry compiler generates all the wrappers needed to 
manipulate the loop service. The following wrapper functions are generated for a loop service: 

#define reg_add_name(a,b) _reg_add_name(a)
void _reg_add_name(service_name_type callback);
void reg_delete_name(service_name_type callback);
boolean reg_invoke_name(arguments);

The registry compiler substitutes name in the above functions and in prototype names for the service 
name declared on the DEFINE line of the service definition. The registry compiler also uses the 
arguments declared in the service definition for the prototype of the invocation wrapper and 
callback.

13.16.1.1   Example: Define a Loop Service
The following is an example of the loop service definition for the ip_udp_input service. This service 
is called to absorb a datagram. The first function to absorb the datagram returns TRUE, which prevents 
remaining functions from being called. 

DEFINE ip_udp_input
LOOP
boolean
paktype *pak, udptype *udp
END

This loop service definition generates the following wrappers:

#define reg_add_ip_udp_input(a,b) _reg_add_ip_udp_input(a)
void _reg_add_ip_udp_input(service_ip_udp_input_type callback);
void reg_delete_ip_udp_input(service_ip_udp_input_type callback);
boolean reg_invoke_ip_udp_input(paktype *pak, udptype *udp);

13.16.1.2   Example: Add To a Loop Service
When adding a loop service for the ip_udp_input service, the registry compiler takes the parameters 
from the reg_add_ip_udp_input()  function and uses them to generate a strongly typecast wrapper:

typedef boolean (*service_ip_udp_input_type) (paktype *pak, udptype *udp);

static inline void _reg_add_ip_udp_input (service_ip_udp_input_type callback)
{

registry_add_list(callback, &_registry_ip.ip_udp_input);
}

The following code uses the loop service addition wrapper to add the cayman_udp_decaps()  
function to the ip_udp_input service: 

reg_add_ip_udp_input(cayman_udp_decaps, “cayman_udp_decaps”);

Then, whenever the ip_udp_input service is invoked, the cayman_udp_decaps  is one of a number 
of routines that has a chance to absorb the datagram. The first routine that does so returns TRUE, thus 
preventing the others being invoked.
Registries and Service 13-15



 CISCO CONFIDENTIAL
13.16.1.3   Example: Invoke a Loop Service
When invoking the ip_udp_input service, the registry compiler takes the parameters from the 
reg_add_parse_address()  function and uses them to generate a strongly typecast wrapper:

static inline boolean reg_invoke_ip_udp_input (paktype *pak, udptype *udp)
{

reg_list_struct *list = _registry_ip.ip_udp_input;
while (list) {

if ((*(service_ip_udp_input_type)list->function) (pak, udp)) {
return TRUE;

}
list = list->next;

}
return FALSE;

}

The following code illustrates how to invoke the parse_address loop service. If the datagram is 
absorbed by any of the registered functions, TRUE is returned, and the return statement is executed. 

if reg_invoke_ip_udp_input(pak, udp)
return;

13.17   Manipulate Stub Services

A stub service takes zero or one functions (like a list service) and can return a value (like a retval 
service). 

Note In general, avoid using stub services. Instead, try to rework the software to use the more 
general case service instead. 

13.17.1   Define a Stub Service
To define a stub service for a registry, use the following syntax: 

DEFINE name
STUB
return
arguments 
END

The return line specifies the return value from a stub service. 

On the arguments line, you specify the arguments for the service, and, as a consequence, the 
prototype of the functions called.

From the stub service definition, the registry compiler generates all the wrappers needed to 
manipulate the stub service. The following wrapper functions are generated for a stub service: 

void reg_invoke_name(arguments);
void reg_add_name(service_name_type *callback, char *textual_name);
void reg_delete_name;

The registry compiler substitutes name in the above functions and in prototype names for the service 
name declared on the DEFINE line of the service definition. The registry compiler also uses the 
arguments declared in the service definition for the prototype of the invocation wrapper and 
callback.
13-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate Value Services

 CISCO CONFIDENTIAL
13.17.1.1   Example: Define a Stub Service
The following is an example of a stub service definition. This service is called to initialize the log 
facility in the router. 

DEFINE log_config
STUB
void
parseinfo *csb
END

This stub service definition generates the following wrappers:

void reg_invoke_log_config(parseinfo *csb);
void reg_add_log_config(service_log_config_type *callback, char *name);
void reg_delete_log_config(void);

13.17.1.2   Example: Add To a Stub Service
When adding a stub service for the log_config service, the registry compiler takes the parameters 
from the reg_add_log_config() function and uses them to generate a strongly typecast wrapper:

#define reg_add_log_config(a,b) _reg_add_log_config(a)

static inline void _reg_add_log_config (service_log_config_type callback)
{

_registry_sys.log_config = callback;
}

The following code uses the stub service addition wrapper to add the syslog_config() function to 
the log_config service: 

reg_add_log_config(syslog_config, “syslog_config”);

Then, whenever the log_config service is invoked, the syslog_config() function is called.

13.17.1.3   Example: Invoke a Stub Service
When invoking a stub service for the log_config service, the registry compiler takes the parameters 
from the reg_invoke_log_config() function and uses them to generate a strongly typecast 
wrapper:

static inline void reg_invoke_log_config (parseinfo *csb)
{

(*_registry_sys.log_config) (csb);
}

The following code illustrates how to invoke the function registered for the log_config service: 

reg_invoke_log_config(csb);

13.18   Manipulate Value Services

A value service is a lookup table of 32-bit values. You can use this service to build a variety of sparse, 
dynamic lookup tables that can be filled by multiple code sections. 
Registries and Service 13-17



 CISCO CONFIDENTIAL
13.18.1   Define a Value Service
To define a value service for a registry, use the following syntax: 

DEFINE name
VALUE
return
index
maximum
type
END

The return line specifies the return value from a value service. 

The prototype of the variable used to index the value service is defined on the index line. If maximum 
is nonzero, a lookup table is generated to allow faster indexing to function lookups. Faster indexing 
is performed at the expense of memory. 

From the value service definition, the registry compiler generates all the wrappers needed to 
manipulate the value service. The following wrapper functions are generated for a value service: 

return reg_invoke_name(index);
void reg_add_name(index, type, char *textual_name);
void reg_add_default_name(type, char *textual_name);

The registry compiler substitutes name in the above functions and in prototype names for the service 
name declared on the DEFINE line of the service definition. The registry compiler also uses the 
return line declared in the service definition for the type of variable being registered for a given 
index.

13.18.1.1   Example: Define a Value Service
The following is an example of a value service definition. This service can be used to map ARPA 
type codes to internal packet link types. 

DEFINE media_type_to_link
VALUE
ulong
ulong value
0
long type
END

This value service definition generates the following wrappers:

ulong reg_invoke_media_type_to_link(long type);
void reg_add_media_type_to_link(long type, ulong value, char *name);
void reg_add_default_media_type_to_link(ulong value, char *name)

13.18.1.2   Example: Add To a Value Service
When adding a value service for the media_type_to_link  service, the registry compiler takes the 
parameters from the reg_add_media_type_to_link() function and uses them to generate a strongly 
typecast wrapper:

#define reg_add_media_type_to_link(a,b,c) _reg_add_media_type_to_link(a,b)

static inline void _reg_add_media_type_to_link (long type, ulong value)
{

registry_add_value(type, value, &_registry_media.media_type_to_link);
}

13-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Define a Value Service

 CISCO CONFIDENTIAL
The following example uses the addition wrapper to add the ARPA typecode for IP to the 
media_type_to_link  service: 

reg_add_media_type_to_link(TYPE_IP10MB, LINK_IP, “LINK_IP”);

Then, whenever the media_type_to_link service is invoked with an index of TYPE_IP10MB, the 
LINK_IP value is returned.

13.18.1.3   Example: Add a Default Value
When adding a default value service for the media_type_to_link  service, the registry compiler 
takes the parameters from the reg_default_media_type_to_link( ) function and uses them to 
generate a strongly typecast wrapper:

#define reg_add_default_media_type_to_link(a,b) \
_reg_add_default_media_type_to_link(a)

static inline void _reg_add_default_media_type_to_link (ulong value)
{

_registry_media.media_type_to_link.default_value = value;
}

The following example illustrates how to add a default value to a value service: 

reg_add_default_media_type_to_link(LINK_ILLEGAL, “LINK_ILLEGAL”);

Whenever the media_type_to_link service is invoked with an index that has no value explicitly 
bound to it, LINK_ILLEGAL is returned.

13.18.1.4   Example: Invoke a Value Service
When invoking a value service for the media_type_to_link  service, the registry compiler takes the 
parameters from the reg_invoke_media_type_to_link() function and uses them to generate a 
strongly typecast wrapper:

static inline ulong reg_invoke_media_type_to_link (long type)
{

return registry_value(type, &_registry_media.media_type_to_link);
}

The following example illustrates how to invoke a value service for a specified index. This function 
call attempts to find a valid link type for the ARPA type pointed to in the argument. If no value can 
be found for the given index, the default value is returned. If no default is declared, zero is returned. 

pak->linktype = reg_invoke_media_type_to_link(ether->type_or_len);
Registries and Service 13-19



 CISCO CONFIDENTIAL
13-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Time-of-Day Services
1 4
Time-of-Day Services
14.1   Overview: Time-of-Day Services

The Cisco IOS software provides a rich set of time-of-day services. It contains a software 
time-of-day clock that can be interrogated and manipulated in various ways.

The time-of-day services are not intended to be used for simple periodic events, duration timing, and 
the like. For these functions, use the timer services described in the “Timer Services” chapter.

14.1.1   Epoch: Definition
An epoch is an instantaneous location in time, such as 3:15:35 p.m., Pacific Daylight Time, June 14, 
1995. In the Cisco IOS software, the preferred form of an epoch is the clock_epoch structure, which 
is defined as follows: 

typedef struct clock_epoch_ {
ul ong epoch_secs;/* Seconds */
ul ong epoch_frac;/* Fractional seconds */

} clock_epoch;

14.1.2   Time Formats
The Cisco IOS software uses three different time formats, which are referred to by the following 
names:

• clock_epoch structure

• UNIX format

• timeval structure

14.1.2.1   clock_epoch Structure
The time base for the clock_epoch structure is 0000 UTC, 1 January, 1900. (UTC is Coordinated 
Universal Time, which is also known as zulu time and was formerly known as Greenwich Mean 
Time [GMT]).This epoch does not include leap seconds, so the base actually shifts upon the addition 
and deletion of leap seconds.) The fractional part of the epoch is in units of 2 -32 seconds, or 
approximately 0.2 nanoseconds, which is a very fine granularity. The integer seconds part of the 
timestamp will roll over sometime in the y ear2036. 
14-1



 CISCO CONFIDENTIAL
14.1.2.2   UNIX Format 
Some protocols used the so-called “UNIX format.” It is stored as a 32-bit count of seconds since 
0000 UTC,1 January, 1970. Such timestamps have poor granularity and are used in the Cisco IOS 
system code only minimally, where necessary. 

14.1.2.3   timeval Structure
The timeval structure is a representation of an epoch broken up into hours, minutes, seconds, and 
so on. This structure also includes a time zone offset from UTC to support local time zones. It is 
defined as follows: 

typedef struct timeval_ {
ul ong year;/* Year, AD (1993, not 93!) */
ul ong month;/* Month in year (Jan = 1) */
ul ong day;/* Day in month (1-31) */
ul ong hour;/* Hour in day (0-23) */
ul ong minute;/* Minute in hour (0-59) */
ul ong second;/* Second in minute (0-59) */
ul ong millisecond;/* Millisecond in second (0-999) */
ul ong day_of_week;/* Sunday = 0, Saturday = 6 */
ul ong day_of_year;/* Day in year (1-366) */
lo ng tz_offset;/* Time zone offset (seconds from UTC) */

} timeval;

14.1.3   System Clock: Description
The heart of the Cisco IOS time-of-day services is the system clock. It is a clock_epoch structure 
that is updated by hardware clock interrupts, advancing by an amount equal to the period of the 
hardware clock for each tick. This period is nominally 4 milliseconds, but it may vary slightly from 
platform to platform. Because the granularity of the system clock is so fine, the frequency of the 
clock can be varied with great precision by modifying the amount added for each tick. The frequency 
can be adjusted at a precision of roughly one part in 17 million.

Typically, the 4-millisecond granularity of the system clock is sufficiently accurate for most 
applications. However, if highly precise time is required, the Cisco IOS software can interpolate 
between hardware ticks by interrogating the hardware to find out how much time has elapsed since 
the last tick. This can improve the granularity of the time returned to a microsecond or better.

14.1.4   Time Zones
All epochs stored in clock_epoch structures are based on Coordinated Universal Time (UTC), which 
is also known as zulu time and was formerly known as Greenwich Mean Time (GMT). UTC is the 
time zone at zero degrees longitude. 

Local time zones are often more convenient to work with, but they tend to be ambiguous. 

Summer time, also known as daylight saving time, makes tracking local time even more challenging, 
because summer time rules vary from country to country, and even from state to state and county to 
county within some states in the United States. In fact, localities in the Southern Hemisphere that 
observe summer time do so at the opposite time of the year those north of the equator. 

Within the Cisco IOS system code, time epochs are generally stored as UTC at all times except when 
times are displayed by the user interface.
14-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Network Time Protocol

 CISCO CONFIDENTIAL
14.1.5   Network Time Protocol
The Network Time Protocol (NTP) is closely tied to the maintenance of the Cisco IOS system clock. 
If NTP is enabled, it maintains the system clock to a very high degree of accuracy, adjusting the clock 
frequency to correct for the otherwise unavoidable drift caused by systematic errors in the clock 
hardware. NTP is by far the most preferable way of setting and maintaining the system clock, in 
addition to providing time service to other systems on the network.

14.1.6   Hardware Calendar
Some platforms support a clock/calendar in hardware. This is essentially the innards of a cheap 
digital watch with a battery backup. When the system is initialized, the contents of the calendar are 
read into the system clock, which is then maintained separately without referencing the calendar. If 
the Network Time Protocol (NTP) is in use, the system can be configured to periodically update the 
calendar in order to correct for its steady drift. 

14.2   Get the Current Time

Table 14-1 describes the Cisco IOS functions provided to get the current time from the system clock. 

Table 14-1 Functions to Get the Current Time from the System Clock 

To determine which time protocol set the clock, use the current_time_source()  function: 

clock_source current_time_source(void); 

To determine the current time zone offset, use the clock_timezone_offset()  function: 

int clock_timezone_offset(void); 

To determine the current time zone name, use the clock_timezone_name()  function: 

char *clock_timezone_name(void); 

Time to Get Function

Current time at a medium resolution (roughly 
4 ms)

vo idclock_get_time(clock_epoch *epoch);

Current time epoch expressed in microseconds ul ongclock_get_microsecs(void); 

Time at the highest resolution supported by the 
hardware

vo idclock_get_time_exact(clock_epoch 
*epoch); 

Current time in UNIX format ulong unix_time(void); 

Current time in terms of seconds and 
nanoseconds since 0000 UTC 1 January 1970

vo idsecs_and_nsecs_since_jan_1_1970 
(secs_and_nsecs *time); 

Current time in ICMP timestamp format 
(milliseconds since 0000 UTC today)

ulong clock_icmp_time(void); 
Time-of-Day Services 14-3



 CISCO CONFIDENTIAL
14.3   Test for Summer Time

It may be useful to test to determine whether a particular epoch falls within the summer time 
(daylight savings time) period. 

To test a clock epoch to determine whether it falls during summer time, use the 
clock_time_is_in_summer()  function:

boolean clock_time_is_in_summer(clock_epoch * epoch); 

To test a UNIX-style time value to determine whether it falls during summer time, use the 
unix_time_is_in_summer()  function:

boolean unix_time_is_in_summer(ulong unix_time); 

14.4   Convert between Time Formats

Table 14-2 lists the functions available for converting between different time formats.

Table 14-2 Functions for Converting between Different Time Formats 

14.5   Set the System Clock

You can set the system clock from either a clock_epoch structure or a UNIX-style time value. 

To set the clock from a clock_epoch structure, use the clock_set() function:

void clock_set(clock_epoch *epoch, clock_source source); 

To set the clock from a UNIX-style time value, use the clock_set_unix() function:

void clock_set_unix(ulong unix_time, clock_source source); 

14.6   Determine Validity of System Clock Time 

An important coding issue is determining whether the time is accurate. If a system is not equipped 
with a hardware clock or calendar, the system clock will have an unusual value when the system first 
starts up. Critical time-dependent processes may produce undesirable results if the clock has not 
been set to an accurate time. 

Convert from... Convert to ... Function

clock_epoch timeval vo idclock_epoch_to_timeval(clock_epoch * epoch, timeval *tv, 
long tz_offset); 

clock_epoch UNIX time value ul ong c lock_epoch_to_unix_time(clock_epoch*epoch); 

timeval clock_epoch vo idclock_timeval_to_epoch(timeval * tv, clock_epoch *epoch); 

timeval UNIX time value ul ongclock_timeval_to_unix_time(timeval * tv); 

UNIX time value clock_epoch vo idunix_time_to_epoch(ulong unix_time, clock_epoch *epoch); 

UNIX time value timeval vo idunix_time_to_timeval(ulong unix_time, timeval *tv, 
ch ar**tz_name); 
14-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Determine Validity of System Clock Time

 CISCO CONFIDENTIAL
To determine whether the clock has been set, use the clock_is_probably_valid()  function:

boolean clock_is_probably_valid(void); 
Time-of-Day Services 14-5



 CISCO CONFIDENTIAL
To mark the clock as being accurate, use the clock_is_now_valid()  function from a time protocol 
process:

void clock_is_now_valid(void); 

14.7   Format Time Strings

The Cisco IOS provides a rich set of functions for formatting ASCII strings from epochs of various 
forms. 

To get the current time in a fixed format using the local time zone and summer time settings, use the 
current_time_string()  function:

void current_time_string(char * buf); 

To format a timeval with very flexible formatting options, use the format_time() function:

ulong format_time(char *buf, ulong buf_len, char *fmt, timeval *time, char *tz); 

To format a UNIX time value in a fixed format using the local time zone and summer time settings, 
use the unix_time_string()  or unix_time_string_2()  function:

void unix_time_string(char *string, ulong unix_time); 

void unix_time_string_2(char * string, ulong unix_time); 

To format a clock_epoch with the printf() function, use the %C format descriptor:

printf(“%C”, fmt_string, epoch); 

For more information about formatting time strings, see the “Format Time Strings” section in the 
“Strings and Character Output” chapter
14-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Timer Services
1 5
Timer Services
15.1   Overview: Timer Services

The Cisco IOS timer services support two different types of timers. Each type can track time to the 
limits of the system clock accuracy, which is currently 4 milliseconds. The following are the two 
timer types: 

• Passive timers. Passive timers note the current value of the timer variable msclock and then 
examine this value either by polling periodically or when triggered by an event.

• Managed timers. Managed timers augment passive timers by allowing you to group timers 
together. This lets you conveniently and efficiently manipulate a large number of timers.

The timer services are used for all time-related functions in the system, such as periodic processes, 
timeouts, and delay measurements. It is used in all cases where time intervals matter. Time-of-day 
is a separate, but related, function. It is discussed in the “Time-of-Day Services” chapter.

15.1.1   System Clock
Prior to Cisco IOS Release 11.1, timers were based around a 32-bit system clock variable known as 
msclock, which nominally counts the number of milliseconds that have elapsed since the system 
started up. msclock is incremented when a hardware timer fires, invoking the nonmaskable interrupt 
(NMI) routine. The NMI routine is invoked by the hardware at a nominal interval of 4 milliseconds, 
so the Cisco IOS code increments msclock by four approximately 250 times per second. (Note that, 
depending on the hardware platform, this rate can range between 248 and 252 ticks per second. This 
means that msclock is an inappropriate mechanism for precision timing, but is otherwise adequate 
for most uses.) The value of msclock is then stored as a timestamp and compared to other timestamps 
as appropriate.

Because msclock is a 32-bit count of milliseconds, it can only count up to about four billion 
milliseconds, which is just over 49 days, before it rolls over. This effectively means that msclock is 
treated as a circular number space. This implies that durations being timed must be less than one half 
of the number space (somewhat less than 25 days). It also means that attempts to manipulate 
timers—particularly, to compare them—are extremely error-prone. For this reason, timers must 
never be manipulated or compared directly; the Cisco IOS timers support must be used at all times. 
Further, the msclock variable itself must never be referenced directly. You must use the system 
support for getting the current time.

Beginning with Cisco IOS Release 11.1, timestamps are now 64 bits wide. This means that they will 
not roll over for roughly 584,000,000 years, well beyond the mean time between failure (MTBF) of 
our routers. Applications are no longer allowed manipulate timestamps directly, and the msclock 
variable has been removed from the source code.
15-1



 CISCO CONFIDENTIAL
Note Use of the msclock variable should be avoided at all costs. This variable is present in releases 
prior to Release 11.1, so referencing it produces code that cannot be ported to all releases. 

15.1.2   Implementing Application-Level Functions
The Cisco IOS timer services implement the application-level functions by manipulating timestamps 
through a set of basic system calls. Typically, when a timer is set to expire at some point in the future, 
the system calculates the epoch (that is, the absolute time) of the expiration, and then the value of 
the system clock is watched until the expiration epoch is reached. 

15.1.3   Timer Jitter
In many applications, it is useful to jitter timers. When jitter is applied to a timer, the expiration time 
is randomized within set limits. It has been observed that periodic router updates tend to become 
synchronized over time, causing large bursts of routing traffic at regular intervals. The introduction 
of jitter eliminates this synchronization. Because protocols often have fixed timeout periods, jitter is 
always subtracted from the time delay, causing the timer to expire somewhat sooner than it was 
otherwise scheduled to; adding jitter might cause protocol failures. Jitter is available as an option for 
all timer types.

15.2   Timer States

Passive timers in the future and managed timers can be in one of three possible states (see 
Figur e15-1): 

• Stopped. This is represented by a timestamp of value 0. 

• Sleeping (unexpired). A timer that is sleeping is considered to be running. 

• Awake (expired). A timer that is awake is considered to be running. 

Figure 15-1 Timer States 

15.3   Passive Timers

Passive timers (also sometimes called simple timers) take the current value of the system clock and 
make a note of the value either as it is or after adding a delay value. The as-is time value is used for 
what are called timers in the past. The time with a delay added is used for what are called timers in 
the future. The data structure for a passive timer is a simple timestamp.

Variables declared to hold timestamps must be of type sys_timestamp. This variable type is 32 bits 
in Release 11.0 and earlier, and is 64 bits in Release 11.1 and later. 

S
37

39

Stopped Sleeping
(unexpired)

Awake
(expired)
15-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Passive Timers in the Future

 CISCO CONFIDENTIAL
15.3.1   Passive Timers in the Future
Passive timers in the future, which are the most common timers currently used in the Cisco IOS 
software, operate around events that are scheduled to occur in the future. 

15.3.1.1   Operation of Passive Timers in the Future
Passive timers in the future work as follows:

1 When an event is to be scheduled in the future, the epoch of that event is calculated, typically by 
adding a delay value to the current epoch. However, there are variations.

2 The Cisco IOS software or the application periodically checks to see if that epoch has been 
reached, often in a process BLOCK routine. When the epoch is reached, the timer is considered 
“awake” (expired) and the appropriate action is taken.

15.3.1.2   Start a Passive Timer in the Future
When you start a passive timer in the future, you specify a timer and the delay, in milliseconds, after 
which the timer will expire. You can optionally specify a pseudorandom jitter amount that is a 
percentage of the delay to subtract from the delay value. With the advent of 64-bit timestamps in 
Release 11.1, a new function has been added allowing a 64-bit delays to be used when starting a 
timer. However, starting a jitterred timer is still limited to a 32-bit delta.

To start a passive timer in the future, use the TIMER_START, TIMER_START64, or 
TIMER_START_JITTERED  macro.

void TIMER_START(sys_timestamp  timer, long delay) 

void TIMER_START64(sys_timestamp  timer, ulonglong delay) 

void TIMER_START_JITTERED(sys_timestamp timer, ulong delay, ulong jitter_percent)

The TIMER_START_ABSOLUTE  and TIMER_START_ABSOLUTE64  macros start a timer based on the time 
the router was booted instead of the current time. Use these macros only for timers that should expire 
at a certain interval after the router is booted.

void TIMER_START_ABSOLUTE(sys_timestamp timer, ulong delay) 

void TIMER_START_ABSOLUTE64(sys_timestamp timer, ulonglong delay) 

Once a timer is started, it is considered to be running until it is stopped, even after it has expired. 
Because timers operate in a circular number space, in releases prior to Release 11.1, if an expired 
timer is left running for over 24 d ays, it will suddenly look unexpired again. You should always stop 
or restart timers as appropriate after they expire.

15.3.1.3   Set the Expiration for a Passive Timer
To set a passive timer to expire after a 32-bit or 64-bit delay and adjusted to a boundary interval, use 
the TIMER_START_GRANULAR  or TIMER_START_GRANULAR64  macro, respectively. 

void TIMER_START_GRANULAR(sys_timestamp  timer, ulong delay, ulong granularity) 

void TIMER_START_GRANULAR64(sys_timestamp timer, ulonglong delay, ulonglong 
granularity)
Timer Services 15-3



 CISCO CONFIDENTIAL
To increase the delay of an existing passive timer in the future, use the TIMER_UPDATE_GRANULAR  or 
TIMER_UPDATE_GRANULAR64  macro. 

void TIMER_UPDATE_GRANULAR(sys_timestamp timer, long delay, ulong granularity) 

void TIMER_UPDATE_GRANULAR64(sys_timestamp timer, ulonglong delay, 
ulonglong granularity) 

15.3.1.4   Stop a Passive Timer in the Future
Once a timer has expired, it should be stopped. A stopped timer has a timestamp value of 0. For 
historical reasons, not all timer macros recognize the value 0. Read the Cisco Internetwork 
Operating System API Reference carefully. 

To stop a passive timer in the future, use the TIMER_STOP macro.

void TIMER_STOP(sys_timestamp timer) 

15.3.1.5   Determine the State of Passive Timers in the Future
Table 15-1Table 1 5 -1 lists the macros that allow you to determine the state of a passive timer in the 
future.

Table 15-1 Macros to Determine the State of Passive Timers in the Future

15.3.1.6   Guidelines for Using the SLEEPING and AWAKE Macros in Releases Prio r to Release11.1
The SLEEPING and AWAKE macros work properly only when it is guaranteed that the expiration time 
is never more than 24 days in the past or future. This effectively means that timers must be stopped 
after they expire or set at least once every 24 days, and that they cannot be set to expire more than 
24 days in the future. A common bug is to have a very old timer that after 24 days suddenly appears 
to be running. For example, if a timer has a value of 100 and the current epoch in msclock is 
0x81000000, the timer looks to be almost 24 days in the future instead of slightly more than 24 days 
in the past.

Description Macro

Determine whether a timer is running (that is, 
whether it is nonzero).

bo oleanTIMER_RUNNING(sys_timestamp timer) 

Determine whether a timer is both running (that 
is, nonzero) and sleeping.

bo oleanTIMER_RUNNING_AND_SLEEPING(sys_timestamp timer) 

Determine whether a timer is both running (that 
is, nonzero) and awake.

bo oleanTIMER_RUNNING_AND_AWAKE(sys_timestamp timer) 

Determine whether a timer has expired. bo oleanAWAKE(sys_timestamp timer) 

bo oleanXAWAKE(sys_timestamp timer, ulong maximum_delay) 

Determine whether a timer has not yet expired. bo oleanSLEEPING(sys_timestamp timer) 

bo oleanXSLEEPING(sys_timestamp timer, ulong maximum_delay) 

Calculate time left sleeping before a timer 
expires. 

ul ongTIME_LEFT_SLEEPING(sys_timestamp timer) 

ul onglongTIME_LEFT_SLEEPING64(sys_timestamp timer) 
15-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Passive Timers in the Future

 CISCO CONFIDENTIAL
15.3.1.7   Guidelines for Using the XSLEEPING and XAWAKE Macros in Releases Prio r to Release11.1
The XSLEEPING and XAWAKE macros perform functions parallel to those of the SLEEPING and AWAKE 
macros. However, they require an additional parameter, which is the maximum duration that the 
timer can ever use. This value reduces the period of timer ambiguity to the maximum duration of the 
timer by shifting the sequence space around so that it extends only slightly into the future, but much 
further into the past. For example, if the maximum duration of a particular timer is 5 seconds, 
XSLEEPING would work properly from just under 49 days in the past until  5seconds in the future. In 
this case, if a timer has a value of 100 and msclock has a value of 0x81000000, the timer correctly 
looks to be awake rather than sleeping.

XSLEEPING and XAWAKE add another way of introducing bugs. If you guess incorrectly about the 
maximum duration of the timer (for example, you think the timer can be set to run for only 5 s econds, 
but you set it 10 seconds into the future), it will appear to be long expired rather than almost ready 
to expire. As noted, you should almost never use these macros, because properly maintained timers 
never exhibit ambiguous behavior.

15.3.1.8   Guidelines for Avoiding Timer Ambiguity
In general, if you call the TIMER_STOP macro after a nonrecurring timer expires, and check that a 
timer is running by calling the TIMER_RUNNING macro before calling the AWAKE macro (or by calling 
the TIMER_RUNNING_AND_AWAKE  macro), you can avoid most of the common pitfalls relating to timer 
ambiguity.

15.3.1.9   Determine the Earlier of Two Timers
To determine the earlier of two passive timers in the future, use the TIMER_SOONEST macro. If one 
timer is not running, the other is returned. If both timers are not running, a stopped timer (that is, a 
value of 0) is returned. 

sys_timestamp TIMER_SOONEST(sys_timestamp timer1, sys_timestamp timer2) 

15.3.1.10   Compare Passive Timers in the Future
To determine whether two 64-bit timestamps are equal, use the TIMERS_EQUAL macro. 

boolean TIMERS_EQUAL(sys_timestamp timer1, sys_timestamp timer2) 

To determine whether two 64-bit timestamps are unequal, use the TIMERS_NOT_EQUAL  macro. 

boolean TIMERS_NOT_EQUAL(sys_timestamp timer1, sys_timestamp timer2) 

15.3.1.11   Update Passive Timers in the Future
Under some circumstances, you may want to add a value to the previous expiration epoch of a timer, 
rather than setting it to the current epoch plus a delay. You might want to do this when a periodic 
process demands that there be no slip in the time. For example, if you use the TIMER_START macro 
to restart a timer each time it expires, the next expiration may be slightly later than expected because 
of process latency in the system. Updating a timer rather than restarting it guarantees that the next 
expiration time is a fixed interval after the previous one. However, one side effect of this method is 
that the new expiration time might already have passed if the process has been significantly delayed; 
this causes the timer to expire immediately. This might be what you want if the number of timer 
expirations needs to reflect the amount of time passed, but it might be undesirable in other 
circumstances.
Timer Services 15-5



 CISCO CONFIDENTIAL
To update an existing timer by adding an additional number of milliseconds or by adding an 
additional number of milliseconds minus a pseudorandom jitter amount that is a percentage of the 
delay, use the TIMER_UPDATE or TIMER_UPDATE_JITTERED  macro. These macros do nothing if the 
timer is stopped. With the advent of 64-bit timestamps in Release 11.1, the TIMER_UPDATE64 macro 
has been added to allow a 64-bit delays to be used when updating a timestamp. Update with jitter is 
still limited to 32-bit deltas.

void TIMER_UPDATE(sys_timestamp  timer, long delay) 

void TIMER_UPDATE64(sys_timestamp  timer, ulonglong delay) 

void TIMER_UPDATE_JITTERED(sys_timestamp  timer, long delay, ulong jitter_percent) 

15.3.1.12   Use One Timer Value to Compute Another
To add a delay to a timestamp in order to create a separate timestamp, use the TIMER_ADD_DELTA 
macro. This macro returns the sum of the timer value plus a delay (delta). This macro does the 
addition in place on the parameter time . Note that TIMER_ADD_DELTA works even if the timer is 
stopped, that is, if the timer value is 0. In some unusual cases, you need to subtract an offset from a 
future timestamp. You can do this with the TIMER_SUB_DELTA macro. With the advent of 64-bit 
timestamps in Release 11.1, you can add or subtract 64-bit delays to or from a timestamp with the 
TIMER_ADD_DELTA64  and TIMER_SUB_DELTA64 macros.

sys_timestamp TIMER_ADD_DELTA(sys_timestamp timer, long delta) 

sys_timestamp TIMER_ADD_DELTA64(sys_timestamp timer, longlong delta) 

sys_timestamp TIMER_SUB_DELTA(sys_timestamp  timer, long delta) 

sys_timestamp TIMER_SUB_DELTA64(sys_timestamp  timer, longlong delta) 

15.3.1.13   Example: Passive Timers in the Future
The following example uses passive timers in the future to implement the Snark protocol. This 
protocol requires that an update be sent every SNARK_UPDATE milliseconds. The timer is always 
running. The following are reasonable code fragments for this protocol.

Initialization Routine
/* 
* Send the first update. 
*/

snark_update(snark_pdb);

/* 
* Or, defer the first update. 
*/

TIMER_START(snark_pdb->update_timer, SNARK_UPDATE); 

snark_update
[send update]
TIMER_START(snark_pdb->update_timer, SNARK_UPDATE);

snark_block
if (AWAKE(snark_pdb->update_timer)) 
... 
15-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Passive Timers in the Past

 CISCO CONFIDENTIAL
15.3.2   Passive Timers in the Past
Passive timers in the past are timestamps in which the current time is noted and then the resulting 
timestamps are periodically examined to see whether enough time has passed for an event to occur. 
These timers are often used for such purposes as rate-limiting error messages; when a message is 
emitted, the time that it was emitted is noted. If another request to emit is made, the previously noted 
time is examined to see if sufficient time has passed before sending the message again. Timestamps 
for passive timers in the past are always in the past. Therefore, the elapsed time is treated as an 
unsigned quantity. This means that prior to Release 11.1, an ambiguity results only after 49 days 
rather than after 24 days as is the case for passive timers in the future. Releases 11.1 and later still 
have an ambiguity, but it is on the order of 500 million years.

In software prior to Release 11.1, when an event occurs infrequently, perhaps less than one every 
49 days, ambiguity can be introduced into passive timers in the past. Therefore, you must guarantee 
that the event being limited happens at least once e very 49days—although the length of the 
ambiguity period may be acceptable. This problem does not exist in Releases 11.1 and later, because 
the timers do not wrap for 500 million years.

15.3.2.1   Determine the Current Time
To note the current epoch in the timestamp, use either the GET_TIMESTAMP, GET_TIMESTAMP32, or 
GET_NONZERO_TIMESTAMP (obsolete)  macro. The GET_NONZERO_TIMESTAMP  macro does not allow 
a zero return. This is useful if timers are going to be stopped using TIMER_STOP and tested using 
TIMER_RUNNING. With the advent of 64-bit timestamps Release 11.1, the GET_NONZERO_TIMESTAMP  
macro has become obsolete.

void GET_TIMESTAMP(sys_timestamp timestamp) 

void GET_TIMESTAMP32(ulong timestamp) 

void GET_NONZERO_TIMESTAMP(sys_timestamp timestamp) 

15.3.2.2   Copy a Timestamp
To copy one timestamp into a second one, use the COPY_TIMESTAMP macro. Note that in releases 
earlier than Release 11.1, this macro performs an atomic copy.

void COPY_TIMESTAMP(sys_timestamp timestamp1, sys_timestamp timestamp2) 

In Release 11.1 and later, to atomically copy one timestamp into a second one, use the 
COPY_TIMESTAMP_ATOMIC  macro. 

void COPY_TIMESTAMP_ATOMIC(sys_timestamp  timestamp1, sys_timestamp timestamp2) 

15.3.2.3   Determine the Elapsed Time
To return the amount of time that has elapsed, in milliseconds, since the timestamp, use the 
ELAPSED_TIME or ELAPSED_TIME64 macro. In software prior to Release 11.1, the result is always an 
unsigned integer in the range of 0 to 49 days. If the timestamp is more than 49 days old, aliasing 
results. In Release 11.1 and later, you can use the ELAPSED_TIME64 function, which returns an integer 
in the range of 0 to 500 million years. 

ulong ELAPSED_TIME(sys_timestamp  timestamp) 

ulonglong ELAPSED_TIME64(sys_timestamp  timestamp) 
Timer Services 15-7



 CISCO CONFIDENTIAL
15.3.2.4   Determine Whether a Time Is within a Range
To determine whether a time is within or outside of a specified range, use the CLOCK_IN_INTERVAL  
and CLOCK_OUTSIDE_INTERVAL  macros. Both macros determine whether the current time lies 
between the timestamp plus some delay. They work for any time interval up to 49 days minus the 
delay. If just under 49 days have elapsed since the timestamp was noted, these macros return a false 
positive. 

boolean CLOCK_IN_INTERVAL(sys_timestamp  timestamp, ulong delay) 

boolean CLOCK_OUTSIDE_INTERVAL(sys_timestamp  timestamp, ulong delay) 

To determine whether the current time lies within the time bounded by the delay after the router was 
booted, use the CLOCK_IN_STARTUP_INTERVAL macro. 

boolean CLOCK_IN_STARTUP_INTERVAL(ulong  delay) 

15.3.2.5   Example: Passive Timers in the Past
The following code sample rate-limits a message to no more than once per minute. However, this 
code fails to emit an error message if an error occurs during the one minute approximately 49 days 
after the previous time an error occurred.

send_error_message:
if (CLOCK_OUTSIDE_INTERVAL(error_time, ONEMIN)) { 

[send message]
GET_TIMESTAMP(error_time); 

}

15.3.3   Compare Timestamps
Timestamp comparisons are useful for both timers in the past and timers in the future. However
because timestamps are tracked in a circular number space, arithmetic comparisons, such as less than 
(<) and greater than (>), do not work.

To compare timestamps, use the TIMER_LATER and TIMER_EARLIER macros. The timestamps must be 
within 24.8 d ays of each other. 

boolean TIMER_LATER(sys_timestamp  timestamp1, sys_timestamp timestamp2) 

boolean TIMER_EARLIER(sys_timestamp timestamp1, sys_timestamp timestamp2) 

To calculate the time difference between two timestamps, use the CLOCK_DIFF_UNSIGNED  and 
CLOCK_DIFF_SIGNED  macros. If you are working in Release 11.1 or later, you can also use the 
CLOCK_DIFF_SIGNED64  and CLOCK_DIFF_UNSIGNED64  macros. If you are unclear about the time 
relationship between the two timestamps, use the signed version; it returns a value in the range of 
–24 days to +24 days (±250 million years for the 64-bit version). If you know a priori that the second 
timestamp is later than the first, use the unsigned version; it returns a value in the range of 0 to +49 
days (or 0 to 500 million years for the 64-bit version). 

ulong CLOCK_DIFF_UNSIGNED(sys_timestamp  timestamp1, sys_timestamp timestamp2) 

ulonglong CLOCK_DIFF_UNSIGNED64(sys_timestamp  timestamp1, sys_timestamp timestamp2) 

long CLOCK_DIFF_SIGNED(sys_timestamp  timestamp1, sys_timestamp timestamp2) 

longlong CLOCK_DIFF_SIGNED64(sys_timestamp timestamp1, sys_timestamp timestamp2) 
15-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Managed Timers

 CISCO CONFIDENTIAL
15.4   Managed Timers

15.4.1   Overview: Managed Timers
Managed timers are groups of timers that run together. A parent timer is used to represent a group 
of leaf (child) timers. The leaf timers are started and stopped directly, and work similarly to passive 
timers. The managed timer system maintains the leaf timers in a sorted list and links them all to the 
parent timer. The parent timer is controlled by the managed timer system and inherits the earliest 
expiration time of any of the leaf timers. This means that only the parent timer needs to be tested for 
expiration, which makes it straightforward to determine which timer expired.

15.4.2   Type and Context Values
Each leaf timer carries a type value and an opaque context value. 

The type value allows the code that processes expired timers to discern one kind of timer from 
another. This means that multiple timers corresponding to different kinds of events or actions can be 
linked together. 

The context value is an opaque 32-bit quantity that can be used for any purpose. It most often carries 
a pointer to some kind of data structure. 

15.4.3   Recursive Managed Timers
You can use the managed timer system recursively. That is, you can hierarchically link several parent 
timers under yet another parent timer. Using managed timers recursively improves efficiency, 
because it reduces the cost of the timer sorting operation from O(N) to O(log N). Recursive managed 
timers also aid modularity, because each subtree is loosely coupled and can be managed without any 
direct knowledge of its position relative to other subtrees.

15.4.4   Operation of Managed Timers
Once the timer hierarchy is established, you manipulate leaf timers using start, stop, and update 
functions. When a leaf timer is started, it is linked into a sorted list attached to its parent. The parent 
is then set to the earliest expiration time of any of its children. This process is repeated recursively. 
Thus, the highest parent (called the root) timer always reflects the next timer to expire. 

Managed timers can also be manipulated from interrupt routines. If a timer is going to be started, 
stopped, or updated from an interrupt routine, this fact must be flagged when the managed timer is 
initialized. The managed timer system automatically propagates this fact in the appropriate places in 
the timer hierarchy so that interrupt exclusion will be applied when necessary. In general, interrupts 
are not excluded when manipulating a subtree that does not require exclusion.

Only active (running) timers incur any overhead in the managed timer system. Stopped timers stay 
out of the way completely

To test whether a timer has expired, you test the root of the tree for expiration. If the root is expired, 
a single call returns the leaf timer that expired, from which the type and context information stored 
earlier can be obtained. This leaf timer must then be restarted or stopped, or it will continuously 
expire.

Starting in Cisco IOS Release 11.0, the scheduler allows a process to be notified when a managed 
timer expires. This timer is known as a watched managed timer. Only one managed timer can be 
watched. Howeer, because a single managed timer can represent an entire tree of timers, this is not 
Timer Services 15-9



 CISCO CONFIDENTIAL
really a restriction. The scheduler itself supports watched managed timers by linking the watched 
timer into its own timer tree. This means that the scheduler ultimately has a single managed timer to 
which every process timer tree is subordinate.

15.4.5   mgd_timer Data Structure
The primary data structure for managed timers is of type mgd_time . This should be completely 
opaque to all callers; code should never look inside of this data structure. This structure is typically 
embedded directly into another data structure rather than allocated separately and used through a 
pointer

15.4.6   Guidelines for Using Managed Timers
You need to be to be aware of the following when using managed timers:

• The mgd_timer block is 24 bytes in releases prior to Release 11.0 and 28 bytes in Releases 11.1 
and later), as compared to 4 bytes for a simple timestamp. For example, if you embed a timer in 
a data structure of which there are 50,000 copies, this could prove to be a significant amount of 
overhead. 

• The managed timer start and stop functions perform insertion sorts that can be expensive relative 
to simple timestamps. These calls are not appropriate for something that is updated by the receipt 
of a data packet, for instance. 

• The managed timer functions create webs of pointer linkages. Be careful that any timer that is 
part of an allocated structure is stopped before freeing that structure, and that no child (leaf) 
timers are ever used after their parent timer has been freed. It is safe to free a structure containing 
a managed timer if it is first stopped.

15.4.7   Initialize Managed Timers
Managed timers must be initialized before use. The timer hierarchy is determined at initialization 
time, because each timer’s parent is specified while the timer is being initialized. 

A parent timer must be initialized before its children. This means that a tree of managed timers must 
be initialized from the root downward.

Note Managed timers cannot be initialized from interrupt routines.

To initialize a parent timer with its parent timer, use the mgd_timer_init_parent()  function. To 
initialize the root timer for an application, specify a parent timer of NULL. 

void mgd_timer_init_parent(mgd_timer  *timer, mgd_timer *parent); 

Note The parent timer must be initialized before attempting to initialize a leaf (child) timer.
15-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Determine Initialization Status of a Managed Timer

 CISCO CONFIDENTIAL
To initialize a leaf timer, use the mgd_timer_init_leaf()  function. You specify the parent timer, 
and the leaf timer type, and a context pointer. If the timer is to be manipulated from interrupt 
routines, interrupt_environment  must be set to TRUE. 

void mgd_timer_init_leaf(mgd_timer  *timer, mgd_timer *parent, ushort type, 
void *context, boolean interrupt_environment); 

If a process is going to be awakened by the expiration of one or more managed timers, notify the 
scheduler of this fact by calling the process_watch_mgd_timer()  function and marking the root of 
the managed timer tree as being watched. 

void process_watch_mgd_timer(mgd_timer * timer, ENABLESTATE watch); 

15.4.8   Determine Initialization Status of a Managed Timer 
To determine whether a managed timer has been initialized, use the mgd_timer_initialized()  
function. 

boolean mgd_timer_initialized(mgd_timer  *timer); 

15.4.9   Modify the Timer Type
To set a new type value for a managed timer, use the mgd_timer_set_type()  function. The timer can 
be a leaf or parent timer, and must have been previously initialized. Note that this function is the only 
way to set a type in a parent timer. However, parent timers are normally invisible and do not need 
types. 

void mgd_timer_set_type(mgd_timer  *timer, ushort type); 

To return the opaque timer type for a managed timer, call the mgd_timer_type()  function. 

ushort mgd_timer_type(mgd_timer  *timer); 

15.4.10   Modify the Timer Context
To set a new context for a managed timer, use the mgd_timer_set_context()  function. The timer 
must be a leaf timer and must have been previously initialized. 

void mgd_timer_set_context(mgd_timer  *timer, void *context); 

To return the opaque timer context for a managed timer, call the mgd_timer_context()  function. 
This function can be called for leaf timers only; parent timers do not have a context word. 

void *mgd_timer_context(mgd_timer *timer); 

15.4.11   Start a Leaf Timer
To start a leaf timer after a delay from the current time, in milliseconds, or after a delay minus a 
pseudorandom jitter amount that is a percentage of the delay, use the mgd_timer_start() or 
mgd_timer_start_jittered() function. For starting a leaf timer with a 64bit delay, use the 
Timer Services 15-11



 CISCO CONFIDENTIAL
mgd_timer_start64() function. These functions can be called regardless of whether the timer is 
already running, and they can be called from interrupt routines. The timer must have been initialized 
before calling these functions. 

void mgd_timer_start(mgd_timer * timer, ulong delay); 

void mgd_timer_start_jittered(mgd_timer  *timer, ulong delay, ulong jitter_percent); 

void mgd_timer_start64(mgd_timer * timer, ulonglong delay);

15.4.12   Increase the Delay of a Leaf Timer
To increase the delay of a leaf timer with an additional number of milliseconds or by adding an 
additional number of milliseconds minus a pseudorandom jitter amount that is a percentage of the 
delay, use the mgd_timer_update()  or mgd_timer_update_jittered()  function. If the timer is 
stopped, this function does nothing. These functions can be called from interrupt routines. The timer 
must have been initialized before calling these functions. 

void mgd_timer_update(mgd_timer * timer, ulong delay); 

void mgd_timer_update_jittered(mgd_timer * timer, ulong delay, ulong jitter_percent; 

15.4.13   Set a Leaf Timer’s Expiration
To change a leaf timer’s expiration to the value of a timestamp if that value is sooner that the timer’s 
current expiration time, use the mgd_timer_set_soonest()  function. This function can be used 
regardless of whether the timer is already running. 

void mgd_timer_set_soonest(mgd_timer * timer, sys_timestamp timestamp); 

To set a leaf timer to expire at a specific epoch rather than after a time interval, use the 
mgd_timer_set_exptime()  function. This function can be used regardless of whether the timer is 
already running. 

void mgd_timer_set_exptime(mgd_timer * timer, sys_timestamp *time); 

15.4.14   Stop a Managed Timer
To stop a managed timer, use the mgd_timer_stop()  function. This function can be used for both 
leaf and parent timers. If the timer is a parent, this function recursively stops all the children of this 
parent. This is useful for such operations as shutting down a process, because it is not necessary to 
find all the running timers. This function can be called regardless of whether the timer is already 
running, and it can be called from interrupt routines. If the timer is not running, this function does 
nothing. 

void mgd_timer_stop(mgd_timer * timer); 

A stopped timer is completely unlinked from the managed timer tree, so it is safe to free the memory 
containing the timer

Caution If you choose to locate a mgd_timer structure inside of memory that has been allocated 
using malloc(), you must be sure to stop the mgd_timer before freeing the space. Because it is 
harmless to call mgd_timer_stop() on a timer that is already stopped, you should always call 
mgd_timer_stop()  on the timer before calling free() for the memory area. Failure to do so can 
cause router crashes with mgd_timer_set_exptime_internal()  in the backtrace. 
15-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Determine the State of a Managed Timer

 CISCO CONFIDENTIAL
15.4.15   Determine the State of a Managed Timer
Table 15-2Table 1 5 -2 describes the functions that allow you to determine the state of a managed 
timer. These functions can be used for both leaf and parent timers, except as noted, and they can be 
called from interrupt routines.

Table 15-2 Functions to Determine the State of Managed Timers

15.4.16   Esoteric Managed Timer Functions
This section discusses some managed timer functions that are used only infrequently. Do not use 
these functions except in specific cases.

15.4.16.1   Link and Delink Timer Trees
You can link entire timer trees into arbitrary places in other timer trees, and you can cleave off 
(unlink) a subtree. The only likely user of this is the event-driven scheduler. 

Linking and delinking a timer tree are roughly equivalent to starting and stopping a timer, except that 
the timer, which can be a parent, remains running. In particular, linking a timer tree causes an 
insertion sort into the parent timer, and delinking stops the parent timer if the delinked timer is the 
only running leaf timer

To link a timer tree into another timer tree, use the mgd_timer_link()  function. 

void mgd_timer_link(mgd_timer * timer, mgd_timer *master, mgd_timer **shadow
boolean interrupt_environ); 

To delink a timer subtree from the rest of the timer tree, use the mgd_timer_delink()  function. The 
timer being delinked can be a parent timer and can be running.

void mgd_timer_delink(mgd_timer ** timer); 

15.4.16.2   Set Extended Context
Leaf timers carry a single opaque word of context information. Normally, one context word should 
be enough for a timer. However, managed timers can be declared to have additional context 
information. Both parent and leaf timers can have this additional context information. Declaring 
additional context information is the only way to add context information to a parent timer. 

Description Function

Determine whether a timer is running. bo oleanmgd_timer_running(mgd_timer * timer) 

Determine whether a timer is both running and 
sleeping; that is, whether it is unexpired.

bo oleanmgd_timer_running_and_sleeping(mgd_timer * timer) 

Determine whether a timer is both running and 
awake; that is, whether it is expired.

bo oleanmgd_timer_expired(mgd_timer * timer) 

Return the address of the first expired timer in 
the timer tree.

leaf _timer = mgd_timer*mgd_timer_first_expired 
(mgd_timer *parent_timer); 

Return the address of the first running timer in 
the timer tree.

leaf _timer = mgd_timer*mgd_timer_first_running 
(m gd_timer*parent_timer); 

Return the number of milliseconds left before a 
timer expires.

lo ngmgd_timer_left_sleeping(mgd_timer * timer); 

lo nglongmgd_timer_left_sleeping64(mgd_timer * timer); 

Return the expiration timestamp for a timer. sy s_ti mestampmgd_timer_exp_time(mgd_timer* timer); 
Timer Services 15-13



 CISCO CONFIDENTIAL
To set an extended context for a timer, first declare the timer using the MGD_TIMER_EXTENDED  
function. Do not declare a mgd_timer directly. 

MGD_TIMER_EXTENDED(name, extra_context); 

Then to set the context words, use the mgd_timer_set_additional_context()  function. 

void mgd_timer_set_additional_context(mgd_timer * timer, ulong context_index, 
void *context); 

To retrieve the context value, use the mgd_timer_additional_context()  function. 

void *mgd_timer_additional_context(mgd_timer * timer, ulong context_index); 

15.4.16.3   Create Fenced Timers
Under normal circumstances, code that references timers recursively traverses the tree all the way to 
the leaf timers, ignoring the intervening parent timers. An example of a function that does this is 
mgd_timer_first_expired() . However, you might want to recursively traverse the tree down to an 
arbitrary point in the tree only, without going all the way to the leaf timer. To do this, set up a fence 
and marking all timers at a particular level as being fenced. Then the fence-level timer can be found 
by recursively traversing down from the master timer until the fence is reached. 

To set the fenced state of the timer, use the mgd_timer_set_fenced()  function. 

void mgd_timer_set_fenced(mgd_timer * timer, boolean state); 

To return the first subordinate fenced timer, use the mgd_timer_first_fenced()  function. 

mgd_timer *mgd_timer_first_fenced(mgd_timer * timer); 

15.4.16.4   Convert Timers
A stopped timer can be switched between being a leaf and a parent. This is useful under rare 
circumstances. The converted timer retains its parent, but type and context information may be lost.

To convert a parent timer to a leaf, use the mgd_timer_change_to_leaf()  function. Before a parent 
timer is converted to a leaf, all its children must be stopped, and steps should be taken to ensure that 
the children will not be started. 

void mgd_timer_change_to_leaf(mgd_timer * timer); 

To convert a leaf timer to a parent, use the mgd_timer_change_to_parent()  function. 

void mgd_timer_change_to_parent(mgd_timer * timer); 

15.4.16.5   Traverse a Tree of Managed Timers 
Two procedures are provided to aid in traversing (walking) a tree of managed timers. Only running 
timers are considered to be part of the tree. 

To return the next sibling of a timer, use the mgd_timer_next_running()  function. Because timers 
are stored in sorted order, the function returns the next member of the subtree that will expire. 

mgd_timer *mgd_timer_next_running(mgd_timer * timer); 

To return the immediate child of a timer, use the mgd_timer_first_child()  function. Use this 
function to descend to the next level while walking a timer tree. 

mgd_timer *mgd_timer_first_child( mgd_timer *parent_timer); 
15-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Example: Managed Timers

 CISCO CONFIDENTIAL
15.4.17   Example: Managed Timers
The following example illustrates the code for a protocol that requires a hello timer for each 
interface, plus a timer for an ager that runs periodically. 

First, decide how to structure the tree. One way is to put the ager timer and all hello timers at the 
same level under a single master. In addition, suppose you want to display when the next hello will 
be sent on any interface. Structure the tree to have a single master timer maste , under which is the 
ager timer ager and a parent timer hello_maste . Under hello_master there are individual hello 
timers for each interface. F igure15-2 illustrates this structure.

Figure 15-2 Sample Managed Timer Tree Structure

The declarations are as follows:

mgd_timer master; 
mgd_timer ager; 
mgd_timer hello_master;

The IDB contains the following:

mgd_timer idb_hello;

Define the timer types as follows:

enum {AGER, HELLO};

The initialization routine does the following:

mgd_timer_init_parent(&master, NULL); 
mgd_timer_init_leaf(&ager, &master, AGER, NULL, FALSE); 
/* 
*Start the ager.
*/

mgd_timer_start(&ager, 10*ONESEC); 
mgd_timer_init_parent(&hello_master, &master); 
FOR_ALL_SWIDBS(idb) {

mgd_timer_init_leaf(&idb->idb_hello, &hello_master, HELLO, idb, FALSE); 
mgd_timer_start_jittered(&idb->idb_hello, 30*ONESEC, 25); 

}
process_watch_mgd_timer(&master, ENABLE);

 S
38

44

master

ager hello_master

idb2 idb3idb1
Timer Services 15-15



 CISCO CONFIDENTIAL
At this point, all the timers are running. The protocol handler looks like the following:

... 
process_wait_for_event(...)
while (process_get_wakeup(&major, &minor)) {

switch (major) {
case QUEUE_EVENT:

/*
* The queue has packets in it.
*/

while (...) {
...

}
break;

case TIMER_EVENT:
/* 
* Process all expired timers.
*/

while (mgd_timer_expired(&master)) { 
mgd_timer *expired_timer;
idbtype *idb;
process_may_suspend();
expired_timer = mgd_timer_first_expired(&master); 
switch (mgd_timer_type(expired_timer)) { 
case AGER:

run_ager();
/* 
* Restart ager.
*/

mgd_ timer_update(expired_timer, 10*ONESEC);/* restart ager */ 
break; 

case HELLO: 
idb = mgd_timer_context(expired_timer); 
send_hello(idb);
mgd_timer_start_jittered(expired_timer, 30*ONESEC, 25); 
break;

default:
/*
* Make it go away!
*/

mgd_timer_stop(expired_timer); 
break;

} /* end switch timer type*/
} /* end while timer expired */
break;

} /* end switch event type */
} /* end while events outstanding */

You might have the following display routine:

printf(“\nNext hello occurs in %d seconds”,
mgd_timer_left_sleeping(&hello_master) / ONESEC);

When the process exits, you can stop all the timers as follows:

mgd_timer_stop(&master); 
15-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Choose Which Type of Timer to Use

 CISCO CONFIDENTIAL
15.5   Choose Which Type of Timer to Use

Follow these guidelines when deciding which type of timer to use:

• In most cases, use managed timers if you have more than one or two timers. This avoids either 
having to put many AWAKE checks into your block routines or having to run the process 
periodically to make the AWAKE checks. 

• Use passive timers for items that are updated at data-forwarding time, because the overhead of a 
mgd_timer_start()  can be significant.

15.6   Determine System Uptime

Use the system_uptime_seconds()  function when you need a measure of time that is monotonically 
increasing over a long time period. The value returned by this function rolls over after 136 years, so 
it is effectively guaranteed to always increase and never exhibit aliasing.

ulong system_uptime_seconds(void); 

This function is useful for such operations as timestamping when a link comes up, so that its up time 
can be displayed and will not roll over after 49 days.

Be careful about the units, however, because this function returns integer seconds, whereas other 
functions return milliseconds.
Timer Services 15-17



 CISCO CONFIDENTIAL
15-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Strings and Character Outp u
1 6
Strings and Character Output
This chapter describes the Cisco IOS software functions for printing strings and debugging 
messages.

16.1   Print Strings 

The Cisco IOS software provides several functions that allow you to print strings. Some of these 
functions are identical in many ways to the ANSI C functions of the same name. However, minor 
changes have been made to them to support Cisco IOS software-specific needs.

16.1.1   Print a String to the Connected Terminal
To generate output in response to a user command, use the printf() function. The output is 
displayed directly to the currently connected terminal. 

int printf (const char *format_string, ...); 

The formatting string consists of text, which is copied verbatim, and format descriptors. Each format 
descriptor formats one or two parameters from the parameter list, producing an output string. Unlike 
the standard C printf() function, the Cisco IOS printf() function allows a single format 
descriptor to format more than one parameter.

16.1.2   Print a Debugging String
When the platform user enables debugging, the platform prints debugging message on monitor 
terminals. To format debugging messages, use the buginf() function. The formatting strings for this 
function are the same as those for the printf() function. 

void buginf(const char *format_string, ...); 

16.1.3   Print a String into a Buffer
To format strings and place them into a buffer, use the sprintf() function. The formatting strings 
for this function are the same as those for the printf() function. 

int sprintf (char *string, const char *format_string, ...); 
16-1



 CISCO CONFIDENTIAL
16.1.4   Format Time Strings
The Cisco IOS time-of-day code allows you to format a time string using the systemwide printf(), 
sprintf(), and buginf() functions, producing a text string from a clock_epoch structure. To 
format a time string, use the %C format descriptor for Releases 11.0 and 11.1 and the %CC format 
descriptor for Releases 11.2 and later. Table 16-1 lists the parameters that the %C and %CC descriptors 
require. Table 1 6-2 lists the printf() modifiers that the %C and %CC modifiers support. 

Table 16-1 Time-String Descriptor Formats 

Table 16-2 %C and %CC Descriptor Modifiers 

16.1.4.1   Examples: Format Time Strings
This section provides several examples of how to format time strings.

In the following code, the %C format descriptor indicates that the time string will be formatted from 
the next two parameters passed to printf(). The first parameter is a time-formatting string—%U 
means to format the 12-hour time with an AM/PM indication. The second parameter is a time epoch.

clock_epoch current_time;
/*
* Get the current time.
*/

clock_get_time(&current_time);
printf(“ The time is %C”, “%U”, &current_time);/* Use %CC for Releases 11.2 and later. 
*/

This code displays a string similar to the following:

The time is 04:28:57 PM

The following example shows how you can combine the standard printf() format descriptors with 
those specific for time strings:

clock_epoch current_time;
/*
* Get the current time.
*/

clock_get_time(&current_time);
printf(“At %C, two plus two is %d”, “%U”, &current_time, 2 + 2);

This code displays a string similar to the following:

At 04:27:57 PM, two plus two is 4

Descriptor Format Description

char * Format string. See the format_time() function in the “Time-of-Day 
Services” chapter in the Cisco Internetwork Operating System API 
Reference for details about this string. 

clock_epoch * Time epoch to convert.

Modifier Description

nn Specifies the field width.

- Right-justifies the field.

# Formats the time as UTC rather than in the local time zone.
16-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Format Timestamps

 CISCO CONFIDENTIAL
16.1.5   Format Timestamps
To format a timestamp, use the T modifier (possible with other modifiers) followed by a single format 
code. Table 1 6 -3 lists the printf() modifiers and Table 16-4 lists the format codes you can use to 
format timestamps. 

When formatting timestamps, in general, the uppercase version of a format code requests a formatted 
time, and the lowercase letter requests a raw number. Specifying the l modifier requests that 
milliseconds be appended to the number of seconds.

Table 16-3 printf() Modifiers for Timestamps

Table 16-4 print() Format Codes for Timestamps

16.1.5.1   Examples: Format Timestamps
Table 16-5 shows examples of formatting the printing of elapsed times. These formats include the 
following components:

• ms—Milliseconds

• s or ss—Seconds

• m or mm—Minutes

• hh or yh—Hours

Modifier Description

- Right-justifies the field. This modifier is meaningful only if you 
specify a field width.

# Adds a leading 0 or 0x for octal or hexadecimal formatting codes, 
respectively. 

l Formats integers as long integers instead of as normal integers.

Format Code Description

TA
Ta

Formats an absolute time, printing the numerical value of a 
timestamp. The argument is a 64-bit sys_timestamp.

TC
Tc

Formats a difference between two timestamps, printing the number of 
centiseconds. The argument is a 32-bit ulong.

TD
Td

Formats a difference between two timestamps, printing the number of 
milliseconds. The argument is a 4-bit sys_deltatime.

TE
Te

Formats an elapsed time, printing the time elapsed since the 
timestamp. The argument is a 64-bit sys_timestamp.

TF
Tf

Formats a future time, printing the time remaining until the 
timestamp. The argument is a 64-bit sys_timestamp.

TG
Tg

Formats a future time of a managed timer, printing the time remaining 
until the timestamp. The argument is a pointer to a managed timer.

TM
Tm

Formats a difference between two timestamps, printing the number of 
milliseconds. The argument is a 32-bit ulong.

TN
Tn

Formats the current time, printing the numerical value of the current 
time. This format takes no argument.

TS
Ts

Formats a difference between two timestamps, printing the number of 
seconds. The argument is a 32-bit ulong. 
Strings and Character Outp u 16-3



 CISCO CONFIDENTIAL
• xd—Days

• xw—Weeks

• xy—Years

Table 16-5 Examples of Formatting Timestamps 

Table 16-6 shows examples of the output for various time values.

Table 16-6 Examples of Timestamp Output

16.1.6   Format AppleTalk Addresses
The printf() function provides two format codes specific for formatting AppleTalk addresses, %a 
and %A. 

16.1.6.1   %a Format Code
The %a code formats one parameter, a long, as either an AppleTalk address, such as 17043.23, or a 
textual node name, if known, such as Router.Ethernet1 . All numbers are expressed as decimal.

You can specify optional conversion flags to modify the meaning of %a. These are described in 
Table 16-7. 

Table 16-7 printf() %a Conversion Flags 

Print Format Specification Print Output Format

%TE hh:mm:ss xdyyh xwyd xyyw

%lTE hh:mm:ss.mmm xdyyh xwyd xyyw

%#TE m hh:mm:ss xdyyh xwyd xyyw

%Te s

%lTE s.ms

%#Te ms

Value Time Output

6000 6 seconds 0

60000 60 minutes 1

600000 10 minutes 10

6000000 1 hour, 40 minutes 1:40:00

60000000 16 hours plus 16:40:00

600000000 6 days plus 6d22h

6000000000 9 weeks plus 9w6d

60000000000 1 year plus 1y47w

Conversion Flag Description

- Ignored.

0 Ignored.
16-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Format AppleTalk Addresses

 CISCO CONFIDENTIAL
If you do not specify the optional l flag, the parameter is interpreted as a 3-byte value; the upper 
2 bytes are a network number and the lower byte is a node number. 

If you do not specify the # flag, AppleTalk addresses will appear in one of the following forms:

• network.node. This is the default. 

• upper_byte.lower_byte.node. This form is used only if the appletalk alternate-addressing 
global configuration command is enabled. upper_byte is the upper byte of the network number
and lower_byte is the lower byte of the network number.

Table 16-8 shows examples of using the conversion flags to format the value 0xab0245.

Table 16-8 Examples of Using the printf() %a Conversion Flags 

16.1.6.2   %A Format Code
The %A code formats one parameter, a long, as either an AppleTalk network address or cable range. 
All numbers are expressed as decimal.

You can specify optional conversion flags to modify the meaning of %A. These are described in 
Table 16-9. 

+ Ignored.

# Converts the value to a textual node name, if known. This is done only 
if the appletalk name-lookup-interval global configuration 
command is enabled. Otherwise, this flag is ignored.

nn Minimum field width. Spaces are used to fill the field to this width.

* Reads the field width from the next parameter.

l Interprets the parameter to be converted as a 2-byte network number 
followed by a 1-byte node number and a 1-byte socket number. The 
socket number is not printed.

Conversion Flags Displays Sample Value of 0xab0245 as ...

%a 43778.69

%#a Router.Ethernet1

%la 171.2

Conversion Flag Description
Strings and Character Outp u 16-5



 CISCO CONFIDENTIAL
Table 16-9 printf() %A Conversion Flags 

If you do not specify the optional # or l flag, the parameter is interpreted as a 3-byte value; the upper 
2 bytes are a network number and the lower byte is a node number. 

If you specify the # flag, AppleTalk cable ranges will appear in one of the following forms:

• network–network. This is the default. 

• network if the lower two bytes are 0. This is the default if the lower two bytes are 0.

• upper_byte1.lower_byte1–upper_byte2.lower_byte2. This forms is used only if the appletalk 
alternate-addressing global configuration command is enabled. upper_byte1 and upper_byte2 
are the upper bytes of the network number, and lower_byte1 and lower_byte2 are the lower bytes 
of the network number.

• upper_byte.lower_byte.node. This form is used only if the appletalk alternate-addressing 
global configuration command is enabled and the lower two bytes are 0. upper_byte is the upper 
byte of the network number, and lower_byte is the lower byte of the network number.

If you specify the l flag, AppleTalk addresses will appear in one of the following forms:

• network.node–socket. This is the default. 

• upper_byte.lower_byte.node–socket. This form is used only if the appletalk 
alternate-addressing global configuration command is enabled. upper_byte is the upper byte of 
the network number, and lower_byte is the lower byte of the network number. 

If you do not specify either the # or l flag, AppleTalk addresses will appear in one of following 
forms:

• network.node. This is the default. 

• upper_byte.lower_byte.node (network.node). This form, which prints the address in both 
formats, is used only if the appletalk alternate-addressing global configuration command is 
enabled. upper_byte is the upper byte of the network number, and lower_byte is the lower byte 
of the network number.

Table 16-10 shows examples of using the conversion flags to format the values 0x12345678 and 
0x123456.

Conversion Flag Description

- Ignored.

0 Ignored.

+ Ignored.

# Interprets the parameter to be converted as two network numbers, with 
the upper 2 bytes as one number and the lower 2 bytes as the other 
number. Do not specify both the # and l codes.

nn Minimum field width. Spaces are used to fill the field to this width.

* Reads the field width from the next parameter.

l Interprets the parameter to be converted as a 2-byte network number 
followed by a 1-byte node number and a 1-byte socket number. The 
socket number is not printed. Do not specify both the # and l codes. 
This flag is ignored if you specify #.
16-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Format Banyan VINES Addresses

 CISCO CONFIDENTIAL
Table 16-10 Examples of Using the printf() %A Conversion Flags 

16.1.7   Format Banyan VINES Addresses
The printf() function provides two format codes specific for formatting Banyan VINES addresses, 
%z (lowercase z) a n %Z (uppercase Z). 

16.1.7.1   %z Format Code
The %z (lowercase z) code formats two parameters, both long types, as a Banyan VINES address. 
The first parameter is interpreted as a VINES server number and the second is interpreted as a 
VINES host ID. 

You can specify optional conversion flags to modify the meaning of %z. These are described in 
Table 16-11. 

Table 16-11 printf() %z Conversion Flags 

If you do not specify the # flag, VINES addresses will appear in one of the following forms:

• xxxxxxxx:xxxx, where x is a hexadecimal digit.

• uuuuuuuuuu:uuuuu. This format is used only if the vines decimal global configuration command 
is enabled. u is a decimal digit.

Server numbers are always padded with zeros to eight digits, or ten digits if the vines decimal 
command is enabled. Host IDs are always padded with zeros to four digits, or five digits if the vines 
decimal command is enabled.

As an example, if you specify the %z flag to format the value 0x103030, the value is displayed as 
00001030:30 or0000004144:00048 if vines decimal is enabled.

Conversion Flags
Displays Sample Value of 
0x12345678 as ...

Displays Sample Value of 
0x123456 as ...

%A 1193046.1201

1 Values printed do not represent meaningful AppleTalk addresses or ranges.

4660.86

%#A 4660-22136 18-133981

%lA 4660.86-120 18.52-86

Conversion Flag Description

- Ignored.

0 Ignored.

+ Ignored.

# Converts the parameters to a textual node name, if known. The value 
must map from a matching VINES host.

nn Minimum field width. Spaces are used to fill the field to this width.

* Reads the field width from the next parameter.

l Ignored.
Strings and Character Outp u 16-7



 CISCO CONFIDENTIAL
16.1.7.2   %Z Format Code
The %Z (uppercase z) code formats one parameter, of type long, as a Banyan VINES server number. 
You can specify optional conversion flags to modify the meaning of %Z. These are described in 
Table 16-12. 

Table 16-12 printf() %Z Conversion Flags 

If you do not specify the # flag, VINES addresses will appear in one of the following forms:

• xxxxxxxx:xxxx, where x is a hexadecimal digit.

• uuuuuuuuuu:uuuuu. This format is used only if the vines decimal global configuration command 
is enabled. u is a decimal digit.

Server numbers are always padded with zeros to eight digits, or ten digits if the vines decimal 
command is enabled. 

As an example, if you specify the %Z flag to format the value 0x103030, the value is displayed as 
00103030.

Conversion Flag Description

- Ignored.

0 Ignored.

+ Ignored.

# Converts the parameter to a textual node name, if known. The value 
must map from a matching VINES server.

nn Minimum field width. Spaces are used to fill the field to this width.

* Reads the field width from the next parameter.

l Ignored.
16-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Exception Handling
1 7
Exception Handling
17.1   Overview: Exception Handling

The Cisco IOS system provides a limited form of exception handling that can be used by processes. 
This exception handling was originally designed to provide an easy method for processes to catch 
hardware exceptions, but it has been extended to provide limited software signaling. In no way is the 
Cisco IOS exception handling intended as a general-purpose signaling mechanism, as there are 
simple message passing and IPC primitives provided. It is important to note that whenever a process 
receives a signal, it will be forced from its current point of execution into the signal handler. If the 
process is currently suspended, it will be scheduled to execute and will begin execution in the handler 
routine. When the handler routine exits, it will return to the point where the scheduler was called. If 
the process is executing at the time when the signal is received, it will immediately be forced into 
the handler routine. When the handler routine exits, the process will continue executing where it was 
before the signal occurred. 

17.2   List of Exceptions

There are a variety of exceptions (or signals) that can occur in the router. The majority of them are 
related to exceptions in the processor hardware, but several of them are related to the software. 
Table 17-1 presents the full list of exceptions. 

Table 17-1 Exception Signals

Signal Description

SIGABRT Used by abort

SIGALRM Alarm clock

SIGBUS Bus error

SIGCLD
SIGCHLD

Death of a child

SIGSEGV Segmentation violation

SIGEMT EMT instruction

SIGEXIT Sent just prior to process destruction

SIGFPE Floating-point exception

SIGHUP Hangup

SIGILL Illegal instruction
17-1



 CISCO CONFIDENTIAL
17.3   Register an Exception Handler

A process is allowed to register a (possibly different) exception handler for each of the exceptions 
listed above, with the exception of the SIGKILL exception, which may not be caught. These error 
handlers can be good for a single use or for as long as the process is executing. 

17.3.1   Register a One-Time Handler
A process can register a one-time error handler by calling the signal_oneshot()  function:

signal_handler signal_oneshot(int signum, signal_handler handler); 

This function is generally called by a process that expects to produce hardware exceptions. 

17.3.1.1   Example: Register a One-Time Handler
As an example, the Cisco 1000 router is designed to trap any bus error caused while accessing its 
Flash memory. The following code is the exception handler for this: 

static void c1000_handle_buserror(int signal, int subcode, void *info, char *bad_addr)
{

longjmp(&berr_buf,1);
}

This exception handler simply returns execution to the point before the bus error was generated so 
that the process can clean up and continue executing. 

The following code fragment installs the exception handler. This code fragment installs a one-shot 
exception handler and then attempts to call the Flash read function. If the read causes a bus error, 
the exception handler routine will be called, which will return control (via the longjump) to the point 
just before the error occurred. Note that the code reinstalls the original exception handler before it 

SIGINT Interrupt (rubout)

SIGIOT IOT instruction

SIGKILL Kill

SIGPIPE Write on a pipe with no one to read it

SIGPWR Power-fail restart

SIGQUIT Quit (ASCII FS)

SIGSYS Bad argument to system call

SIGTERM Software termination signal from kill

SIGTRAP Trace trap

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

SIGWDOG Watchdog timer expiration

Signal Description
17-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Register a Permanent Handler

 CISCO CONFIDENTIAL
finishes. This removes the error handler it installed, which might not have been invoked and 
therefore might still be active, but it also restores whatever handler might have been present before 
this routine was called.

oh = signal_oneshot(SIGBUS, c1000_handle_buserror); 
if (setjmp(&berr_buf) == 0) {

i = (*devcons->dev_read_wrap_fn)(dev, buf, addr, len);
} else {

i = 0;
dev_chk(dev);

}
signal_oneshot(SIGBUS, oh);

17.3.2   Register a Permanent Handler
Permanent exception handlers are generally used to catch software errors, as opposed to the one-time 
handlers that are generally used for hardware errors. A process registers a permanent exception 
handler by calling the signal_permanent()  function: 

signal_handler signal_permanent(int signum, signal_handler handler); 

This function is generally called by a process that wants to catch a software exception such as the 
SIGEXIT signal that is sent as part of process termination. A handler for this signal can be used to 
clean up the data structures for a process and release any memory it might be using. 

17.3.2.1   Example: Register a Permanent Handler
The following Banyan VINES code registers a handler to clean up when the process is terminated:

signal_permanent(SIGEXIT, vines_input_teardown); 

When the VINES code terminates, the vines_input_teardown  routine is executed:

void vines_input_teardown(int signal, int dummy1, void *dummy2, char *dummy3)
{

paktype *pak;

reg_delete_raw_enqueue(LINK_VINES);
reg_delete_raw_enqueue(LINK_VINES_ECHO);
process_watch_queue(vinesQ, DISABLE, RECURRING);
while ((pak = process_dequeue(vinesQ)) != NULL)

retbuffer(pak);
delete_watched_queue(&vinesQ);
vines_pid = 0;

}

17.4   Cause Exceptions

Most exceptions are caused by hardware exceptions in the CPU. It is possible to cause software 
exceptions, but these should be restricted to exceptions caused by the Cisco IOS kernel and sent to 
processes. A software exception is signaled by calling the signal_send() function. 

void signal_send(pid_t pid, int signum); 

There should be no need for this routine to ever be caused by a process. Interprocess communication 
should use one of the other defined methods in the Cisco IOS kernel. 
Exception Handling 17-3



 CISCO CONFIDENTIAL
17.4.1   Example: Cause Exceptions
The following example of causing exceptions is the call from the Cisco IOS kernel when a process 
is killed:

/*
* Give the process one last chance to clean up. If the process is already dead,
* the code got here as the result of a signal(pid, SIGEXIT) and not a 
* process_kill(pid).
*/

if (!process_already_dead)
signal_send(forkx->pid, SIGEXIT); 
17-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Debugging and Error Loggi n
1 8
Debugging and Error Logging
The Cisco IOS software provides several debugging mechanisms for development engineers and 
support personnel. These include core file generation, a simple ROM-based debugger, a client 
debugging stub for host-based debuggers, formatted output routines for high-level tracing, and 
compile-time options to include additional tracing and logging.

18.1   Debug CPU Exceptions

A CPU exception occurs when the executing thread of control attempts to perform an undefined 
operation, such as accessing an invalid address in memory or dividing by zero. Also, if Cisco IOS 
software detects an internal error, it executes a CPU-specific instruction to declare a 
software-detected exception. 

When an exception occurs, the Cisco IOS software determines whether the exception can be handled 
or whether it represents a bug. For example, on some processors, the Cisco IOS software detects 
misaligned accesses to memory and handles the access in software, returning from the exception. 
Additionally, some parts of the Cisco IOS software explicitly trap exceptions, for example, when 
accessing device registers of removable devices.

If the exception is not handled, the router or other platform is automatically reloaded in order to 
restore the system to a known state. To facilitate debugging after an exception, the Cisco IOS 
software includes several options for modifying the handling of fatal exceptions.

18.1.1   Use Core Files to Debug CPU Exceptions
A router platform can be configured to generate a core file when a fatal exception occurs. The core 
file contains an image of all main memory on a platform at the time the exception occurred. 

Note Currently, the handling of I/O memory in core files is platform dependent and in many cases 
is not handled properly.

In Release 12.0, the tools for troubleshooting crashed related to memory corruption were improved. 
These improvements include the ability to write core files to flash through the exception flash 
command. This command enables / disables writing a core file to flash. While this command is 
18-1



 CISCO CONFIDENTIAL
enabled, if a crash occurs or a command given to write the core file, a core file will be written to 
flash. The core file on the flash device will be compressed. You can decompress it using gunzip or 
any unzipper that understands LZ77 coding.

The improvements also include the memory sanity command, which is the same as the debug 
sanity command with the enhancement of saving the information in NVRAM, plus a bit more 
information is saved, such as caller_pc, when a buffer has been allocated:

[no] memory sanity [trace / queue / chunk / buffer]

The memory sanity command extends the functionality of debug commands across reboots. In 
cases of memory leaks, customers often re-boot the router, making it impossible to get core dumps 
if debug sanity was enabled.

A core file is written by the Cisco IOS software using the UDP/IP stack and the regular device 
drivers. This results in several restrictions with using the core file mechanism:

• A core file can be written only when the thread of control is a process. If the thread of control is 
the scheduler, a scheduler test predicate, or an interrupt service routine, a core file is not written.

• The process associated with the exception is placed in a special wait condition to keep it from 
executing further and to save its register context at exception time. If the service of this process 
is needed for IP to operate (such as the IP Input process), a core file cannot be written.

• If the process associated with the exception is receiving a steady source of input packets from the 
same interface that is used for the core file, the input interface queue might fill, causing the core 
file write to fail.

• If memory is badly corrupted (such as the packet buffer list being overwritten), further exceptions 
are likely as the router allocates buffers to write the core file. An exception that occurs while 
writing a core file aborts the core file writing process.

• Other processes that share data structures with the exception process might experience 
exceptions if they execute while the core file is being written. These exceptions are treated as fatal 
errors and abort the core file write. 

18.1.1.1   Configure the Cisco IOS Software to Generate a Core File 
To generate a core file, perform the following tasks in global configuration mode: 

Task Command

Step Specify the transfer protocol. If you omit this 
command, TFTP is used.

exception protocol {ftp | rcp | tcp}

Step If you wish to write the core file to flash, enable 
this command. If not, disable it with the no 
option. While enabled, this command will write 
a core file to flash if either a crash occurs or a 
command to write the core file is given.

[no] exception flash { all / iomem / procmem }

                                        { dev [:partition] }

Step Specify the name of the core file. If you omit 
this command, the core file is named 
routername-core, where routername is the name 
of the router set with the hostname command.

exception core-file dump_filename

Step Write the core file. exception dump dump_host
18-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Debug with the ROM Monitor

 CISCO CONFIDENTIAL
18.1.1.2   Analyze a Core File
You can analyze a core file with GDB, grovel, or UNIX tools. 

Analyze a Core File with GDB
The Cygnus GNU GDB debugger contains support for reading Cisco IOS core files. For information 
about using GDB, see the Cisco Engineering Tools Manual . 

Analyze a Core File with Grovel
You can analyze core files with grovel, which is an internal tool for operating on router core files. 
It is particularly useful for performing operations such as executing the show ip route or show 
memory command on a postmortem core dump to examine the state the router was in when it 
crashed. 

Note grovel is not for the faint of heart.

You can add functionality to grovel by copying the relevant sections of Cisco IOS router code into 
the grovel framework and using the appropriate macros to correct the addresses.

grovel is very dependent upon data structures in the current Cisco IOS router code. grovel is 
maintained manually, so frequently the first step to using grovel is to update it to work with the 
current version of the Cisco IOS code. 

To check out a copy of grovel, issue the following with your CVSROOT pointing at the appropriate 
Cisco IOS source repository: 

cvs checkout grovel

For more information about grovel, contact the Software Development Tools group at the e-mail 
alias sw-tools-group.

Analyze a Core File with UNIX Tools
Core files are simply a dump of memory (although this will change in the future to include header 
information), so you can use UNIX tools such as od can be used to dump the image in hexadecimal 
for analysis.

18.1.2   Debug with the ROM Monitor
If the four least-significant bits of the configuration register (the boot source specifier) are 0, the 
system stops at the ROM monitor prompt after an unhandled system exception. The ROM monitor 
debugger is primitive and is rarely used for normal debugging. 

In the ROM monitor, you can enter one of the debugging commands listed in Tabl e18-1.

Table 18-1 ROM Monitor Debugging Command 

Command Explanation

alter Changes and examines memory

stack Provides a traceback
Debugging and Error Loggi n 18-3



 CISCO CONFIDENTIAL
18.1.3   Debug with GDB
The router contains support for source-level symbolic debugging using the Cygnus GNU GDB 
debugger. There are two major modes for debugging a router with GDB: kernel mode and process 
mode. Under normal circumstances, you use GDB kernel mode when debugging Cisco IOS 
software. In some situations, such as debugging a remote customer’s router over the Internet, you 
must use the more restricted (and dangerous) process mode debugging. 

Caution Do not enter any of the commands listed in this section unless you are connected to the 
router via GDB. Once a debugger command is issued, the router becomes unusable until the host 
debugger connects to the router.

18.1.3.1   Debug in GDB Kernel Mode
If you have access to the console port of a router, kernel debugging is the preferred way to debug the 
router. In kernel debugging mode, the entire router is stopped during the exception, freezing all 
system states. 

To enter GDB kernel debugging mode, use the gdb kernel EXEC command:

gdb kernel

This command starts the remote debugging protocol and executes a breakpoint. At this point, you 
can set any breakpoints as needed, or you can continue execution and wait for an exception. Once 
the gdb kernel command has been executed, all unhandled exceptions are passed to the debugging 
session on the console port.

18.1.3.2   Debug in GDB Process Mode 
In some situations, you cannot gain access to the console port of the router. In these situations, you 
can debug in process mode. Process debugging mode works by intercepting the exceptions of a 
specified process, placing the process into a special wait state where it will not be scheduled, and 
then running the process of the debugger to debug the failed process. 

Because the Cisco IOS software continues to run during process debugging, it is possible to debug 
a router over a Telnet session or via a modem connected to the AUX port or, on a communication 
server, to any port.

There are various restrictions associated with process mode debugging:

1 Only processes can be debugged. Process debugging is not possible for the scheduler, a scheduler 
test predicate, or an interrupt service routine.

2 The process being debugged is placed in a special wait condition to keep it from executing further 
and to save its register context at the time of the exception. If the service of this process is needed 
for the debugging path—such a TCP/IP when debugging over a Telnet session—the process 
cannot be debugged.

3 If the process being debugged is receiving a steady source of input packets from the same 
interface as is used for the debugging session, the input interface queue might fill, causing the 
debugging session to terminate.

4 If memory is badly corrupted—such as the packet buffer list being overwritten—further 
exceptions are likely as other processes are scheduled. An exception that occurs in any other 
process is fatal.
18-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Debug with buginf() and the debug Command

 CISCO CONFIDENTIAL
5 Other processes that share data structures with the process being debugged can execute in cases 
where they would not execute before, while the process being debugged is blocked. This can 
cause exceptions in other processes because of an inconsistent data structure state.

6 Breakpoints in common routines will cause fatal exceptions in other processes that are not being 
debugged. Single-stepping through a common routine has the same effect, because the debugger 
inserts breakpoints to implement single-stepping.

7 Exceptions that occur while the process being debugged is running at elevated IPL are fatal and 
cannot be trapped for process debugging. This includes single-stepping through code that locks 
out interrupts.

To use process debugging, use the show process command to determine the process ID of the 
process to debug. Then use the gdb debug pid command, where pid is the process ID of the process 
to debug, to start a debugging session. The next time the process is scheduled for execution, it will 
execute a breakpoint prior to resuming control.

If you need only read-only access, the gdb examine pid command is a much safer alternative. It 
provides read-only access to router memory and the registers of a specified process. It does not block 
anything or allow write access to memory, so it is difficult to do damage in this mode.

18.2   Debug with buginf() and the debug Command

The router has an extensive collection of internal trace points that you can enable with debug EXEC 
commands. These commands provide formatted output of various internal data structures and trace 
states for Cisco IOS software components. 

It is highly useful to extend the debug mechanism as new features are added to the Cisco IOS 
software. To do this, place calls to the buginf() function at useful places throughout your code. 
Consider providing the information that you want to see when code is behaving erratically in a 
platform on which you cannot run GDB. 

Calls to buginf() are sent through the system logging mechanism, similarly to the more formal 
errmsg() function. This provides logging to multiple terminals and remote SYSLOG servers. One 
consequence of this is that messages can be delayed or lost during periods of heavy logging.

18.2.1   Debug Critical Code Sections 
Occasionally, you might need to bypass the system logging mechanism in order to ensure that a 
message is output. This capability is reserved for critical use only, because it locks out interrupts 
while running and slows down the system dramatically, ensuring that no messages are lost.

Any such debugging messages should not be controlled via the debug command. Instead, enable 
them via compile-time conditionals.

To output a critical message, use the fprintf() function with the special destination CONTT .

18.3   Debug Using Compile-Time Conditionals

The Cisco IOS software contains several compile-time conditionals to provide additional debugging 
support. These conditionals often grow data structures or slow down the system, so use them with 
care.
Debugging and Error Loggi n 18-5



 CISCO CONFIDENTIAL
18.3.1   Trace Buffer Leaks
Various pieces of software occasionally “forget” to return buffers to the free pool when done with 
them. To get the list of currently allocated buffers, you can use the show buffer allocated EXEC 
command, which prints a list of all allocated buffers, or the show buffer interface EXEC command, 
which prints only buffers that sit on the interface input queue for more than 1 minute. If the output 
of these two commands provides no hint about where the buffers were leaked, you can get more 
detailed information about the buffer header and buffer data by performing the following tasks:

Another way to determined where the buffers were leaked is to use GDB to print the buffer header 
and the buffer’s data.

However, sometimes all this information is not enough to determine where the leak is occurring. The 
next step is to find out which routine allocated the leaked buffers. To do this, rebuild the image with 
a debug flag:

rm buffers.o
make GDB_FLAG=”-g -DBUFDEBUG”

Then, issue the show buffers allocated command again. The Alloc PC field shows the routine that 
allocated this buffer.

18.3.1.1   Example: Trace Buffer Leaks
The following example traces a buffer leak on Ethernet interface 0.

The show buffers ethernet 0 command results in output similar to this:

Small buffer starting at memory location 0xD2108.

0D2108: 000D1F9C 000D2274 00000000 00005435 ......"t......T5
0D2118: 000056C2 800000A8 00000001 00000000 ..VB...(........
0D2128: 000DB278 00000000 00008003 00000000 ..2x............
0D2138: 00000000 00000014 000D2210 00000000 ..........".....
0D2148: 00000000 00000000 12149484 12149484 ................
        :
Small buffer starting at memory location 0xD23E0.

0D23E0: 000D2274 000D254C 00000000 00005435 .."t..%L......T5
0D23F0: 000056C2 800000A8 00000001 00000000 ..VB...(........
0D2400: 000DB278 00000000 00008003 00000000 ..2x............
0D2410: 00000000 00000014 000D24E8 00000000 ..........$h....
        :
0D2510: 00014BC8 0000012E 00000352 01400007 ..KH.......R.@..
0D2520: 00E20000 000F001F 01C000C3 2E6D4DDA .b.......@.C.mMZ
0D2530: 00000000 00000006 00000003 00000000 ................
0D2540: 00000000 00000000 00000000 000D23E0 ..............#`

Small buffer starting at memory location 0xD254C.

Task Command

List the buffer headers. show buffers [allocated] [interface]

Display the buffer data of selected buffers. show memory address1 address2
18-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Trace Buffer Leaks

 CISCO CONFIDENTIAL
You can analyze hex dumps directly or, to make the analysis easier, you can combine the hex output 
with GDB.  Using your favorite text editor, extract the lines that contain the string “starting at” and 
then prune down to the addresses themselves, for example, (0xd2108), which is a block address.  
Using GDB—probably the gdb examine process command so that it does not affect a running 
system—add in an appropriate “print” and typecasts:

print * (paktype *) (((blocktype *)0xd2108)+1)

(gdb) $15 = {next = 0x0, if_input = 0xdb278, if_output = 0x0, flags = 32771, mci 
_status = 0, desthost = 0, length = 20, dataptr = 0xd2210 , cb = 0x0, bridgeptr = 0x0, 
cacheptr = 0x0, unspecified = {303338628, 303338628}, inputtime = 3033387 28, 
datagramsize = 60, enctype = 1, enc_flags = 0, datagramstart = 0xd21ee , lin ktype = 7, 
refcount = 1, clns_nexthopaddr = 0x0, clns_dstaddr = 0x0, clns_srcadd r = 0x0, 
clns_segpart = 0x0, clns_optpart = 0x0, clns_qos = 0x0, clns_datapart =  0x0, 
clns_flags = 0, atalk_srcfqa = 0, atalk_dstfqa = 0, atalk_dstmcast = 0, at alk_datalen 
= 0, atalk_dataptr = 0x0, classification = 0 '\000', authority = 0 ' \000', lat_of_link 
= 0x0, lat_of_i_o = 0x0, lat_of_data = 0x0, lat_of_size = 0, lat_of_dst = {0, 0, 0}, 
lat_of_idb = 0x0, lat_groupmask = 0x0, llc2_cb = 0x0, ll c2_sapoffset = 0, llc2_enctype 
= 0, llc2_sap = 0 '\000', lack_opcode = 0 '\000',  peer_ptr = 0, e = {encaps = {0 
<repeats 17 times>, 255, 65535, 0, 3073, 1289, 2 048, 8200, 49797, 2048}, encapc = 
{'\000' <repeats 35 times>, "\377\377\377\000\ 000\f\001\005\t\b\000 
\b\302\205\b\000"}}}

For example, if the packet is an IP packet, you can add the following print and typecasts:

print *(iptype *)(((blocktype *)0xD1EAC)+1)

$69 = {next = 0x0, if_input = 0xdad8c, if_output = 0x0, flags = 32771, mci_statu s = 0, 
desthost = 0, length = 20, dataptr = 0xd2564 , cb = 0x0, bridgeptr = 0x0, cacheptr = 
0x0, unspecified = {106017556, 106017432}, inputtime = 106017576, da tagramsize = 60, 
enctype = 1, enc_flags = 0, datagramstart = 0xd2542 , linktype = 7, refcount = 1, 
clns_nexthopaddr = 0x0, clns_dstaddr = 0x0, clns_srcaddr = 0x 0, clns_segpart = 0x0, 
clns_optpart = 0x0, clns_qos = 0x0, clns_datapart = 0x0, clns_flags = 0, atalk_srcfqa = 
0, atalk_dstfqa = 0, atalk_dstmcast = 0, atalk_da talen = 0, atalk_dataptr = 0x0, 
classification = 0 '\000', authority = 0 '\000', lat_of_link = 0x0, lat_of_i_o = 0x0, 
lat_of_data = 0x0, lat_of_size = 0, lat_of _dst = {0, 0, 0}, lat_of_idb = 0x0, 
lat_groupmask = 0x0, llc2_cb = 0x0, llc2_sap offset = 0, llc2_enctype = 0, llc2_sap = 0 
'\000', lack_opcode = 0 '\000', peer_ ptr = 0, e = {encaps = {0 <repeats 19 times>, 
519, 260, 13894, 0, 3073, 568, 204 8}, encapc = {'\000' <repeats 38 times>, 
"\002\a\001\0046F\000\000\f\001\0028\b\ 000"}}, version = 4, ihl = 5, tos = 0, tl = 40, 
id = 33938, ipreserved = 0, dont fragment = 0, morefragments = 0, fo = 0, ttl = 59 ';', 
prot = 6 '\006', checksum

As another example, to examine TCP data, add the following print and casts:

print *(tcptype *) ((iptype *)(((blocktype *)0xD25C8)+1)+1)

(gdb) $70 = {sourceport = 513, destinationport = 995, sequencenumber = 953474086 , 
acknowledgementnumber = 0, dataoffset = 5, reserved = 0, urg = 0, ack = 0, psh = 0, rst 
= 1, syn = 0, fin = 0, window = 0, checksum = 33508, urgentpointer = 0 , data = 
{"\000\000\000\000"}}

Because you can create many of these lines using keyboard macros and then paste them into a GDB 
window in one operation, you can quickly get a log of all the missing buffers on a system.
Debugging and Error Loggi n 18-7



 CISCO CONFIDENTIAL
18-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  4
Network Services





C H A P T E R

 CISCO CONFIDENTIAL

Binary Trees
1 9
Binary Trees
19.1   Overview: Binary Trees

One common task that must be performed in the router software is storing and retrieving large 
amounts of information quickly based on a keyed lookup. The Cisco IOS software provides a variety 
of data structures and utilities in generic libraries that allow you to do this easily. Several data 
structures and utilities are provided because there are various time and space tradeoffs in choosing a 
data structure for this task.

Binary trees are suitable for storage and keyed retrieval data structures when the following criteria 
are present: 

• Insertion and deletion manipulations of entries will occur very infrequently relative to the 
frequency of retrieval.

• The keys for the entries are relatively small, for example, a 32-bit or 64-bit quantity.

• The key space might be relatively sparse or unevenly distributed.

• You will need fast access to any entry in the data structure even when the data structure holds 
hundreds or thousands of entries. 

• The speed of insertions and deletions from the data structure is not as important as the speed of 
retrieval.

However, binary trees are not without their costs. Binary trees have the following characteristics:

• Insertion and deletion operations might incur high CPU costs as the tree is rebalanced.

• The per-entry memory overhead can be considerable. If each entry you must store is only a few 
bytes, you should know that the per-entry memory overhead of a binary tree can double or triple 
your memory usage.

• Binary trees are more complicated than linked lists, hash tables, bags, and arrays.

The Cisco IOS software provides three implementations of binary trees: 

• Red-Black (RB) Trees

• AVL Trees

• Radix Trees 
19-1



 CISCO CONFIDENTIAL
19.1.1   Red-Black (RB) Trees
Red-Black (RB) trees are the most general-purpose binary trees in the router library. They are 
currently used for AppleTalk, VINES, and the OSPF LSA database. The Cisco IOS implementation 
of RB trees is a threaded tree. That is, once you find a node using a keyed search of the data structure, 
the only operation necessary to find the next higher or lower node in key order in the data structure 
is to follow a doubly linked list. RB trees avoid some of the balancing overhead of AVL trees by 
“coloring” nodes as they are inserted, to postpone the need for balancing and allow the tree to 
function even when it is slightly out of balance in localized areas of the data structure. Insertions and 
deletions run in O(log n) time and searches run in O(log n) time, but can be made to run in O(h), 
where h is the height of the tree, in nodes.

A variation on the RB tree—called interval trees—is also implemented in the same library as the RB 
tree. Interval trees are used when the key for an entry has an attribute of width or range. When the 
interval tree options are used, the implication is that a key added with its range cannot overlap 
another key and its range. Think of interval trees as an RB tree with “fat” keys.

19.1.2   AVL Trees
AVL trees are balanced search trees named for Adel’son-Vel’skii and Landis, who introduced this 
class of balanced search trees. Balance is maintained in an AVL tree by use of rotations; as many as 
O(log n) rotations may be required after an insertion to maintain the balance of the tree. In large 
trees, this may use a considerable amount of CPU time, depending on the tree and the location of the 
node being inserted. Currently, AVL trees are used in the SSE and IS-IS routing code. (Note, 
however, that the AVL implementation in the IS-IS routing code is not generic, but rather is specific 
to IS-IS.) The search time for an AVL tree is O(log n).

Two levels of AVL functionality are available: 

• Raw AVL tree manipulation functions 

• Wrapped functions

Raw AVL tree manipulation functions perform the insertion, deletion, balancing and walking of the 
tree. 

Wrapped AVL functions wrap a layer of context around the raw AVL functions. The wrapped 
functions allow you to insert a node into multiple AVL trees for data that must be sorted on more 
than one key at once. 

19.1.3   Radix Trees
Radix trees are currently used in the IP routing table (both unicast and multicast) and the IP 
route-cache table. Radix trees lend themselves well to IP, where routing decisions are made by 
matching not only the route, but also the address mask. The search time for a radix tree is O(n). 

19.2   Manipulate RB Trees

19.2.1   Initialize an RB Tree
To allocate and initialize the tree header data structure for an RB tree, use the RBTreeCreate() 
function. 

rbTree *RBTreeCreate(char *protocol, char *abbrev, char *name, 
treeKeyPrint printfn, boolean *debug_flag); 
19-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Insert a Node into an RB Tree

 CISCO CONFIDENTIAL
19.2.2   Insert a Node into an RB Tree
To insert a node into a previously allocated RB tree, use the RBTreeInsert() function, which inserts 
the node in a location based on the specified key structure, or the RBTreeIntInsert()  function, 
which inserts the node in a location based on the specified interval. 

treeLink *RBTreeInsert(treeKey key, rbTree *T, treeLink *node); 

treeLink *RBTreeIntInsert(ushort low, ushort high, rbTree *T, treeLink *node); 

19.2.3   Search an RB Tree
Table 19-1Table 1 9 -1 describes the functions available for searching for nodes in an RB tree. 

Table 19-1 Functions for Searching an RB Tree 

19.2.4   Apply a Function to an RB Tree Node
To apply a specified function to each node in the tree in key order, use the RBTreeForEachNode()  or 
RBTreeForEachNodeTilFalse()  function. RBTreeForEachNode()  applies the function to each node 
in the tree regardless of what the function returns, and RBTreeForEachNode()  applies the function 
until it returns FALSE. 

boolean RBTreeForEachNode(treeProc proc, void *pdata, rbTree *T, 

boolean RBTreeForEachNodeTilFalse(treeProc proc, void *pdata, rbTree *T, 
treeLink *start, boolean protectIt); 

19.2.5   Retrieve Information about an RB Tree
Table 19-2Table 1 9 -2 describes the functions available for retrieving information about an RB tree.

Table 19-2 Functions for Retrieving Information about an RB Tree

Search Conditions Function

Node that exactly matches the specified key value. tr eeLink*RBTreeSearch(rbTree *T, treeKey key); 

Overlapping interval in an RB interval tree. tr eeLink*RBTreeIntSearch(rbTree *T, t r e e K ekey); 

First node in the tree. tr eeLink*RBTreeFirstNode(rbTree *T); 

Next node in the tree. tr eeLink*RBTreeNextNode(treeLink * node); 

Maximal node that is less than or equal to a specified key. tr eeLink*RBTreeBestNode(rbTree *T, treeKey key);

Node equal to or greater than a specified key. tr eeLink*RBTreeLexiNode(rbTree *T, treeKey key);

Node with the largest key. tr eeLink*RBTreeNearBestNode(rbTree * T, t r e e K ekey); 

Node with the largest possible interval key that is less 
than or equal to the interval specified in the key.

tr eeLink*RBTreeIntNearBestNode(rbTree * T, treeKey key); 

First node on the tree’s internal free list. tr eeLink*RBTreeGetFreeNode(rbTree * T); 

Information Function

Number of free nodes that are not busy. in tRBReleasedNodeCount(rbTree *T); 

Number of free nodes on the tree’s internal free list. in tRBFreeNodeCount(rbTree *T); 

Whether a node is on the tree’s internal free list. bo oleanRBTreeNodeDeleted(rbTree *T, t reeLink*node); 
Binary Trees 19-3



 CISCO CONFIDENTIAL
19.2.6   Print the Nodes in an RB Tree
To format and print all the nodes in an RB tree, use the RBTreePrint() function: 

void RBTreePrint(treeLink *node, ulong depth, rbTree *head); 

To format and print one node in an RB tree, use the RBPrintTreeNode() function:

void RBPrintTreeNode(treeLink * node, ulong depth, treeKeyPrint *fn); 

19.2.7   Protect a Node in an RB Tree
To mark a node in an RB tree as busy, use the RBTreeNodeProtect()  function. If the node is not busy, 
it is not deleted if it is passed to RBTreeDelete(). 

boolean RBTreeNodeProtect(treeLink * node, boolean lockIt); 

To retrieve the protection state of an entry in an RB tree, use the RBTreeNodeProtected()  function.

boolean RBTreeNodeProtected(treeLink * node); 

19.2.8   Place a Node on the Tree’s Internal Free List 
To delete a node from an RB tree and place it on the tree’s internal free list for possible reuse later, 
use the RBTreeDelete() function. 

treeLink *RBTreeDelete(rbTree * T, treeLink *node); 

Note Do not delete a node twice. Mayhem will result.

To collect nodes previously freed with RBTreeDelete(), use the RBTreeTrimFreeList()  function. 

boolean RBTreeTrimFreeList(rbTree * T); 

To add a node to the tree’s internal free list, use the RBTreeAddToFreeList()  function. You must 
manually account for whether the node to be added to the free list is busy and whether it is still linked 
into the tree. 

boolean RBTreeAddToFreeList(rbTree * T, treeLink *node); 

19.2.9   Remove an RB Tree
To deallocate the data structure for an RB tree, including any nodes on the tree, use the 
RBTreeDestroy() function. 

rbTree *RBTreeDestroy(rbTree * T, boolean *debug_flag); 

19.3   AVL Trees

The Cisco IOS software provides raw and wrapped AVL functions. The raw AVL functions perform 
the insertion, deletion, balancing and walking of the tree. These trees are referred to as AVL trees. 
Wrapped AVL functions wrap a layer of context around the raw AVL functions. The wrapped 
functions allow you to insert a node into multiple AVL trees for data that must be sorted on more 
19-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate Raw AVL Trees

 CISCO CONFIDENTIAL
than one key at once. You could think of wrapped AVL trees as having an internal AVL tree 
implementation, but for almost all purposes, you should think of them as a different implementation 
of an AVL tree from the raw AVL trees. 

Wrapped AVL functions have the following advantages over the raw AVL functions:

• They provide a handle structure—wavl_handle—that holds the parameters that the AVL 
functions need. Using this structure makes bookkeeping easier.

• They allow an item to be threaded onto multiple AVL trees. This is useful for cases where you 
must search for items sorted on more than one key.

One drawback of AVL trees is that you cannot have multiple elements with the same key value on 
the tree. This means that, for example, if you want nodes to be threaded onto three trees based on 
three keys, each of these keys must be unique. For example, you can thread based on IP addresses, 
but then every entry must have an IP address. You cannot use a special value such as 0.0.0.0 to 
represent no IP address, because multiple 0.0.0.0 values cannot be threaded onto the IP AVL tree.

When setting up a WAVL tree with the wrapped AVL functions, the first item in the data structure 
must be an array of wavl_node_type, with one element for each desired thread you want. This array 
contains the information that the wrapped AVL functions need to reference. You also need a 
wavl_handle for every WAVL tree you want to have. You take all actions by passing the handle for 
the WAVL tree and the wavl_node_type for the element you want added or deleted. Note that you 
cannot manipulate a WAVL tree with the direct AVL functions once the WAVL tree is created. The 
direct AVL functions do not update the context block used by WAVL trees.

In the comparison functions you register with the wavl_init() function and the walker functions 
you call with the wavl_walk() function, you must first call wavl_normalize()  to readjust the pointer 
back to the beginning of your data structure.

It is strongly recommended that you provide a front end for all the functions that return a (void *) 
or a (wavl_node_type *)  with a conversion function that you supply. Doing so allows you to 
preserve strict typechecking.

19.3.1   Manipulate Raw AVL Trees

19.3.1.1   Initialize an AVL Tree
To initialize an AVL tree, allocate a node of storage of type avl_node_type. Then pass a pointer to 
a NULL pointer as the top parameter and a pointer to the newly allocated node as the new parameter 
to the avl_insert() function. This initializes the newly created node as the “root,” or topmost node, 
in the AVL tree. 

19.3.1.2   Insert a Node into an AVL Tree
To insert a node into an AVL tree, use the avl_insert() function. This function inserts the node into 
the AVL tree and rebalances the tree as needed. You must pass in a pointer to a pointer to the tree’s 
top node (this was previously initialized as described in the “Initialize an AVL Tree” section) and a 
pointer to the node to be inserted (with the key already initialized). 

avl_node_type avl_insert(avl_node_type ** top, avl_node_type *new,
boolean *balancing_needed, avl_compare_type compare_func); 
Binary Trees 19-5



 CISCO CONFIDENTIAL
19.3.1.3   Traverse an AVL Tree
To traverse (walk) a nAVL tree in lexical order with a function, use the avl_walk() function. Think 
of this as being the functional equivalent of the Lisp apply function. 

boolean avl_walk(avl_node_type *element, avl_walker_type proc, ...); 

To return the first node in the specified tree (commonly represented as the left node in a conventional 
drawing of a binary tree), use the avl_get_first() function. 

avl_node_type *avl_get_first(avl_node_type * top); 

To return the next node in lexical (key) order on the specified thread, use the avl_get_next() 
function. 

avl_node_type *avl_get_next(avl_node_type * top, avl_node_type element, 
avl_compare_type compare_func); 

19.3.1.4   Search an AVL Tree
To search an AVL tree for a specified goal key, use the avl_search() function.

avl_ node_type *avl_search(avl_node_type* top, a vl_node_type*goal, 
av l _ c o m p a r e _ t y pcompare_func); 

19.3.1.5   Remove a Node from an AVL Tree
To remove a specified node from an AVL tree, use the avl_delete() function. This function 
rebalances the tree as necessary after the node has been deleted.

avl_node_type *avl_delete(avl_node_type ** top, avl_node_type *target, 
boolean *balancing_needed, avl_compare_type compare_func); 

19.3.1.6   Free AVL Tree Resources
There are two ways to free resources associated with an AVL tree. One way is to call the free() 
function to free all nodes in the tree at once, without referencing any of the pointers in the tree’s AVL 
node data structure and without passing any of the nodes being deleted to any AVL tree functions. 
The second way to free AVL tree resources, which incurs a higher overhead, is to call 
avl_get_first() and then avl_delete() in a loop until avl_get_first() returns NULL.

19.3.2   Manipulate Wrapped AVL Trees 

19.3.2.1   Initialize a Wrapped AVL Tree
To initialize a wrapped AVL tree, use the wavl_init() function. In this function, you pass the 
wavl_handle you want to initialize, the number of AVL trees you want under this wrapped AVL tree, 
and a comparison routing for each of the AVL trees. You must call this function before calling any 
other wrapped AVL function. 

boolean wavl_init(wavl_handle * handle, void *(*findblock)(wavl_node_type *), ...); 
19-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate Wrapped AVL Trees

 CISCO CONFIDENTIAL
19.3.2.2   Insert a Node into a Wrapped VL Tree
To insert a node into all threads controlled by a wrapper handle, use the wavl_insert() function. 
This function either inserts the node into all threads or into no threads. It does not leave the node 
inserted into only the threads that were successful if there is any failure to insert into any of the 
threads. 

wavl_node_type wavl_insert(const wavl_handle_type * handle, wavl_node_type *node); 

To insert a node into only one thread of the threads controlled by the wrapper handle, that is, into a 
specific AVL tree, use the wavl_insert_thread()  function. Be careful when using this function, 
because it can leave the set of trees in a strange state.

wavl_node_type wavl_insert_thread(const wavl_handle_type * handle, wavl_node_type *node,
int thread); 

If you are changing only one of the multiple key values, first use the wavl_insert() function to 
delete the node from the specific AVL tree and then use the wavl_insert_thread()  function to 
insert with the new key. Deleting from all trees and then reinserting wastes a large number of CPU 
cycles.

19.3.2.3   Traverse a Wrapped AVL Tree
To traverse (walk) a wrapped AVL tree in the previously initialized context, use the wavl_walk() 
function. 

boolean wavl_walk(const wavl_handle * handle, int thread, avl_walker_type proc, ...); 

To return the first node in the specified tree on the specified thread, use the wavl_get_first()  
function. 

wavl_node_type wavl_get_first(const wavl_handle * handle, int thread); 

To return the next node in key order on the specified thread, use the wavl_get_next() function. 

wavl_node_type wavl_get_next(const wavl_handle * handle, wavl_node_type *node, 
int thread); 

19.3.2.4   Search a Wrapped AVL Tree
To search a wrapped AVL tree for a specified goal, use the wavl_search() function or the low-level 
avl_insert() function. The wavl_search() function calls avl_search() with the selected handle 
and thread number. 

wavl_node_type *wavl_search(const wavl_handle *handle, wavl_node_type *goal, 
int thread); 

19.3.2.5   Remove a Node from a WAVL Tree
To remove the specified node from all threads controlled by the specified handle, use the 
wavl_delete() function. 

wavl_node_type wavl_delete(const wavl_handle_type * handle, wavl_node_type *node); 

To delete the node from only one thread of the threads controlled by the wrapper handle, that is into 
a specific AVL tree, use the wavl_delete_thread()  function. Be careful when using this function, 
because it can leave the set of trees in a strange state. 

wavl_node_type wavl_delete_thread(const wavl_handle_type * handle, int thread,
wavl_node_type *node); 
Binary Trees 19-7



 CISCO CONFIDENTIAL
19.3.2.6   Reset Pointers
To reset the pointers to the start of the tree structure, use the wavl_normalize()  function. 

static inline wavl_node_type * wavl_normalize(avl_node_type * node, int thread); 

19.3.2.7   Free WAVL Tree Resources
To free any resources associated with a wrapped AVL tree, use the wavl_finish() function. It is 
important to free the resources associated with a tree when you no longer need them. This is because 
when you create the tree with the wavl_init() function, wavl_init() calls malloc(). If you do not 
call wavl_finish(), a memory leak will result. 

void wavl_finish(wavl_handle * const handle); 

19.4   Manipulate Radix Trees

19.4.1   Initialize a Radix Tree
To initialize a radix tree, use the rn_inithead() function. 

int rn_inithead(void **head, int off); 

19.4.2   Insert a Node into a Radix Tree
To insert a node into a radix tree, use the rn_addroute() function. 

struct radix_node * rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head, 
struct radix_node[2] treenodes); 

19.4.3   Traverse a Radix Tree
Table 19-3Table 1 9 -3 lists the functions available for traversing (walking) a radix tree. 

Table 19-3 Functions for Traversing a Radix Tree 

Walking Action Function

Walk a radix tree, calling a function for every node found in 
the tree.

in trn_walktree(struct radix_node * rn, 
rn _ w a l k _ f u n c t i ofunction, ...); 

Apply a walking function across the entire tree, locking down 
any shared data structures the function uses and ensuring a tree 
node is active before applying the walking function to it. This 
is inefficient but a good method to use for routines that print to 
VTYs.

in trn_walktree_blocking(struct radix_node * rn, 
rn_walk_function function, ...); 

Apply a walking function across the entire tree, passing 
arguments to the function, locking down any shared data 
structures the function uses, and ensuring a tree node is active 
before applying the walking function to it. This is inefficient 
but a good method to use for routines that print to VTYs.

in trn_ walktree_blocking_list(struct radix_node* rn, 
rn_walk_function function, va_list pointer); 

Walk a radix tree, dismissing control of the processor in the 
middle of the walk to allow other threads to run.

in trn_walktree_timed(struct radix_node_head * head, 
rn_walk_function walker, r n _ s u c c _ f u n c t i onextnode,...);
19-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Search for a Node in a Radix Tree

 CISCO CONFIDENTIAL
19.4.4   Search for a Node in a Radix Tree
To search for a node in the tree, use the rn_match() and rn_lookup() functions. The rn_match() 
function performs longest-match lookup, and the rn_lookup() function searches by address key and 
mask and requires an exact match. 

struct radix_node *rn_match(void * v_arg, struct radix_node_head head); 

struct radix_node *rn_lookup(void * v_arg, void *m_arg, struct radix_node_head *head); 

19.4.5   Mark Parent Nodes in a Radix Tree
To mark with a specified version all parent nodes of a specified node up to the root of the tree, use 
the rn_mark_parents() function. This function is used by the rn_walktree_version()  function. 

void rn_mark_parents(struct radix_node *rn, u_long version); 

19.4.6   Delete a Node from a Radix Tree
To delete a node from a radix tree, use the rn_delete() function. Make sure the node you are 
deleting is not referenced in other data structures and itself has no references. There is no internal 
freelist, so once the node is deleted from the tree, it is up to the caller to manage the storage. 

struct radix_node * rn_delete(void * v_arg, void *netmask, struct radix_node_head 
*head); 

Walk a radix tree, specifying a version key to use to choose the 
nodes walked in the tree and dismissing control of the 
processor in the middle of the walk to allow other threads to 
run.

in trn_walktree_version(struct radix_node * head, 
u_ l o nversion, rn_walk_function function, 
rn_succ_ver_function nextnode, ...); 

Walking Action Function
Binary Trees 19-9



 CISCO CONFIDENTIAL
19-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Queues and List
2 0
Queues and Lists
20.1   Overview: Queues and Lists

The Cisco IOS software provides a variety of functions for manipulating linked lists of data 
structures. These functions fall into two general groups, those for singly linked lists (sometimes also 
called queues) and those for doubly linked lists.

20.1.1   Singly Linked Lists (Queues)
In the original version of the Cisco IOS software, the data structure for singly linked lists was a 
simple queue in which items were added at the end (tail) of the queue and removed from the 
beginning (head) of the queue. This simple data structure has developed into a singly linked list 
structure in which items can be added and removed from any position in the list. 

There are two types of singly linked lists: 

• Singly linked lists that require that the first longword of the data structure be reserved for linking 
together the items (also called direct queues). Within this category, there are two subsets of 
functions, those that provide interrupt exclusion and those that do not. 

Figur e20-1 illustrates the relationship between the direct queue data structure header and the 
actual queue. The “head” field in the header points to the first item at the beginning of the queue, 
and the “tail” field points to the last item at the end of the queue. The first longword of each data 
item on the queue points to the next item on the queue, thus chaining together the items in the 
queue.

Figure 20-1 Direct Queues 

• Singly linked lists with queuing blocks (also called indirect queues). These functions have no 
requirements regarding the format of the data structure. Within this category, the majority of the 
functions provide interrupt exclusion. 

S
38

54

Header

Data
items

Head Tail Count Maximum

.

.

.

.

.

.

.

.

.

.

.

.

X

20-1



 CISCO CONFIDENTIAL
Figur e20-2 illustrates the relationship between the indirect queue data structure header, the 
queuing blocks, and the actual queue. The “head” field in the indirect queue’s header points to 
the first in a series of small, intermediary queuing blocks instead of pointing to the first item in 
the queue. The “tail” field points to the last queuing block. The linkage between the data blocks 
is in the queuing blocks, not in the data block itself. By using linkages that are not in the data 
blocks, a data item can be on more than one queue.

Figure 20-2 Indirect Queues 

20.1.2   Doubly Linked Lists
The Cisco IOS software provides two types of doubly linked lists:

• Doubly linked lists. The Cisco IOS software provides a few basic functions for adding and 
removing elements from a doubly linked list. None of these functions provides interrupt 
exclusion. 

• List manager. This is a fully developed set of functions for manipulating doubly linked lists. 
These functions include code for debugging and for displaying a list and its contents. The 
Cisco IOS list manager functions place no requirements on the format of the data structure. Using 
these functions, you can place the same item on multiple data structures. The Cisco IOS functions 
provide interrupt exclusion on a configurable, per-list basis. 

20.2   Manipulate Queues

Most of the Cisco IOS functions for manipulating singly linked lists are specific for direct queues or 
for singly linked lists with queuing blocks (indirect queues). However, there are a few functions and 
macros that can be used on all singly linked lists.

20.2.1   Initialize a Queue
To initialize a new queue, use the queue_init() function. You can use this function with all singly 
linked lists, that is, with functions that either have or do not have requirements regarding the format 
of the data structure. 

void queue_init(queuetype *queue, int maximum); 

S
38

55

Header

Data
items

Head Tail Count Maximum

.

.

.

.

.

.

.

.

.

.

.

.

Queueing
blocks

X

20-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Determine the State of a Queue

 CISCO CONFIDENTIAL
20.2.2   Determine the State of a Queue
Table 20-1Table 2 0 -1 describes the macros you can use to determine the state of a singly linked list. 

Table 20-1 Macros for Determining the State of a Queue 

20.2.3   Determine Whether an Item Is on a Queue
To determine whether an item is already on a queue, use the checkqueue() function. This function 
does not provide interrupt protection. 

boolean checkqueue(queuetype * queue, void *data); 

20.3   Manipulate Direct Queues

20.3.1   Manipulate Unprotected Direct Queues
The functions that manipulate direct queues require that the first longword of the data structure be 
reserved for linking together the items. Therefore, any data structure that is used with these list 
functions must be similar to the following:

struct xxx_type {
struct xxx_type *next;
...

};

This requirement also implies that any item on a direct queue cannot simultaneously be enqueued on 
another singly linked list. 

The functions for unprotected direct queues are identical to the functions for protected direct queues 
except that they do not provide protection from interrupts. Therefore, they cannot be used to pass 
items from interrupt-level code to process-level code.

20.3.1.1   Add an Item to a Queue 
To add an item to the end of a queue, use the enqueue() function.

void enqueue(queuetype *queue, void *data); 

To add an item to the beginning of a queue, use the requeue() function.

void requeue(queuetype *queue, void *data); 

To insert an item at a relative position in a queue, use the insqueue() function.

void insqueue(queuetype *queue, void *data, void *previous); 

Task Function

Determine whether a queue is empty. bo oleanQUEUEEMPTY(queuetype *queue) 

Determine whether a queue is full. bo oleanQUEUEFULL(queuetype *queue) 

Determine whether a queue has a specified 
amount of space. 

bo oleanQUEUEFULL_RESERVE(queuetype * queue, i n reserve) 

Determine the number of items on a queue. in tQUEUESIZE(queuetype *queue) 
Queues and List 20-3



 CISCO CONFIDENTIAL
20.3.1.2   Remove an Item from a Queue 
To remove the first item from the beginning of a queue, use the dequeue() function.

void *dequeue(queuetype *queue); 

To remove the next item from an arbitrary point in a queue, use the remqueue() function. 

void *remqueue(queuetype *queue, void data, void *previous); 

To remove an item from the middle of a direct queue, call the unqueue() function. 

void unqueue(queuetype *queue, void *data); 

20.3.1.3   Examples: Manipulate Unprotected Direct Queues
This section shows several examples of code of unprotected direct queues. 

Example 1
The following example shows how the Cisco IOS Novell IPX code passes packets from one process 
to another. The IPX input process, which processes packets as they are received from the interfaces, 
often needs to pass packets to other processes. For example, all IPX Get Nearest Server (GNS) 
packets are processed by a special IPX process. The two processes perform this packet passing by 
using a list data structure. The IPX code initializes this queue when it first starts with the following 
call:

queue_init(&novell_gnsQ,0); 

The IPX input process adds items to this list with the following call:

enqueue(&novell_gnsQ, pak); 

The consumer process removes items from this queue with the following call:

pak = dequeue(&novell_gnsQ); 

Example 2
The following example shows how the IP ICMP code uses the unqueue() function. In this example, 
new echo messages are added to the end of the list and are removed from their current location in the 
list when the edisms() function returns. This code cannot use the dequeue() function, because it 
wants to remove a specific item, which is not guaranteed to be the first item on the list.

enqueue(&echoQ, data);
traffic[ICMP_ECHOSENT]++;
edisms((blockproc *)echoBLOCK, (ulong)data);
if (data->active)

unqueue(&echoQ, data); 
20-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate Protected Direct Queues

 CISCO CONFIDENTIAL
20.3.2   Manipulate Protected Direct Queues
The functions that manipulate direct queues require that the first longword of the data structure be 
reserved for linking together the items. Therefore, any data structure that is used with these list 
functions must be similar to the following:

struct xxx_type {
struct xxx_type *next;
...

};

This requirement also implies that any item on a direct queue cannot simultaneously be enqueued on 
another singly linked list. 

The functions for protected direct queues are identical to the functions for unprotected direct queues 
except that they do provide protection from interrupts. Therefore, you can use these functions to pass 
items between interrupt-level and process-level code.

20.3.2.1   Add an Item to a Queue 
To add an item to the end of a queue, use the p_enqueue() function.

void p_enqueue(queuetype *queue, void *data); 

To add an item to the beginning of a queue, use the p_requeue() function.

void p_requeue(queuetype *queue, void *data); 

20.3.2.2   Remove an Item from a Queue 
To remove the first item from the beginning of a queue, use the p_dequeue() function.

void *p_dequeue(queuetype *queue); 

To remove an item from an arbitrary point in a queue, use the pak_unqueue() function.

void p_unqueue(queuetype *queue, void *data); 

To remove the next item after an arbitrary point in a queue, use the p_unqueuenext() function.

void p_unqueuenext(queuetype * queue, void **previous); 

20.3.2.3   Example: Manipulate Protected Direct Queues
The following example from the AppleTalk code uses a singly linked list to pass AppleTalk packets 
from the system drivers running at interrupt level to the process-level code that forwards them, 
makes routine decisions, and so forth. This queue is initialized with the same function that is used 
for all singly linked lists.

queue_init(&atalkQ, 0); 

The interrupt-level AppleTalk fragment adds packets to the transfer list by using the following 
function:

p_enqueue(&atalkQ, pak); 

The AppleTalk input process removes packets from this list by calling the following function:

pak = p_dequeue(&atalkQ); 
Queues and List 20-5



 CISCO CONFIDENTIAL
20.4   Manipulate Indirect Queue

The functions for singly link lists with queuing blocks (indirect queues) are a derivative of the basic 
singly linked list functions. Like the basic singly linked list functions, this set of functions does not 
provide any protection from interrupts. Unlike the basic functions, this set of functions does allow 
items to be concurrently placed on several linked lists. This means that these functions place no 
restrictions on the contents of the data structure. These functions maintain a set of small queuing 
blocks that are used to create and maintain the linkages for the list.

20.4.1   Add an Item to a Queue 
To add a packet or an item to the end of an indirect queue, use the pak_enqueue() or the 
data_enqueue() function, respectively. These functions provide interrupt protection.

paktype *pak_enqueue(queuetype *queue, paktype *pak); 

void data_enqueue(queuetype * queue, void *data); 

To insert a packet at a relative position in an indirect queue, use the pak_insqueue() function. This 
function provides interrupt protection.

paktype *pak_insqueue(queuetype * queue, paktype *pak, elementtype *previous); 

To add an item at any arbitrary position in an indirect queue, use the data_insertlist()  function. 
This function does not provide interrupt protection.

void data_insertlist(queuetype * queue, void *data, void *test_fn); 

To add a packet to the beginning of an indirect queue, use the pak_requeue() function. This function 
provides interrupt protection.

paktype *pak_requeue(queuetype * queue, paktype *pak); 

20.4.2   Change the Size of a Queue
To change the maximum size of an existing indirect queue, use the pakqueue_resize()  function. 
This function provides interrupt protection. 

void pakqueue_resize(queuetype * queue, int maximum); 

20.4.3   Iterate over Each Item in a Queue
To iterate over each item in an indirect queue, use the data_walklist() function. 

void data_walklist(queuetype * queue, void *action_fn); 

20.4.4   Remove an Item from a Queue 
To remove the first packet or the first item from the beginning of an indirect queue, use the 
pak_dequeue() or data_dequeue() function, respectively. These functions provide interrupt 
protection.

paktype *pak_dequeue(queuetype * queue); 

void *data_dequeue(queuetype * queue); 
20-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Examples: Manipulate Indirect Queues

 CISCO CONFIDENTIAL
To remove a packet from an arbitrary point in an indirect queue, use the pak_unqueue() function. 
This function provides interrupt protection.

void pak_unqueue(queuetype *queue, paktype *pak); 

20.4.5   Examples: Manipulate Indirect Queues
This section shows several examples of the code for indirect queues. 

Example 1
The following code fragments are from routines that manipulate the queue of packets waiting to be 
transmitted on an output interface. Given the likelihood that these packets are also on a 
retransmission queue somewhere (for example, TCP and LAPB), the output queue manipulation 
routines must use indirect queues.

The following code fragment, from holdq_enqueue(), shows several methods of adding 
packets—or any item—to a singly linked list variant. This code fragment adds a packet to the 
beginning or end of a list, depending upon an input parameter:

if (which == TAIL) {
if (pak_enqueue(&(output->outputq[value]), pak)) { 

pak->flags |= PAK_DLQ;
output->output_qcount++;
return(TRUE);

}
} else {

if (pak_requeue(&(output->outputq[value]), pak)) { 
pak->flags |= PAK_DLQ;
output->output_qcount++;
return(TRUE);

}
}

The following code fragment removes a packet from the beginning of the output queue:

pak = pak_dequeue(&(idb->outputq[PRIORITY_NORMAL])); 

Example 2
The TCP code uses these functions to build its retransmission queue. Unlike the holdq routines, 
which work with the head and tail of the list, TCP also adds and deletes its items from arbitrary 
locations in the list. The following code fragment shows TCP removing an item from its 
retransmission queue after the item has been acknowledged:

pak = pak_unqueue(&tcb->q[RETRANSQUEUE], packet); 

TCP also sometimes needs to add packets in the middle of its retransmission queue. The following 
code is used when breaking up a packet into smaller chunks, and all the chunks should be in 
consecutive positions on the retransmission queue:

pak_insqueue(queue, newpaks[i], el); 
Queues and List 20-7



 CISCO CONFIDENTIAL
20.5   Manipulate Simple Doubly Linked Lists

The doubly linked list functions provide a fast, straightforward method to build a circular doubly 
linked list. The following data structure is used to build these lists:

typedef struct dqueue_ {
st ruct dqueue_*flink;
st ruct dqueue_*blink;
vo id*parent;
sy s_timestampvalue;

} dqueue_t;

This data structure can be freestanding, but it is more memory efficient to embed this structure into 
the items being queued. Multiple instances of this structure can be embedded into the same item, 
allowing the item to be on many queues at the same time. An additional instance of this structure is 
also needed to serve as a head/sentinel node for the queue. These functions do not provide any 
protection from interrupts.

20.5.1   Add an Item to a Doubly Linked List
To add an item at any arbitrary position in a doubly linked list, use the lw_insert() function. 

void lw_insert(dqueue_t *entry, dqueue_t *pred); 

20.5.2   Remove an Item from a Doubly Linked List
To remove an item from a doubly linked list, call the lw_remove() function. 

void lw_remove(dqueue_t *entry); 

20.5.3   Example: Manipulate Doubly Linked Lists
The AppleTalk code uses doubly linked list routines fairly extensively. The following example shows 
how Appletalk enqueues the descriptor of a path to a neighbor device. This code fragment first 
determines where on the list the new element should be placed and then installs it with the 
lw_insert() function. 

/* 
* Find appropriate place to insert path. dqhead is a sentinel node. 
*/

while ((ndq = dq->flink) != dqhead) {
path = path_Cast(ndq->parent);
if (atroute_MetricCompare(&p->metric, &path->metric, ATALK_METRIC_LT))

break;
dq = dq->flink;

}
lw_insert(&p->dqLink, dq); 

The following code fragment removes an item from this doubly linked list:

/* 
* Unlink from route’s path list.
*/

lw_remove(&p->dqLink); 
20-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate Doubly Linked Lists with the List Manager

 CISCO CONFIDENTIAL
20.6   Manipulate Doubly Linked Lists with the List Manager

20.6.1   Overview: List Manager
The list manager is a fully rounded set of functions for manipulating doubly linked lists. These 
functions provide a default set of behaviors for manipulating the queues, but allow these behaviors 
to be modified on a per-queue basis. This allows a process to add an item to the end of one list and 
insert a new item in sorted order on another list. List linkage and sorting information is maintained 
within the list structure so that all list accesses are consistent. The list manager also includes code 
allowing the display of a list and its contents. The implementation of the list needs to supply only a 
small code fragment to print the contents of a list element. The list manager is responsible for 
iterating over the list and printing all the list linkage information. 

The list manager functions place no requirements on the format of the data structure. Lists linkages 
are maintained with a small data structure called a list_element. This data structure can be 
embedded into the item being queued, or it can be allocated by the list manager. The use of this extra 
queueing element allows the same item to be placed on multiple lists with these functions. The list 
manager also provides interrupt exclusion on a configurable, per-list basis.

20.6.2   Create a List
To create a new list, use the list_create() function. 

list _header *list_create(list_header* list, u s h o rmaximum, c har* c o n sname,
us h o rflags) 

20.6.3   Modify an Existing List
When you create a new list with the list_create() function, you specify the following flags, which 
affect the operation of the list:

• LIST_FLAG_AUTOMATIC  controls whether the list manager should create and delete list_element 
data structures automatically. 

• LIST_FLAG_INTERRUPT_SAFE  controls whether all operations on this list are guaranteed to 
complete without being interrupted. 

Normally, you should not have to change the values of these flags. However, the Cisco IOS software 
provides two functions that allow you to modify the values in case the list must change its memory 
allocation paradigm after it has been created.

To change the LIST_FLAGS_AUTOMATIC  flag on an existing list, use the list_set_automatic()  
function.

boolean list_set_automatic(list_header * list, boolean enabled); 

To change the LIST_FLAGS_INTERRUPT_SAFE  flag on an existing list, use the 
list_set_interrupt_safe()  function.

boolean list_set_interrupt_safe(list_header * list, boolean enabled); 

20.6.4   Add an Item to a List 
To add an item to the end of a list, use the list_enqueue() function.

stat ic inline void *list_enqueue(list_header*list, l ist_element*element, v oid*data); 
Queues and List 20-9



 CISCO CONFIDENTIAL
To add an item to the middle of a list, use the list_insert() function.

stat ic inline void *list_insert(list_header* list, l ist_element*element, v oid*data,
li s t _ i n s e r t _ f u n c _func); 

To add an item to the beginning of a list, use the list_requeue() function.

stat ic inline void *list_requeue(list_header*list, l ist_element*element, v oid*data); 

20.6.5   Move an Item to Another List
To move an element from one list to another list, use the list_move() function. 

void list_move(list_header *new_list, list_element *element); 

20.6.6   Remove an Item from a List 
To remove the first item from the beginning of a list, use the list_dequeue() function.

static inline void *list_dequeue(list_header * list); 

To remove an item from the middle of a list, use the list_remove() function.

stat ic inline void *list_remove(list_header* list, l ist_element*element, v oid*data); 

20.6.7   Change the Behavior of List Action Vectors
You can change the default behaviors of the list action vectors called by the list_dequeue(), 
list_enqueue(), list_insert(), list_remove(), and list_requeue() wrappers. Tabl e20-2 lists 
the default behaviors for these wrappers. 

Table 20-2 List Action Vector Default Behavior

The ability to change the default behavior adds flexibility to how you can manipulate queues, 
because you can extend or change the default behavior for a list in one place only, without having to 
propagate the change in many files. For example, to create a stack, you can remap the 
list_enqueue() function to add to the head of the list and then use list_enqueue() and 
list_dequeue() to access the stack. (You can also do this with the unmodified list_requeue() and 
list_dequeue() functions). If you want a sorted list, you can map the list_enqueue() function to 
a function that inserts the item in sort order. You can also do this with list_insert(), but then you 
must always provide the ordering function. Remapping the vector called by list_enqueue() allows 
you to specify the change once.

The ability to change the functions that the wrappers call allows the characteristics of the physical 
queue to be changed centrally without changing any of the users of the list. For example, you can 
change a list to one that is flow controlled based on the amount of data enqueued on it, not merely 

Function Default Behavior

list_dequeue() Remove an item from the beginning of the list.

list_enqueue() Add an item to the end of the list.

list_insert() Use the provided function to determine where to add the new item.

list_remove() Remove the specified item.

list_requeue() Add an item to the beginning of the list.
20-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Retrieve the Behavior of List Action Vectors

 CISCO CONFIDENTIAL

d e
on the number of buffers. You can also add callbacks that trap whenever a queue runs dry and have 
this trigger an event to happen without having to modify and maintain all the code that performs the 
dequeuing.

To change the behavior of the list modification functions, use the list_set_action()  function with 
the list action structure defining the new function vectors to be used. 

boolean list_set_action(list_header * list, list_action_t *action); 

20.6.8   Retrieve the Behavior of List Action Vectors
To retrieve the behavior of the list action vectors, use the list_get_action()  function. 

list_action_t *list_get_action(list_header * list); 

20.6.9   Display the Contents of a List 
To specify a display function to hold the contents of a list, call the list_set_info() function. 

boolean list_set_info(list_header * list, list_info_t info); 

To retrieve the function that is called to display the contents of each list item, call the 
list_get_info() function.

list_info_t list_get_info(list_header * list); 

20.6.10   Destroy a List
To delete a list that is no longer needed, use the list_destroy() function. 

static inline void list_destroy(list_header * list); 

20.6.11   Examples: Manipulate Doubly Linked Lists with the List Manager
This section shows several coding examples of using the Cisco IOS list manager. 

Example 1
The following example shows how the new scheduler uses the list manager extensively to keep track 
of its scheduling lists, lists of events that can wake up a process, lists of events that a particular 
process is interested in, and so forth. 

The scheduler begins by creating all the lists that it needs. The following is an excerpt from this 
portion of the scheduler code. The final argument to list_create()—the 
LIST_FLAGS_INTERRUPT_SAFE  flag—indicates that the list manager must provide interrupt 
protection for all modifications to these queues.

/*
* Initialize the new scheduler lists.
*/

list _create(&procq_ready_c,0, “Sched Critical”, LIST_FLAGS_INTERRUPT_SAFE); 
list _c reate(&procq_ready_h,0, “Sched High”,LIST_FLAGS_INTERRUPT_SAFE);
list _c reate(&procq_ready_m,0, “Sched Normal”,LIST_FLAGS_INTERRUPT_SAFE);
list _c reate(&procq_ready_l,0, “Sched Low”,LIST_FLAGS_INTERRUPT_SAFE);
li st _create(&procq_idle,0, “Sched Idle”,LIST_FLAGS_INTERRUPT_SAFE);
li s t _ c r e a t e ( & p r o c q _0, “ Sched Dead”,LIST_FLAGS_INTERRUPT_SAFE);
Queues and Lis t 20-11



 CISCO CONFIDENTIAL
The scheduler then sets up display routines so the scheduler queues can be examined with the list 
manager’s display commands. The following is an excerpt from this portion of the scheduler code:

/*
* Set up the information routines for the basic scheduler lists.
* The event lists have no information routines available.
*/

list_set_info(&procq_ready_c, process_list_info); 
list_set_info(&procq_ready_h, process_list_info);
list_set_info(&procq_ready_m, process_list_info);
list_set_info(&procq_ready_l, process_list_info);
list_set_info(&procq_idle, process_list_info);
list_set_info(&procq_dead, process_list_info);

Whenever the scheduler creates a process, it initially always places it on the procq_idle list with the 
following code. The arguments to this function are the new list, the queuing element, and the data 
structure being added.

list_enqueue(&procq_idle, &sp->sched_list, sp);

All subsequent manipulations of the process use the list_move() function to move the process 
between the various scheduler lists. The arguments to this function are the new list and the queuing 
element.

list_move(new_list, &p->sched_list); 

The list on which the item is currently queued is extracted from the queuing element. When a process 
exits, the list_remove() function removes it from the set of scheduler lists. The arguments to this 
function are the current list, the queuing element, and the data structure being removed.

list_remove(&procq_dead, &sp->sched_list, sp); 

Example 2
The following example shows how the Cisco IOS subsystem code uses the list manager to keep track 
of all subsystems in the router. It also uses an extra list during subsystem discovery so that it can 
sequence any subsystems that have prerequisites. This list of pending subsystems is created with the 
following code. Note that the final argument to this function—the LIST_FLAGS_AUTOMATIC  
flag—indicates that the list manager can dynamically create queuing elements for items added to this 
list.

list_create(&pendinglist, 0, “Subsys Pending”, LIST_FLAGS_AUTOMATIC); 

The subsystem code adds items to the list using the following code fragment. Notice that the 
list_enqueue() call specifies a NULL value for the second argument. This signals the list manager 
to dynamically allocate the queuing element for the entry.

/*
* If the subsystem has a sequence property, it goes on the pending queue.
*/

if (subsys_get_property_list(subsys, subsys_property_seq, NULL))
list = &pendinglist;

list_enqueue(list, NULL, subsys); 
20-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Examples: Manipulate Doubly Linked Lists with the List Manager

 CISCO CONFIDENTIAL
After the subsystem code has discovered all subsystems running of a particular type, it runs the 
pending queue to start the subsystems that had prerequisites:

/*
* For all the subsystems in the pending list, dequeue each one in turn, and
* evaluate whether their sequence properties have been met.
*/

subsys = list_dequeue(&pendinglist); 
while (subsys) {

/*
* Attempt to sequence it.
*/

subsys_sequenced_insert(subsys, property_chunk, 0);

/*
* Grab the next victim.
*/

subsys = list_dequeue(&pendinglist);
}

Example 3
The following example from the scheduler code shows the destruction of a list—specifically a 
watched variable—that is no longer needed. The scheduler has a list of “wakeup” blocks that are 
threaded onto two lists, one by event and one by process. All these blocks on the event list need to 
be deleted. The code fragment shows the event being removed from the master list for its event type, 
all the wakeup blocks for this event being deleted, and then the event-specific list being deleted:

/*
* Remove from the master list for this class of event.
*/

list_remove(event->by_class.list, &event->by_class, event); 

/*
* Free all wakeup blocks that are attached to this event. Using list_dequeue
* cleans up the 'wi_by_event' thread, so only the 'wi_by_process' thread is left.
*/

while ((wakeup = list_dequeue(&event->wakeup_list)) != NULL) {
Queues and Lis t 20-13



 CISCO CONFIDENTIAL
list_remove(wakeup->wi_by_process.list, &wakeup->wi_by_process, wakeup);
free(wakeup);

}
list_destroy(&event->wakeup_list); 
20-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Switching
2 1
Switching
This chapter discusses some of the routing and switching designs in the Cisco IOS code.

21.1   Overview: Switching

The following four different classes of switching can occur within a Cisco router. How many and 
which of these classes are present depends upon the particular router and its hardware configuration. 

• Slow Switching (also known as routing). This class of switching is present in all routers.

• Fast Switching. This class of switching is present in all routers.

• Autonomous Switching. This class of switching is present only in routers with a ciscoBus, 
CxBus, or CyBus controller.

• Silicon Switching. This class of switching is present only in routers with an SSE card.

21.1.1   Slow Switching
Slow switching, which is generally known as routing, always occurs at process level in the router. 
Slow switching involves the building of routing tables and forwarding of packets. These tasks are 
divided into three processes: 

1 The first process removes packets from an input queue where they were placed by an interface 
driver, performs a routing lookup for each packet, and either queues the packet for transmission 
on another interface or queues it for the second process. This first process is always named after 
its protocol and function (for example, IP Input), and it always runs at high priority

2 The second process is responsible for processing all packets destined for the router itself, except 
for routing updates. The routing updates for that network layer protocol are enqueued for a 
separate routing process. This second process is always named after its protocol and function (for 
example, AT [AppleTalk] Background), and it always runs at medium priority. 

3 The third process is normally where routing updates are processed and routing tables are 
maintained. This process is always named after its protocol and function (for example, VINES 
Router), and it always runs at medium priority. 

More than one routing process for a protocol can be active at the same time. For example, a single 
router might be running BGP, IP Enhanced IGRP, and IP RIP—all IP routing protocols—at the 
same time.
21-1



 CISCO CONFIDENTIAL
21.1.2   Fast Switching
Fast switching is a method of performing a routing lookup and forwarding a packet from interrupt 
level. This technique avoids queueing the packet for a process, the latency of scheduling the process, 
and any latency within the process itself. Fast switching depends on a special lookup table that is 
maintained in processor memory by the individual routing processes. Fast-switching code can 
become very complex because it contains minute details about each type of interface that it supports. 
The performance of fast-switching code is very critical because it runs at interrupt level. 

21.1.3   Autonomous Switching
Autonomous switching operates only on ciscoBus, CxBus, and CyBus controllers. It is a method of 
performing a routing lookup and forwarding a packet from the controller card without interrupting 
the main CPU. This technique avoids all the delays that fast switching avoids, and it further avoids 
the latency of copying the packet across the backplane and any latency in the main processor’s 
interrupt path. Autonomous switching depends on a special lookup table that is maintained on the 
controller card by the individual routing processes. Autonomous-switching code is very complex 
because it contains minute details about each type of interface that it supports.

21.1.4   Silicon Switching
Little is known about the silicon-switching code. It is a very reclusive creature that comes out only 
to look at the light of a blue moon. It is, however, reported to be faster than a bat out of hell, but no 
one knows for sure. 

21.2   Fast Switching 

There are two issues to consider when writing fast-switching code. The first is the hardware 
architecture to which you are writing, and the second is the style of connecting input interface 
routines to output interface routines. The two issues are orthogonal, so they are discussed separately. 

21.2.1   Hardware Architecture
Fast-switching code depends on the hardware architecture. Cisco platforms use one of the following 
hardware architectures:

• MCI/CiscoBus Architecture

• Shared-Memory Architecture

21.2.1.1   MCI/CiscoBus Architecture
The original Cisco routers were built around a Multibus backplane, and contained third-party 
interface cards that used Multibus I/O space for passing commands and Multibus memory space for 
passing data. These cards were all superseded by higher-density Cisco-designed cards that used the 
Multibus I/O space for passing both commands and data. The discussion in this section applies 
mainly to these newer cards, although it also applies to the CSC-1R and CSC-2R shared-memory 
cards. The principal cards in this class are the MCI, the FSIP, and the ciscoBus controller card. 
Through the ciscoBus controller, this type of fast-switching code can also access other cards, 
including the EIP, HIP, SIP, and TRIP
21-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Hardware Architecture

 CISCO CONFIDENTIAL
This type of fast switching is frequently referred to as “high-end” or “hes” fast switching, although 
this is a misnomer because the Cisco 7500 series uses the shared-memory model for fast switching.

Receive a Packet
The ciscoBus and MCI cards preclassify a packet, so that when the processor card is interrupted with 
a packet, the protocol contained in that packet is already known. Given that information, the interface 
driver can quickly pass a received packet on to the appropriate protocol-specific fast-switching 
routine. 

The ciscoBus/MCI fast-switching routines are almost always specific to a particular encapsulation 
of a given protocol. For example, there is an AppleTalk ARPA switching routine, an AppleTalk 
SNAP Ethernet switching routine, and so on. There are a few instances where a fast-switching 
routine might need to doublecheck the encapsulation type because the ciscoBus or MCI might 
classify more than one type of packet under the same ID code. An example is the classification of a 
packet containing a VINES ARPA encapsulation, where the received packet must be explicitly 
checked to see whether it is actually an ARPA-encapsulated packet or instead is a misclassified 
SNAP-encapsulated packet. Later versions of MCI microcode correctly indicate the difference 
between these two VINES encapsulations on Ethernet.

When a ciscoBus fast-switching routine receives a packet, it is passed a single argument, a pointer 
to the input hardware interface. The fast-switching routine is responsible for extracting the necessary 
information from the interface card, doing this by sending a series of commands to the interface card. 
The typical sequence of commands does the following:

1 Set the “read pointer” to a particular offset within the ciscoBus buffer.

2 Read enough consecutive words to be able to process the packet. In most protocols, this involves 
reading the destination address, a flags word, and sometimes some additional data. This data is 
stored either in registers or in per-IDB variables so that it can be referenced multiple times 
without having to reread the data across the bus. 

The following example, taken from the VINES code, illustrates a typical sequence of commands. 
This example assumes that the packet is a SNAP-encapsulated Ethernet packet. Lines 1 and 2 set the 
read offset, and all subsequent accesses must be in shortwords or longwords. longword accesses are 
preferable whenever possible, because they require fewer CPU cycles to read the same amount of 
data.

/* 
* Set starting location to read from. 
*/

inreg->argreg = MCI_ETHER_OFFSET + E_SNAP_HDR_WORDS_IN;
inreg->cmdreg = MCI_CMD_RX_SELECT;

/* 
* Suck in the data.
*/

input->checksum_length = inreg->readlong;
input->hops_ptype = inreg->readshort;
input->destination_net = inreg->readlong;
input->destination_host = inreg->readshort;
Switching 21-3



 CISCO CONFIDENTIAL
The following code fragment, taken from the AppleTalk Ethernet ARPA fast-switching code, shows 
how to reference a byte if necessary when making the fast-switching decision. 

ch arlongsniff1, sniff2;

srcreg->argreg = AT_ETALK_OFFSET;
srcreg->cmdreg = MCI_CMD_RX_SELECT;
sniff1.d.lword = srcreg->readlong;
if (sniff1.d.byte[0] != ALAP_DDP_LONG)

return (FALSE);
input->hop_len_word = (sniff1.d.byte[1] << 8) | sniff1.d.byte[2];
sniff2.d.lword = srcreg->readlong;
input->dst_net = (sniff2.d.byte[1] << 8) | sniff2.d.byte[2];
sniff1.d.lword = srcreg->readlong;
input->src_net = (sniff2.d.byte[3] << 8) | sniff1.d.byte[0];
input->dst_node = sniff1.d.byte[1];
input->src_node = sniff1.d.byte[2];
input->dst_sock = sniff1.d.byte[3];

Make the Forwarding Decision
Once the fast-switching routine has read the destination address and any other necessary data, it must 
determine whether the packet should be forwarded. This is done principally by looking up the 
destination address in a special cache, but it might also involve operations such as checking for the 
presence or absence of certain bits in a flags word. 

If the packet is to be fast switched, the cache entry contains a pointer to the output interface and the 
encapsulation header to be used on that interface. The correct output routine is called using one of 
the two methods described in the section “Software Architecture.”

If a cache entry is not found or any of the other tests fail, the packet cannot be fast switched and must 
be handed over to process level. To do this, the fast-switching routine returns FALSE. The drivers then 
ensure that the packet is sent to process level. 

Transmit a Packet
The fast-switching output routine is responsible for modifying the received packet and transmitting 
it. This routine generally has a pointer to the input interface (remember the packet is still on the MCI 
card or ciscoBus controller) and a pointer to the cache entry. The output routine must first determine 
whether the input and output interfaces are on the same card or whether the packet must be copied 
from one interface card to another. Note that all ciscoBus interfaces are considered to be on the same 
“card,” the ciscoBus controller. This decision involves checking whether a card-to-card 
transfer—such as a ciscoBus-to-FSIP, ciscoBus-to-MCI, or MCI-to-MCI transfer—is necessary. 

Transmit a Packet: Intracard
If the two interfaces are on the same card, the fast-switching output routine can simply do the 
following:

1 Move the packet from the input interface’s receive queue to the output interface’s transmit queue.

2 Rewrite the packet encapsulation.

3 Tell the controller the new packet starting location and length. 

The following example shows how this is done in the VINES code. Note that the controller card can 
be accessed only in shortword or longword references, which is the same as in the input routine. 
Also, the last starting location set for writing data to the packet is the starting location for 
transmitting the packet. This means that for a protocol that has both a header and a trailer, such as 
21-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Hardware Architecture

 CISCO CONFIDENTIAL
SMDS, the trailer must be written first. If this rule is not followed, the controller will transmit the 
proper number of bytes, but it will begin transmitting with the first byte of the trailer instead of the 
first byte of the header. 

/* 
* First, set new starting location and length.
*/

inreg->argreg = input->fast_net_start - E_ARPA_HDR_WORDS_OUT;
inreg->cmdreg = MCI_CMD_TX1_SELECT;
size_to_xmit = size_of_data + path->reallength;

/* 
* Write the new header.
*/

inreg->write1long = path->vinesp_mh.mac_longs[0];
inreg->write1long = path->vinesp_mh.mac_longs[1];
inreg->write1long = path->vinesp_mh.mac_longs[2];
inreg->write1short = TYPE_VINES;
inreg->write1long  = input->checksum_length;
inreg->write1short = input->hops_ptype;

/* 
* Now send the packet. 
*/

if (size_to_xmit < MINETHERBYTES)
size_to_xmit = MINETHERBYTES;

inreg->argreg = size_to_xmit;
inreg->cmdreg = MCI_CMD_TX1_START;

The following example illustrates the restriction of shortword or longword accesses to the 
controller. An FDDI header is nominally 21 bytes in length if you ignore the RIF fields (as this 
example does). The problem is how to write a 21-byte header that ends on an even byte boundary to 
a device that can only accept an even number of bytes. The solution is to write a garbage starting 
byte before the real header, rounding out the total number of bytes written to an even number. In this 
case, FDDI_LLC_FC_BYTE  is a constant that is written into the first shortword but only the low-order 
byte is significant. Once you have written the odd-length header, you must signal the controller to 
ignore the garbage byte when transmitting the packet. This is done at the same time the packet length 
is sent to the controller by adding the constant MCI_TX_ODDALIGN to the packet size. Because the first 
byte written into memory was a garbage byte, this means that the packet transmission will begin with 
Switching 21-5



 CISCO CONFIDENTIAL
the first real byte of the packet. This procedure is necessary only for encapsulations that have odd 
lengths. This includes FDDI encapsulation, raw 802.5 Token Ring encapsulations, and raw Ethernet 
802.3 encapsulations.

/* 
* First, set new starting location and length.
*/

inreg->argreg = input->fast_net_start - F_SNAP_HDR_WORDS_OUT;
inreg->cmdreg = MCI_CMD_TX1_SELECT;
size_to_xmit = size_of_data + path->reallength;

/* 
* Write the new header.
*/

inreg->write1short = FDDI_LLC_FC_BYTE;
inreg->write1long = path->vinesp_mh.mac_longs[0];
inreg->write1long = path->vinesp_mh.mac_longs[1];
inreg->write1long = path->vinesp_mh.mac_longs[2];
inreg->write1long = (SNAPSNAP << 16) | (LLC1_UI << 8);
inreg->write1long = TYPE_VINES2;
inreg->write1long = input->checksum_length;
inreg->write1short = input->hops_ptype;

/* 
* Now send the packet. 
*/

inreg->argreg = sixe_to_xmit | MCI_TX_ODDALIGN;
inreg->cmdreg = MCI_CMD_TX1_START;
return(TRUE);

Transmit a Packet: Intercard
If the two interfaces are not on the same card, the output routine must do the following:

1 Allocate a buffer on the output interface card.

2 Write the new encapsulation header.

3 Copy the contents of the packet from the input interface card to the output interface card.

4 Tell the output controller the packet starting location and length. 

The following example shows how this is done in the VINES code. The result of a 
MCI_CMD_TX1_RESERVE  command must be checked for every packet. This command does not 
complete immediately, so interface accounting code (not shown in the example) is usually inserted 
between the code that issues the command and checks its result. If a new buffer cannot be obtained 
for output, there are different code execution paths based upon whether priority queuing is in use. 
With priority queuing, all packets that cannot be set immediately must be bumped up to process level 
so they can be sorted into the appropriate queues. If priority queuing is off, bumping the packet to 
process level is considered a waste of time, so it is dropped immediately. Always remember to 
include a MCI_CMD_RX_FLUSH command when you are done with the packet. If you forget, the 
controller considers that this packet is still being processed, and when the driver requests the next 
21-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Hardware Architecture

 CISCO CONFIDENTIAL
packet, the controller generates an error message. This command is not necessary in the intracard 
case, because the original packet has been moved to a transmit queue and is no longer at the head of 
the receive queue.

/* 
* Acquire a buffer on the output interface. 
*/

outreg->argreg = output->mci_index;
outreg->cmdreg = MCI_CMD_SELECT;
outreg->argreg = output->buffer_pool;
outreg->cmdreg = MCI_CMD_TX1_RESERVE;
if (outreg->cmdreg != MCI_RSP_OKAY) {

if (output->priority_list) {
/* 
* If sorting traffic and interface is congested, process switch.
*/

return(FALSE);
} else {

/* 
* Reserve failed on output. Flush the packet. 
*/

output->outputdrops++;
inreg->cmdreg = MCI_CMD_RX_FLUSH;
return(TRUE);

}
}

Because the intercard code is writing to a new packet, it can simply start writing the encapsulation 
header at the beginning of the buffer. This is different from the intracard case where the new 
encapsulation header must be overlaid upon the previous encapsulation of a packet.

/* 
* Set up the write pointer, and write the new header.
*/

outreg->argreg = 0;
outreg->cmdreg = MCI_CMD_TX1_SELECT;
outreg->write1long = path->vinesp_mh.mac_longs[0];
outreg->write1long = path->vinesp_mh.mac_longs[1];
outreg->write1long = path->vinesp_mh.mac_longs[2];
outreg->write1short = TYPE_VINES;
outreg->write1long = input->checksum_length;
outreg->write1short = input->hops_ptype;
outreg->write1long = input->destination_net;
outreg->write1short = input->destination_host;

The following call to mci2mci() copies the remaining contents of the packet from the input interface 
card to the output interface card. It is dependent on the read pointer being at a known position (that 
is, where it was left by the input fast-switching routine). This example explicitly writes the first 
12 bytes of the network layer header before calling mci2mci(), because the code had already read 
past these bytes during the input routine, and it is quicker to write them directly than to reset the read 
pointer and let mci2mci() copy them.

/* 
* Copy the remainder of the packet.
*/

mci2mci(&inreg->readlong, &outreg->write1long, size_to_copy);
Switching 21-7



 CISCO CONFIDENTIAL
Then, set the length of the packet and transmit it. The starting location of the packet was set at the 
beginning of this example and never changed, even though numerous writes were performed. 
Always remember to flush the original packet once it has been copied and transmitted.

/* 
* Send the packet.
*/

if (size_to_xmit < MINETHERSIZE)
size_to_xmit = MINETHERSIZE;

outreg->argreg = size_to_xmit;
outreg->cmdreg = MCI_CMD_TX1_START;

/* 
* Flush the original packet.
*/

inreg->cmdreg = MCI_CMD_RX_FLUSH;
return(TRUE);

21.2.1.2   Shared-Memory Architecture
Fast switching on the more recent routers is designed around a shared-memory model. These routers 
include the Cisco 1000, Cisco 2500, Cisco 4000, Cisco 4500, and Cisco 7500 series. Through the 
Integrated Route Switch Processor, shared-memory fast-switching code can also access other 
processors including the EIP, HIP, SIP, and TRIP. 

Shared-memory fast switching is frequently referred to as low-end or les fast switching, although 
this is a misnomer because the Cisco 7500 is at the top of the router continuum.

Receive a Packet
On the shared-memory platforms, the interface drivers classify the packets. With this information, 
the interface driver can quickly pass a received packet on to the appropriate protocol-specific 
fast-switching routine. The shared-memory fast-switching routines are always specific to a 
particular encapsulation of a given protocol. For example, there is an AppleTalk ARPA switching 
routine, an AppleTalk SNAP Ethernet switching routine, and so on. 

When a shared-memory fast-switching routine receives a packet, it is passed a single argument, 
which is a pointer to the packet data structure. This data structure contains a pointer to the input 
interface that the routine can use for access checks and other operations. The contents of the packet 
are completely accessible to the routine simply by referencing through the packet data pointer. It is 
the responsibility of the fast-switching routine to extract the information from the packet necessary 
to be able to process it. In most protocols, this involves reading the destination address, a flags word, 
and sometimes some additional data. This data is stored either in registers or in per-IDB variables so 
that it can be referenced multiple times without having to access the data again from slow shared 
memory. 

The following is a typical sequence of instructions for a shared-memory fast-switching routine that 
receives a packet. This example is from the VINES code. This code does not care which interface 
the packet was received on or which the encapsulation was used, because the driver is responsible 
for setting pak->network_start  to the start of the network layer data. Note that the data can be 
referenced on any alignment, although macros should be used to correct for any process alignment 
21-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Hardware Architecture

 CISCO CONFIDENTIAL
dependencies. This code could actually be improved by reading the value of vinesip->tc into a 
local variable and performing the tests on the local copy instead of reading the value twice from 
shared memory.

vinesip = (vinesiptype *)pak->network_start;
dstnet = GETLONG(vinesip->ddstnet);
dsthost = GETSHORT(&vinesip->dsthost);
if (vinesip->tc & VINES_METRIC)

return(FALSE);
if ((vinesip->tc & VINES_HOPS) == 0)

return(FALSE);

Make the Forwarding Decision
Once the fast-switching routine has read the destination address and any other necessary data, it must 
determine whether the packet should be forwarded. This is done principally by looking up the 
destination address in a special cache, but it can also involve operations such as checking for the 
presence or absence of certain bits in a flags word. 

If the packet is to be fast switched, the cache entry contains a pointer to the output interface and the 
encapsulation header to be used on that interface. The correct output routine is now called by one of 
the two methods described in the section “Software Architecture.”

If a cache entry is not found or any of the other tests fail, the packet cannot be fast switched and must 
be handed to the process level. The fast-switching routine returns FALSE, and the drivers ensure that 
the packet is sent to process level. 

Transmit a Packet
The fast-switching output routine is responsible for modifying the received packet and transmitting 
it. It generally has a pointer to the packet and a pointer to the cache entry. The output routine must 
do the following:

1 Rewrite the packet encapsulation.

2 Reset the starting address and length of the packet.

3 Call the transmit routine for the output interface. 
Switching 21-9



 CISCO CONFIDENTIAL
The following is an example of transmitting a packet; it is from the VINES code. Routines for the 
output of shared-memory fast-switching are usually this simple.

/* 
* First, set new starting location and length.
*/

pak->datagramstart = pak->network_start - E_ARPA_HDR_BYTES_OUT;
pak->datagramsize = E_ARPA_HDR_BYTES_OUT + pak->length;
if (pak->datagramsize < MINETHERSIZE)

pak->datagramsize = MINETHERSIZE;

/* 
* Write the new header.
*/

macptr = (ulong *)pak->datagramstart;
cache_macptr = path->vinesp_mh.mac_longs;
PUTLONG(macptr++, *cache_macptr++);
PUTLONG(macptr++, *cache_macptr++);
PUTLONG(macptr++, *cache_macptr);
PUTSHORT((ushort *)macptr,TYPE_VINES);

/* 
* Now send the packet.
*/

(*path->idb->hwptr->fastsend) (path->idb->hwptr, pak);
return(TRUE);

21.2.2   Software Architecture
There are two types of software architecture for fast switching:

• Full Matrix

• Unique Routines

21.2.2.1   Full Matrix
In the full-matrix style of programming, there is one input routine for each specific encapsulation 
and each input routine knows how to rewrite the packet for each possible output routine. The input 
routine uses a switch statement to execute the correct output routine for a packet. This yields the 
best possible performance because the code can be fine-tuned for speed, but it grows in an order(n2) 
fashion as new interfaces are added. 

The following example of full-matrix programming is taken from the intracard IP fast-switching 
code. This switch clause and all the output routines are repeated for each possible input routine, with 
possible minor changes.

IP_FAST_STARTUP2
switch (output_interface) {
case FS_ETHER:

/* Ethernet output code */
case FS_FDDI:

/* FDDI output code */
case FS_TOKEN:

/* Token Ring output code */
/* The rest of the encapsulation types follow. */
}

21-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Software Architecture

 CISCO CONFIDENTIAL
If you are implementing a new encapsulation on the router and it is the nth encapsulation routine, 
you need to write 2n new case statements. You also need to write one new input routine with a case 
for each possible output routine, and then in each of the existing input routines, you need to add a 
case statement for the new output encapsulation. 

The following is another example from the IP intercard fast-switching code. Each of these sets of if 
clauses enumerates all possible encapsulations, with possible minor changes in the code executed. 
If you are implementing a new encapsulation on the router and it is the nth encapsulation routine, 
you will need to write 2n new if clauses. You need to write one new if clause with its embedded 
inner set of if clauses, and in each of the existing inner sets of if clauses you need to add a new if 
clause for the new output encapsulation.

if (output_interface & IDB_ETHER) {
/* Output is Ethernet. */
if (input_interface & IDB_ETHER) {

/* Output Ethernet -- input Ethernet */
} else if (input_interface & IDB_FDDI) {

/* Output Ethernet -- input FDDI */
} else ...

} else if (output_interface & IDB_FDDI) {
/* Output is FDDI. */
if (input_interface & IDB_ETHER) {

/* Output FDDI -- input Ethernet */
} else if (input_interface & IDB_FDDI) {

/* Output FDDI -- input FDDI */
} else ...

} else ...

21.2.2.2   Unique Routines
In this style of programming, there is one input routine for each specific encapsulation and one 
output routine for each specific encapsulation. The input routines call the correct output routines by 
indexing into a table of routines. This yields slightly lower performance although the code can be 
fine-tuned somewhat, but it is much easier to maintain as new interfaces are added. The code grows 
in an order(2n) fashion as new interfaces are added. 

An example of this style is taken from the VINES fast-switching code:

return((*vfs_samemci[path->encaptype])(input, path));

If you are implementing a new encapsulation on the router and it is the nth encapsulation routine, 
you need to write two new routines. You need to write one new input routine that “removes” the 
incoming encapsulation and then vectors through the output routine table, and one new output 
routine that writes the new encapsulation. No other input or output routines need to be modified.
Switching 21-11



 CISCO CONFIDENTIAL
21-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  5
Hardware-Specific Design





C H A P T E R

 CISCO CONFIDENTIAL

Porting Cisco IOS Software to a New Platfor
2 2
Porting Cisco IOS Software to a 
New Platform
One advantage of programs written in the C language is that they can be ported to a wide range of 
platforms. However, software in C can be written so that it is not portable to other platforms. This is 
true of parts of the Cisco IOS code, which assume a certain type of microprocessor. This chapter 
provides guidelines for writing Cisco IOS code that is portable to different types of CPUs.

When you write portable code, you need to be aware of the following issues:

• CPUs read data to and write data from memory using different methods. Some CPUs store data 
with the least-significant byte (LSB) first. This method is called little endian or low-high order. 
The Intel x86 family of CPUs use this method. Other CPUs store data with the most-significant 
byte (MSB) first. This method is called big endian or the high-low order. The Motorola 680x0 
family of CPUs uses this method. Until now, released versions of the Cisco IOS software have 
run only on big-endian microprocessors (680x0 and MIPS). As a result, portions of the code 
assume a big-endian CPU.

• Some CPUs have strict rules about accessing memory on natural boundaries or even boundaries. 
Failing to follow the CPU’s rules results in a fatal error.

• Integer sizes vary with different CPUs. Some integers are 16 bits, and others are 32 or 64 bits. 
Until now, the Cisco IOS software has been running on CPUs with 32-bit integers, and some 
portions of the code assume 32-bit integers.

This chapter discuss these and other issues in greater detail. There is also a section about various 
other portability issues that are less important but still need to be addressed when writing portable 
code. The remaining sections of the chapter present the methodology used at Cisco to handle the 
portability issues.

22.1   Portability Issues 

This section discusses the following topics related to writing portable code:

• Byte Order

• Data Alignment

• C Pitfalls

• Other Portability Issues
22-1



 CISCO CONFIDENTIAL
22.1.1   Byte Order
Almost all portability problems are related to byte order. Portability demands that code does not 
depend upon the order of bytes in the host machine.There is a byte order defined as the network byte 
order. All data read in the network byte order must be canonicalized before it is used internally by 
the host machine. The data must also be re-ordered before it is sent to the network. The network byte 
order selected is the big-endian byte order.

Byte-ordering problems usually arise in the following areas:

• Unions

• Bit Fields

• Bit Operations

• Typecasting

• Character Constants

22.1.1.1   Unions
You should generally avoid using unions when writing portable code. To understand why this is the 
case, consider the charlong structure, which is defined in the Cisco IOS types.h file as follows: 

typedef struct charlong_ {
union {

uc harbyte[4];
us hortword[2];
ul onglword;

} d;
} charlong;

Let’s examine the behavior of this structure for big-endian and little-endian CPUs by assigning the 
byte stream 11 22 33 44 to the cl variable. On a big-endian CPU, this assignment would result in 
the following:

cl.d.byte[0] = 11; cl.d.byte[1] = 22; cl.d.byte[2] = 33; cl.d.byte[3] = 44;

The same assignment on a little-endian CPU would result in the following:

cl.dlbyte[0] = 11; cl.d.byte[1] = 22; cl.d.byte[2] = 33; cl.d.byte[3] = 44;
cl.d.sword = 2211; cl.d.sword[1] = 4433;
cl.d.lword = 44332211;
22-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Byte Order

 CISCO CONFIDENTIAL
22.1.1.2   Bit Fields
Bit fields can cause problems for portability. For example, the bpduhdrtype structure is valid only 
for big-endian CPUs: 

typedef struct bpduhdrtype_ {
us hort protocol;/* protocol ID */
uc har version;/* version identifier */
uc har type;/* BPDU type */
vola tile uchar tc_acknowledgement: 1;/* topology change acknowledgment */
volatile uchar notusedflags: 6;
vo latile uchar tc: 1;/* topology change flag */
uchar root_id[IDBYTES];
uchar root_path_cost[4];
uchar bridge_id[IDBYTES];
uchar port_id[2];
uchar message_age[2];
uchar max_age[2];
uchar hello_time[2];
uchar forward_delay[2];

} bpduhdrtype;

In order for the bpduhdrtype structure to work the same on little-endian CPUs, it must be defined as 
follows. Note the difference in the bit field.

typedef struct bpduhdrtype_ {
us hort protocol;/* protocol ID */
uc har version;/* version identifier */
uc har type;/* BPDU type */
vo latile uchar tc: 1;/* topology change acknowledgment */
volatile uchar notusedflags: 6;
vola tile uchar tc_acknowledgement: 1;/* topology change flag */
uchar root_id[IDBYTES];
uchar root_path_cost[4];
uchar bridge_id[IDBYTES];
uchar port_id[2];
uchar message_age[2];
uchar max_age[2];
uchar hello_time[2];
uchar forward_delay[2];

} bpduhdrtype;

The problem becomes more difficult when the bit field spans byte boundaries. In this case, you can 
use bit masks to access a given field. For example, the bpduhdrtype structure could be written as 
follows:

typedef struct bpduhdrtype_ {
us hort protocol;/* protocol ID */
uc har version;/* version identifier */
uc har type;/* BPDU type */
vola tile uchar topology_change;/* topology change acknowledgment */
uchar root_id[IDBYTES];
uchar root_path_cost[4];
uchar bridge_id[IDBYTES];
uchar port_id[2];
uchar message_age[2];
uchar max_age[2];
uchar hello_time[2];
uchar forward_delay[2];

} bpduhdrtype;
Porting Cisco IOS Software to a New Platfor 22-3



 CISCO CONFIDENTIAL
The following #define statements could be defined:

#de fine TC_ACKNOWLEDGEMENT0x01
#d efine TC0x80

The following code, which is nonportable, tests and sets the acknowledgment bit:

if (bpdu->tc_acknowledgement)
topology_change_acknowledged(span);

bpdu->tc_acknowledgement = port->topology_change_acknowledge;

This code could be rewritten with bit masks as follows:

if ((bpdu-topology_change & TC_ACKNOWLEDGEMENT) == TC_ACKNOWLEDGEMENT)
topology_change_acknowledged(span);

bpdu->topology_change = (bpdu->topology_change & ~TC_ACKNOWLEDGEMENT) | 
(port->topology_change & TC_ACKNOWLEDGEMENT);

22.1.1.3   Bit Operations
Pay special attention to code that performs bit operations. Often, bitwise operations can be made 
more portable by using the bitwise and (&), bitwise or (|) and bitwise complement (~) operators as 
seen in the example in the “Bit Fields” section. 

22.1.1.4   Typecasting
When writing portable code, you should question each typecasting occurrence. Code such as the 
following gives different results on CPUs with different byte orders when you dereference p:

char *p;
short n;

p = (char *)&n;

22.1.1.5   Character Constants
Because of byte order differences, multicharacter constants are handled differently. The following is 
an example of portable code for defining characters to be used as a string:

char crlf[] = “\r\n”;

22.1.2   Data Alignment
Some CPUs require strict data alignment, and if an item is not aligned, references to the data cause 
a trap that aborts the program. In the same fashion, assembler instructions must also be aligned to 
the instruction length or a trap occurs. The Motorola 680x0 CPUs require strict data alignment. 
Normally, the compiler takes care of data alignment, but referencing data in a byte stream might 
cause a trap if the data is misaligned. 
22-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Data Size

 CISCO CONFIDENTIAL
22.1.3   Data Siz
Portable code should use predefined types for data that will be exchanged with other machines. The 
sizes of some data types, in particular int, differ from one CPU to the next. For this reason, there 
should be no code dependencies on the int size of the CPU. Take extra care on machines where the 
int and long are the same size. Failure to do so results in code that is difficult to port to smaller 
machines. 

There are three appropriate usages for portable code:

• Return values. Functions can return values of type int. In fact, many C standard library functions 
return an int.

• Function parameters. 

• Register integer variables. 

In all these case, the Cisco IOS code might assume that an int is at least 16 bits long.

22.1.4   C Pitfalls
Certain aspects of the C language depend on the implementation, which is not necessarily the same 
on all platforms. This section covers those aspects.

22.1.4.1   Enum Types
Do not assume that enum symbols are necessarily contiguous.

22.1.5   Other Portability Issues
The following issues also have an impact on writing portable code:

• Performance

• Stack Usage and Stack Growth

• Compliance with Encapsulations

22.1.5.1   Performance
Code that is based on the architecture of the CPU or the operating system creates problems when 
ported to CPUs or operating systems with a different architecture. For example, the Cisco IOS code 
is a nonpreemptive operating system, and most of the code assumes this, even though it should not. 
If you port part of the code to a preemptive operating system, you will encounter resource protection 
problems. 

Consider the following portion of code, which accesses a queue to add a new element. On Cisco’s 
current platforms, this code functions correctly. However, if this code were to run on a platform such 
as Windows NT, the operating system could suspend the queuing operation to give CPU time to 
another task. This task might also access the same data area, which would result in problems with 
the first queuing operation.

add code example here
Porting Cisco IOS Software to a New Platfor 22-5



 CISCO CONFIDENTIAL
22.1.5.2   Stack Usage and Stack Growth
Not all architectures have the same stack usage scheme. For example:

main()
{

long parm1, parm2, parm3, parm4, parm5
do_something(parm1, parm2, parm3, parm4, parm5);

}

do_something(long arg)
{

long *ptr;
long var1, var2, var3, var4, var5;

ptr = &arg;

var1 = ptr[0];
var2 = ptr[1];
var3 = ptr[2];
var4 = ptr[3];
var5 = ptr[4];
}

This code has the following problems with regard to portability:

• The code assumes that the stack grows down. Not all architectures have the stack grow from the 
high address to the low address, while some have it grow in the opposite direction, from the lower 
memory address to the higher.

• The code assumes that arguments are pushed from right to left on the stack. Some architectures 
pass the argument from left to right.

• The code assumes that all argument are pushed on the stack. In some architectures, the first few 
arguments are passed in registers to speed the call.

The best approach to managing stack usage is to use the macros in the Cisco IOS stdarg.h header 
file to implement a variable parameter function call. In an ANSI C environment, these macros in 
stdarg.h are in varargs.h. 

It is also important to pay close attention to the return value of functions. Some systems return the 
results of a function call in a different register depending on the type of the function result. For 
example, the m68k ELF format uses register d0 to return ordinal values (cha , unsigned cha , 
short, unsigned short, long, and unsigned long), but register a0 might be used for returning 
addresses (char *, void *, short *, and so on). 

22.1.5.3   Compliance with Encapsulations
To allow code to be easily ported, you must follow the spirit of the protocol header definition. Do 
not cheat and assume you are running on a big-endian CPU.

The following code assumes that the processor is big-endian and does not care about longword 
alignment:

*((long *)pak->datagramstart) = HDLC_BRIDGECODE;

This code would be better written as the following portable code:

PUTSHORT(hdlc->var_hdlcflags,HDLC_STATION);
PUTSHORT(hdlc->var_hdlctype,TYPE_BRIDGE);
22-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Cisco’s Implementation of Portability

 CISCO CONFIDENTIAL
Now let’s look at some code that handles alignment issues but totally disregards endian issues. The 
header definition is as follows:

/*
* 802.10 SDE encapsulation header data structure.
*/

typedef struct sdehdrtype_ {
uchar sde_dsap;
uchar sde_lsap;
uchar sde_control;
uc har sde_said[4];/* Security association ID */
uc har sde_sid[8];/* Station ID */
uc har sde_flags;/* Flags */
uc har sde_fid[4];/* Fragment ID */

} sdehdrtype;

The following code writes the header to a buffer:

/*
* Write an 802.10 SDE header to an network buffer.
*
*/

static inline
void tbridge_bfr_sde_header_wr_inline (idbtype *outputsw, uchar *bfr_wr_ptr,

uchar *src_addr)
{

ulong said;
if (!outputsw->sde_said_db)

return;
said = outputsw->sde_said_db->sdb_said;
/*
* Write SDE header.
*/

PUTSHORT(bfr_wr_ptr, (SAP_SDE | SAP_SDE << 8));
bfr_wr_ptr += 2;
PUTSHORT(bfr_wr_ptr, (LLC1_UI << 8 | said >> 24));
bfr_wr_ptr += 2;
PUTSHORT(bfr_wr_ptr, (ushort)(said >> 8));
bfr_wr_ptr += 2;
PUTSHORT(bfr_wr_ptr, (((uchar)(said & 0xFF)) << 8 | *src_addr));
bfr_wr_ptr += 2;
PUTLONG(bfr_wr_ptr, GETLONG(&src_addr[1]));
bfr_wr_ptr += 4;
/* 
* Flag is zero for now - no fragmentation support 
*/

PUTLONG(bfr_wr_ptr, (*((uchar *)(&src_addr[5]))) << 24);
}

22.2   Cisco’s Implementation of Portability

This section discusses some features of the Cisco IOS code that enable the writing of portable code.

22.2.1   Inline Assembler
Some assembler code is needed on every platform, commonly to accelerate the processing or to 
perform some function that the C language does not allow. Pay attention to where these assembler 
routines are stored in the development tree. You must store inline assembler routines in 
processor-dependent files. 
Porting Cisco IOS Software to a New Platfor 22-7



 CISCO CONFIDENTIAL
22.2.2   Header Files
The development tree contains header files for each platform and processor currently supported by 
Cisco IOS software. These header files are in the sys/machine directory. They use the following 
naming conventions:

• cpu_processor.h—Platform-independent definitions for the specified processor

• cisco_platform.h—Platform-dependent definitions for the specified processor

• cisco_processor.h—Cisco-specific definitions for the specified processor

22.2.3   Byte-Order Functions
The Cisco IOS software contains many macros for reordering bytes, including the following, which 
are useful for reordering bytes in a packet: 

ORDER_BYTE_SHORT(addr) 
ORDER_BYTE_LONG(addr) 

These two macros reorder the 16-bit word and the 32-bit word at the address specified in addr, if 
necessary. The reordered bytes are stored at the same address. 

22.2.4   Endian #defines
The following #define statements are used to define the byte order:

#define BIGENDIAN 1234 
#define LITTLEENDIAN 4321 

These two #define statements are defined for every platform. To find out which byte order the 
current platform uses, the code must refer to BYTE_ORDER. This #define is assigned the proper endian 
#define based on the platform. Using this approach, source code can refer to BYTE_ORDER without 
using the preprocessor. 

Byte-ordering code could look something like this:

if (BYTE_ORDER == BIGENDIAN){
do_something();

else
do_something_else();

The optimizer removes the unneeded code from the executable format so that no running time is 
wasted determining the byte order and the code remains easy to read without the #ifdef where 
endian-dependent code must be used.

Another #define statement used to define byte order is ORDER_DATA_CMD. This macro can be used to 
called the canonicalize routines (see the “Canonical Functions” section in this chapter). For example, 
the following macro executes the parameter only if byte reordering is necessary:

ORDER_DATA_CMD(ip_canonicalize(pak));
22-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



GET and PUT Macros

 CISCO CONFIDENTIAL
When defining data structures, compare BYTE_ORDER in an #if statement. For example, in the 
following code, no other endian values should be used. All other #define statements have been 
removed from the code, including those for LITTLE_ENDIAN and BIG_ENDIAN. 

#if BYTE_ORDER == BIGENDIAN
#define SOME_MACRO SOME_BIG_ENDIAN_DEFINE
#endif

#if BYTE_ORDER == LITTLEENDIAN
#define SOME_MACRO SOME_LITTLE_ENDIAN_DEFINE
#endif

Although bit fields still exist in the code mainly because of the amount of code that would need to 
change, you should avoid using them. Masking is a portable approach.

22.2.5   GET and PUT Macros
Each platform has a set of GET and PUT macros to extract and insert words and double words in byte 
streams. 

The following are the GET macros. They take as input the address where the short or long value 
should read, and they return the requested short or long value. 

GETSHORT(address) 
GETLONG(address) 

The following are the PUT macros. They take as input the address where the short or long value 
should be placed and the value that should be placed at that address. 

PUTSHORT(address, value) 
PUTLONG(address, value) 

22.2.6   Canonical Functions
The approach taken to port Cisco IOS software to little-endian platforms is to canonicalize the 
packets when they enter and exit from each layer. The canonical functions are invoked only when 
needed, based on endians using the BYTE_ORDER #define . You should define these functions as 
static inline. 
Porting Cisco IOS Software to a New Platfor 22-9



 CISCO CONFIDENTIAL
The following is an example of a canonical function from the IP code: 

static inline void ip_canonicalize (iphdrtype *ip) 
{
ORDER_BYTE_SHORT(&ip->tl);

ORDER_BYTE_SHORT(&ip->id);
ORDER_BYTE_LONG(&ip->srcadr);
ORDER_BYTE_LONG(&ip->dstadr);
/*
* Check for any IP options.
*/

if (ltob(ip->ihl) >= MINIPHEADERBYTES) {
int i, len;
uchar *opts = (uchar *)&ip[1];
for (i = 0; i < ltob(ip->ihl) - MINIPHEADERBYTES; i += len) {

len = ip_option_len(&opts[i], ltob(ip->ihl) - MINIPHEADERBYTES);
if (len == 0)
return;
switch (opts[i]) {
case IPOPT_RRT:
case IPOPT_LSR:
case IPOPT_SSR:
{
ipopt_routetype *ptr = (ipopt_routetype *)&opts[i];

int j, nhops = btol(ptr->length - IPOPT_ROUTEHEADERSIZE);
if ((nhops < 1) || (nhops > btol(MAXIPOPTIONBYTES)))

return;
for (j = 0; j < nhops; j++)

ORDER_BYTE_LONG(&ptr->hops[j]);
break;

}
case IPOPT_TSTMP:
{

ipopt_tstmptype *ptr = (ipopt_tstmptype *)&opts[i];
int j, ntimes = btol(ptr->length - IPOPT_TSTMPHEADERSIZE);
if ((ntimes < 0) || (ntimes > btol(MAXIPHEADERBYTES)))

return;
for (j = 0; j < ntimes; j++)

ORDER_BYTE_LONG(&ptr->tsdata[j]);
break;

}
case IPOPT_SID:
{

ipopt_sidtype *ptr = (ipopt_sidtype *)&opts[i];
if (ptr->length != IPOPT_SIDSIZE)

return;
ORDER_BYTE_SHORT(ptr->streamid);
break;

}
}

}
}

}

22-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  6
Management Services





C H A P T E R

 CISCO CONFIDENTIAL

Command-Line Parse
2 3
Command-Line Parser
23.1   Overview: Parser

The Cisco IOS command-line parser is a finite state machine described by a series of macros that 
define the sequence of a command’s tokens. Each macro defines a node in the state diagram of a 
command. This definition includes a pointer to the node to process if the current node matches the 
command-line input and an alternate node to process regardless of whether the current node is 
accepted. Optional parameters and keywords are indicated by alternate states in the parse tree. A 
macro exists for every type of object that can be parsed, such as keywords, integers, addresses, and 
string text. 

23.1.1   Traversing the Parse Tree
When parsing a command, the command-line parser checks the entire parse tree, searching all 
alternates for a given token, in order to detect ambiguous input that might occur when abbreviated 
keywords are used. Although this might seem to present a significant load to the CPU, very few 
branches of the parse tree are actually traversed for any given command input. 

When generating nonvolatile output, which builds an expression that describes how a platform is 
configured, the entire parse tree must be traversed to accurately reflect the current state of the 
platform. This is because other mechanisms, such as SNMP, can be used to modify the router's 
internal state. Even when traversing the entire parse tree, it takes only about 1 second to generate a 
normal configuration and about 5 to 8 seconds to generate large configurations on a slower router. 

Figur e23-1 shows a global view of the parse tree for a subset of the Cisco IOS router EXEC 
commands. In this figure, the accepting nodes are distributed to the right, and alternate nodes are 
distributed down the figure on the left. When traversing the parse tree, the parser does the following:

1 The parser begins at [top] and compares the first input token with all the alternates listed on the 
left, starting with bfe, clear, and so on. 

2 When a match occurs, the parser transitions to the accepting node on the right. 

3 The parser allocates a new console status block (CSB).

4 The parser searches the remaining alternate nodes to identify ambiguous commands. 

5 After the entire parse tree has been searched, if there has only been one command match, the 
saved CSB is restored and the specified command function is called with the CSB as its 
argument. The command function extracts the parsed values from the CSB.
23-1



 CISCO CONFIDENTIAL
Figure 23-1 Traversing the Parse Tree

For example, if the input is configure network, the parser traverses the parse tree as follows: 

1 Each of the alternates starting at [top] is checked.

2 When the parser reaches configure, which matches, the parser advances the input pointer and 
checks the tokens accepted from configure, which are listed to the right of configure. 

3 The keyword network is matched, followed by a match of end of line (EOL). 

4 When EOL is reached, the state of the parse is stored on a stack. This state includes parsed values 
and a pointer to a command function that is to be called to execute the command.

23.1.2   Transition Structure
Each node in a command’s state diagram is defined by a transition structure, which is created by the 
parser macros. The transition structure has the following format: 

typedef const struct transition transition;
struct transition_ {

transition *accept;
transition *alternate;
const trans_func function;
const void * const arguments;

};

function is a function pointer that parses a token. It takes two arguments:

• A pointer to the console status block (CSB), which is a parseinfo structure that contains the 
parser state

• A pointer to the transition

function pushes the alternate transition onto the parser stack, and if the token is parsed correctly, 
function pushes the accept transition onto the stack. 

arguments is a pointer to a token-specific structure that contains information about how the token 
should be parsed, where parsed information should be stored, and help strings.

S
38

13

[top] bfe enter
leave
[no_alt]

<interface>
[no_alt]

EOL

cmt connect
disconnect
[no_alt]

<interface> phy-a
phy-b

clear [connects to the top of the clear command parse tree]

configure terminal
memory
overwrite-network
network

EOL

EOL

[no_alt]

[other commands]
23-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Build Parse Trees

 CISCO CONFIDENTIAL
23.2   Build Parse Trees

You build parse trees for a command using a set of macros to describe each token in the command. 
Each macro defines a unique node in a command’s state diagram.

23.2.1   Construction of Parse Trees 
You typically build the parse tree for each command in a separate file. Because C does not allow 
forward referencing without explicit declaration of the forward referenced item, you define parse 
trees in bottom-up order. 

23.2.1.1   Example: Construction of Parse Trees
The following example of constructing a parse tree shows the parse tree for the disable EXEC 
command:

/*
 * disable
 */

EO LS(exec_disable_endline, enable_command, exec_disable_endline);
KEYWORD (exec_disable, exec_disable_endline, ALTERNATE,

“disable”, “Turn off privileged commands”, PRIV_ROOT);

In this example, the KEYWORD macro takes the following arguments:

• exec_disable is the transition structure that is the entry point to the parse tree

• exec_disable_endline  is the name of the accept transition. This is the node to which control is 
passed if the word “disable” is matched in the input. 

• ALTERNATE is the name of the alternate state. 

• “disable” is the keyword to match.

• “Turn off privileged commands”  is the long help string to provide to the user

• PRIV_ROOT is a flag word that determines how the keyword is handled. Table 2 3 -2 lists the 
possible privilege levels.

If the user input begins with the word disable, the KEYWORD macro processes the keyword and takes 
the accept transition to the exec_disable_endline  node, which checks for end of line. If end of line 
is found, the parser saves the function pointer enable_command, along with any other state of the 
parse. The third argument to EOLS is stored in csb->which before calling the named function, 
exec_disable_endline . This argument allows a family of commands to share a single processing 
function.

Note the coding style of the arguments in the KEYWORD macro. KEYWORD is the first item on a line so 
that it is easy to find when you scan parse tree code.
Command-Line Parse 23-3



 CISCO CONFIDENTIAL
23.2.2   Parse a Keyword Tok
To parse a keyword token, use the GENERAL_KEYWORD and KEYWORD_* macros. Tabl e23-1Tab le23-1 
lists some common macros for parsing keywords. 

Table 23-1 Macros for Parsing Keywords 

The following parameters are common to most of the macros listed inTa ble23-1:

• name is the name of this node in the parse tree. This name is used to link nodes together.

• accept specifies the accept transition. It is the name of the node to process next if the keyword 
token matches.

• alternate is the name of the alternate node to process. The alternate node transition is always 
taken, regardless of whether this node is accepted. It is this linkage that allows all alternates to be 
checked at a given point in the parsing process.

• keyword is the keyword token itself.

• help specifies a help string that explains the keyword token or the set of options that depend on 
the token’s presence.

• privilege is a flag word that encodes the privilege level required to execute the command and 
other options, such as whether help is provided and visible to users, whether NV generation is 
performed, and other parser control functions. 

Table 23-2Table 2 3 -2 lists the flags for specifying the keyword privilege level. You can modify 
them with the privilege configuration command. Specify only one privilege level for a keyword. 

Table 23-3Table 2 3 -3 lists the flags for specifying how the keyword should be parsed and NV 
generated, and how it should provide help. Several values can be ORed together for the privilege 
argument.

Parsing Task Macro

Parse a keyword. GENERAL_KEYWORD(name, accept, alternate, keyword, help, 
privilege, variable, value, match, flags) 

Parse a keyword, accepting partial matches and 
ignoring case.

KEYWORD(name, accept, alternate, keyword, help, privilege) 

Parse a keyword, matching a minimum number 
of characters.

KEYWORD_MM(name, accept, alternate, keyword, help, privilege, 
count) 

Parse a keyword without parsing the trailing 
white space.

KEYWORD_NOWS(name, accept, alternate, keyword, help, 
privilege) 

Parse a keyword and optionally parse the 
trailing white space.

KEYWORD_OPTWS(name, accept, alternate, keyword, help, 
privilege) 

Parse a keyword that is followed by an existing 
interface.

INTERFACE_KEYWORD(name, accept, alternate, variable, 
valid_ifs, keyword, help) 
23-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Parse a Keyword Token

 CISCO CONFIDENTIAL
Table 23-2 Flags for Specifying Privilege Level When Parsing Keywords

Table 23-3 Flags for Specifying Other Options When Parsing Keywords

23.2.2.1   Example: Parse a Keyword Token
The following example parses the exit keyword token. In this example, the current node is named 
exec_exit, the accept transition points at the exec_exit_eol node, the alternate transition points at 
the exec_quit node, the token itself is exit, the help string is “Exit from the EXEC,” and the 
privilege level is set to the minimum level. 

KEYWORD(exec_exit, exec_exit_eol, exec_quit, “exit”, “Exit from the EXEC”,
PRIV_MIN);

Figur e23-2 illustrates the transition diagram for this example, showing the three nodes exec_exit, 
exec_exit_eol, and exec_quit.

Flag Description

PRIV_MIN Set the privilege level needed to parse the keyword to the lowest privilege level (0). This is 
useful for keywords that should always be available to a user, regardless of their privilege level, 
such as keywords that disable, enable, end, exit, and provide help.

PRIV_USER Set the privilege level needed to parse the keyword to 1. This is the default user privilege level.

PRIV_ROOT Set the privilege level needed to parse the keyword to the maximum privilege level (15). This is 
the default privilege level for the enable command.

PRIV_MAX Same as PRIV_ROO .

Flag Description

PRIV_INTERNAL The command is an internal command and is unavailable unless you enter the service internal 
configuration command. 

PRIV_UNSUPPORTED The command is unsupported and hidden, and no help is provided. If this command is entered, 
a warning message is displayed indicating that the command is unsupported; the command is 
then executed. 

PRIV_USER_HIDDEN The keyword is hidden to users with a privilege level of PRIV_USER or less unless the user has 
entered the terminal full-help EXEC command or full-help line global configuration 
command. 

PRIV_SUBIF The keyword is available on subinterfaces. If the keyword does not have this flag, it is 
unavailable when configuring subinterfaces. 

PRIV_HIDDEN The keyword is hidden, and all keywords following the accept transition are also hidden. No 
help for any of these keywords is displayed, and the parse tree following the keyword is not 
searched. This keyword prevents the generation of help output for entire parse trees. An 
example of a hidden command is the write core command. 

PRIV_DUPLICATE The keyword occurs twice in the current mode, and this instance is hidden. No help is provided 
for the duplicate instance, but the parse tree under it is still searched. For example, the keyword 
xns appears twice as a global configuration command, once for the protocol configuration and 
again for global routing configuration. The second instance is flagged as PRIV_DUPLICATE. 

PRIV_NONVGEN The keyword is skipped during NV generation. This is useful for obsolete commands that must 
still be accepted, but that have been replaced with newer commands. Using this flag in 
combination with either PRIV_HIDDEN or PRIV_NOHELP allows obsolete keywords to be 
gracefully deprecated. To aid in the transition to the new command, you need to modify the 
help message of the obsolete command to warn of the change.

PRIV_NOHELP The keyword is hidden. This flag affects the help output of the given keyword only; all 
successive keywords are processed normally, including the generation of help messages. There 
are currently no examples of this in the Cisco IOS parser. 
Command-Line Parse 23-5



 CISCO CONFIDENTIAL
Figure 23-2 Transition Diagram for Parsing a Keyword 

This example of using the KEYWORD macro to parse the exit keyword creates the following transition 
structure. In this structure, the parser calls keyword_action, which pushes the alternate transition, 
PARSER_exec_quit , onto the stack. If the keyword and trailing white space are parsed correctly, the 
parser then pushes the accept transition, PARSER_exec_exit_eol , onto the stack. Lexec_exit is a 
keyword_struct structure that contains the keyword, help, and privilege-level information.

transition PARSER_exec_exit = {
&PARSER_exec_exit_eol,

&PARSER_exec_quit,
keyword_action,
&Lexec_exit

};

23.2.3   Parse a Number Token
To parse a number token, use the GENERAL_NUMBER, NUMBER, and other macros. Tabl e23-4Tab le23-4 
lists some common macros for parsing number tokens. 

Table 23-4 Macros for Parsing Numbers 

Parsing Task Macro

Parse a number in a specified range. GENERAL_NUMBER(name, accept, alternate, variable, lower, 
upper, help, flags) 

Parse a decimal, an octal, or a hexadecimal 
number in a specified range.

NUMBER(name, accept, alternate, variable, lower, upper, help) 

Parse a decimal, an octal, or a hexadecimal 
number in a specified range without parsing 
trailing white space and without providing 
help.

INUMBER(name, accept, alternate, variable, lower, upper)

Parse a decimal number in a specified range. DECIMAL(name, accept, alternate, variable, lower, upper, help) 

Parse a decimal number in a specified range 
without parsing trailing white space and 
without providing help.

IDECIMAL(name, accept, alternate, variable, lower, upper) 

Parse an octal number in the range 0 through 
0xFFFFFFFF.

OCTAL(name, accept, alternate, variable, help) 

Parse an octal number in the range 0 through 
0xFFFFFFFF without parsing trailing white 
space and without providing help.

IOCTAL(name, accept, alternate, variable) 

Parse a hexadecimal number in the range 0 
through 0xFFFFFFFF.

HEXNUM(name, accept, alternate, variable, lower, upper, help) 

Parse a hexadecimal number in a specified 
range.

HEXDIGIT(name, accept, alternate, variable, lower, upper, 
help) 

s3
73

8

exec_exit_eol

“exit”

exec_exit

else

exec_quit
23-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Parse a Number Token

 CISCO CONFIDENTIAL
The following parameters are common to most of the macros listed in Ta ble23-4:

• name is the name of this node in the parse tree. This name is used to link nodes together.

• accept specifies the accept transition. It is the name of the node to process next if the keyword 
token matches.

• alternate is the name of the alternate node to process. The alternate node transition is always 
taken, regardless of whether this node is accepted. This linkage allows all alternates to be checked 
at a given point in the parsing process.

• variable is the variable in the CSB in which to store the number

• lower is the lower bound of the number range.

• upper is the upper bound of the number range.

• help specifies a help string that explains the keyword token or the set of options that depend on 
the token’s presence.

23.2.3.1   Example: Parse a Number Token
The following example parses a number in the range 1 through 15. In this example, the current node 
is named enable_level, the accept transition points at the enable_endline node, the alternate 
transition points at the enable_endline node, 1 and 15 specify the number range, and the help string 
is “Enable level.” 

NUMBER(enable_level, enable_endline, enable_endline, OBJ(int,1), 1, 15, 
“Enable level”);

This example of using the NUMBER macro creates the following transition structure. In this structure, 
the parser calls general_number_action , which pushes the alternate transition, 
PARSER_enable_endline , onto the stack. If the number and trailing white space are parsed correctly, 
the parser pushes the accept transition, PARSER_enable_endline , onto the stack. Lenable_level is 
a number_struct structure that contains an offset into the CSB to store the number parsed, the range 
within which the number must lie, and the help string.

transition PARSER_enable_level = {
&PARSER_enable_endline,
&PARSER_enable_endline,
general_number_action,
&Lenable_level

};

Parse a hexadecimal number in the range 0 
through 0xFFFFFFFF without parsing trailing 
white space and without providing help.

HEXADECIMAL(name, accept, alternate, variable) 

Parsing Task Macro
Command-Line Parse 23-7



 CISCO CONFIDENTIAL
23.2.4   Parse a Keyword-Number Combination
A keyword followed by an integer value is a common occurrence in the Cisco IOS commands. To 
parse this combination, you can use the KEYWORD, NVGENS, NOPREFIX, NUMBER, and EOLS macros. 
Because keyword-number combinations are so common, two macros are provided explicitly for 
parsing them: PARAMS and PARAMS_KEYONL . These macros combine the functions of the KEYWORD, 
NVGENS, NOPREFIX, NUMBER, and EOLS macros. 

PARAMS(name, alternate, keyword, variable, lower, upper, function, subfunction,
keywordhelp, variablehelp, privilege) 

PARAMS_KEYONLY(name, alternate, keyword, variable, lower, upper, function,
subfunction, keywordhelp, variablehelp, privilege) 

23.2.4.1   Examples: Parse a Keyword-Number Combination
The following example shows how to use the PARAMS macro instead of the KEYWORD, NVGENS, NUMBER, 
and EOLS macros: 

PARAMS(snark_cmd, ALTERNATE, “snark”,
OBJ(int,1), 0, 10,
snark_command, SNARK,
“Snark command”, “Snark number”, PRIV_ROOT);

If you use the KEYWORD, NVGENS, NUMBER, and EOLS macros, you need to define the parse tree for this 
command as follows:

EOLS(snark_eols, snark_command, SNARK);
NUMBER(snark_number, snark_eols, no_alt, OBJ(int,1), 0, 10, “Snark number”);
NVGENS(snark_nvgen, snark_number, snark_command, SNARK);
KEYWORD(snark_kw, snark_nvgen, ALTERNATE, “snark”, “Snark command”, PRIV_ROOT);

The following example shows how to use the PARAMS_KEYONLY macro instead of the KEYWORD, 
NVGENS, NOPREFIX, NUMBER, and EOLS macros:

PARAMS_KEYONLY(snark_cmd, ALTERNATE, “snark”,
OBJ(int,1), 0, 10,
snark_command, SNARK,
“Snark command”, “Snark number”, PRIV_ROOT);

If you use the KEYWORD, NVGENS, NOPREFIX, NUMBER, and EOLS macros, you need to define the parse 
tree for this command as follows:

EOLS(snark_eols, snark_command, SNARK);
NUMBER(snark_number, snark_eols, no_alt, OBJ(int,1), 0, 10, “Snark number”);
NOPREFIX(snark_no, snark_number, snark_eols);
NVGENS(snark_nvgen, snark_number, snark_command, SNARK);
KEYWORD(snark_kw, snark_nvgen, ALTERNATE, “snark”, “Snark command”, PRIV_ROOT);

23.2.5   Parse Optional Keywords
A common command syntax allows for several possible keywords at a given point in the parse. An 
example is the arp interface configuration command, which has the following syntax: 

[no] arp { arpa | probe | smds | snap | timeout seconds | ultranet }
23-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Parse Mixed String and Nonstring Tokens

 CISCO CONFIDENTIAL
The parser code for this command is as follows. Reading from the bottom up, each of the arp 
command keywords is checked against the input. If one matches, the transition to the associated EOLS 
causes the current state of the parse to be saved. For example, if the input is arp s, the “smds” and 
“snap” keywords both match and two parse states are saved. The parser reports the input as 
ambiguous. The “timeout” keyword demonstrates the use of the PARAMS_KEYONLY macro.

/*
 * arp { arpa | probe | smds | snap | timeout <seconds> | ultranet }
 * no arp { arpa | probe | smds | snap | timeout [<seconds>] | ultranet }
 *
 * csb->which = ARP_ARPA, ARP_PROBE, ARP_SNAP or ARP_ENTRY_TIME
 * OBJ(int,1) = seconds for ARP_ENTRY_TIME
 *
 */

/* arp ultranet */
EOLS    (ci_arp_ultra_eol, arpif_command, ARP_ULTRA);
KEYWORD (ci_arp_ultra, ci_arp_ultra_eol, no_alt, “ultranet”, “”, 
PRIV_CONF|PRIV_HIDDEN);

/* arp timeout <seconds> */
PARAMS_KEYONLY (ci_arp_timeout, ci_arp_ultra, “timeout”, OBJ(int,1), 0, -1,

arpif_command, ARP_ENTRY_TIME, “Set ARP cache timeout”, “Seconds”, 
PRIV_CONF);

/* arp snap */
EOLS    (ci_arp_snap_eol, arpif_command, ARP_SNAP);
KEYWORD (ci_arp_snap, ci_arp_snap_eol, ci_arp_timeout,
         “snap”, “IEEE 802.3 style arp”, PRIV_CONF);

/* arp smds */
EOLS    (ci_arp_smds_eol, arpif_command, ARP_SMDS);
KEYWORD (ci_arp_smds, ci_arp_smds_eol, ci_arp_snap,
         “smds”, “”, PRIV_CONF|PRIV_HIDDEN);

/* arp probe */
EOLS    (ci_arp_probe_eol, arpif_command, ARP_PROBE);
KEYWORD (ci_arp_probe, ci_arp_probe_eol, ci_arp_smds,
         “probe”, “HP style arp protocol”, PRIV_CONF);

/* arp arpa */
EOLS    (ci_arp_arpa_eol, arpif_command, ARP_ARPA);
KEYWORD (ci_arp_arpa, ci_arp_arpa_eol, ci_arp_probe,
         “arpa”, “Standard arp protocol”, PRIV_CONF);

KEYWORD (ci_arp, ci_arp_arpa, ALTERNATE, “arp”,
         “Set arp type (arpa, probe, snap) or timeout”, PRIV_CONF);

23.2.6   Parse Mixed String and Nonstring Tokens 
When a string token can be accepted at the same place that a nonstring token can be matched, a 
specific parse order must be followed. The rules for this situation are as follows:

• The nonstring token must be checked first, before checking the string token.

• A TEST_MULTIPLE_FUNCS  macro must precede the STRING macro. The TEST_MULTIPLE_FUNCS  
macro tests whether any of the nonstring variables have matched. If they have, do not attempt to 
parse the token as a string, because the parse would always match, resulting in an ambiguous 
command. 
Command-Line Parse 23-9



 CISCO CONFIDENTIAL
23.2.6.1   Example: Parse Mixed String and Nonstring Tokens
The following example uses the ping command to illustrate how to parse mixed string and nonstring 
tokens. The ping command has the following syntax:

ping [[hint] destination]

The parser code for this command follows. In this code, first all protocol keywords are checked. To 
determine whether any protocol keyword matches, the test is performed. Finally, the destination, 
which is taken as a string variable that is later handled by any protocol-specific processing, is 
checked.

/*
 * ping [[hint] <destination>]
 *
 * OBJ(string,1) = destination
 * OBJ(int,1) = protocol hint (if any)
 */

EO LS(exec_ping_eol, ping_command, 0);

ST RING(exec_ping_destination, exec_ping_eol, exec_ping_eol,
         OBJ(string,1), “Ping destination address or hostname”);

TEST_MULTIPLE_FUNCS(exec_ping_test, exec_ping_destination, no_alt, NONE);

KEYWORD_ID (exec_ping_vines, exec_ping_destination, exec_ping_test,
            OBJ(int,1), PING_HINT_VINES, “vines”, “Vines echo”, PRIV_USER);
KEYWORD_ID (exec_ping_apollo, exec_ping_destination, exec_ping_vines,
            OBJ(int,1), PING_HINT_APOLLO, “apollo”, “Apollo echo”, PRIV_USER);
KEYWORD_ID (exec_ping_novell, exec_ping_destination, exec_ping_apollo,
            OBJ(int,1), PING_HINT_NOVELL, “novell”, “Novell echo”, PRIV_USER);
KEYWORD_ID (exec_ping_atalk, exec_ping_destination, exec_ping_novell,
            OBJ(int,1), PING_HINT_ATALK, “atalk”, “Appletalk echo”, PRIV_USER);
KEYWORD_ID (exec_ping_clns, exec_ping_destination, exec_ping_atalk,
            OBJ(int,1), PING_HINT_CLNS, “clns”, “CLNS echo”, PRIV_USER);
KEYWORD_ID (exec_ping_xns, exec_ping_destination, exec_ping_clns,
            OBJ(int,1), PING_HINT_XNS, “xns”, “XNS echo”, PRIV_USER);
KEYWORD_ID (exec_ping_pup, exec_ping_destination, exec_ping_xns,
            OBJ(int,1), PING_HINT_PUP, “pup”, “PUP echo”, PRIV_USER);
KEYWORD_ID (exec_ping_ip, exec_ping_destination, exec_ping_pup,
            OBJ(int,1), PING_HINT_IP, “ip”, “IP echo”, PRIV_USER);

KEYWORD (exec_ping, exec_ping_ip, ALTERNATE, “ping”, “Send echo messages”, PRIV_USER);

23.2.7   Process “No” Commands
A command can have a “no” prefix as long as it has been added to the Config command tree. Your 
code to add a command to the Config command tree would be something like this:

>static parser_extension_request xyz_chain_init_table[] = {
>    { PARSE_ADD_CFG_TOP_CMD, &pname(xyz_cfg_commands) },
>    { PARSE_ADD_EXEC_CMD, &pname(xyz_exec_commands) },
>    { PARSE_ADD_SHOW_CMD, &pname(xyz_show_commands) },
>    { PARSE_LIST_END, NULL }
> 
>};
>
>static void xyz_parser_init (void)
>{
>    parser_add_command_list(xyz_chain_init_table, "XYZ support");
>}
23-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Process “No” Commands

 CISCO CONFIDENTIAL
Note You must explicitly add a command to the Config tree for the “no” prefix to be recognized. 
In the example above, if the show command had not been added to the tree, a no show command 
would have been truly no- show.

This means that you can enter a no-prefixed command only in Config mode. This poses no problem 
because, with one exception, only the Config commands need the “no” prefix. The exception is 
debug, the only command outside Config mode that can h ve a “no” prefix. The parse tree defined 
for debug (/vob/ios/sys/parser/exec_debug.h ) explicitly defines the “no” keyword:

EOLNS   (exec_debug_help_eol, debug_help_command);
PRIV_TEST(exec_debug_help, exec_debug_help_eol, NONE,
          exec_debug_commands, PRIV_MIN | PRIV_HIDDEN);
 
KEYWORD_ID(exec_debug_false, exec_debug_help, no_alt,
           sense, FALSE,
           "debug", "Disable debugging functions (see also ’undebug’)",
           PRIV_OPR);
 
KEYWORD (exec_debug_no, exec_debug_false, ALTERNATE,
         "no", "Disable debugging functions", PRIV_OPR);
 
KEYWORD_ID(exec_debug_true, exec_debug_help, exec_debug_no,
           sense, TRUE,
           "debug", "Debugging functions (see also ’undebug’)",
PRIV_OPR); 
 
#undef  ALTERNATE
#define ALTERNATE       exec_debug_true

23.2.7.1   csb->sense
The parser provides a uniform method for handling the “no” version of commands. When the “no” 
keyword has been parsed, csb->sense is set to FALSE; otherwise, it is set to TRUE. 

You insert the NOPREFIX macro into the parse chains to identify where in the parse any successive 
tokens can be safely ignored when the “no” version of a command has been entered. This allows the 
user to prefix any command with the word no. The NOPREFIX macro skips to the end of the input line 
before transitioning to a designated node in the parse chain. Because the parser allows any command 
to be prefixed with no, all command functions should test the state of csb->sense and act 
accordingly.

23.2.7.2   Example: Process “No” Commands
The following example uses the appletalk zip query command to illustrate how to use the NOPREFIX 
macro. This command has the following syntax: 

appletalk zip-query-interval interval 
no zip-query-interval [interval]
Command-Line Parse 23-11



 CISCO CONFIDENTIAL
When the user specifies the “no” version of this command, anything entered after the 
zip-query-interval keyword is ignored.

/*
 * appletalk zip-query-interval <interval>
 * no appletalk zip-query-interval [<interval>]
 *
 * OBJ(int,1) = interval
 */
EO LS(cr_at_zonequery_eol, appletalk_command, ATALK_ZONEQUERY);
NU MBER(cr_at_zonequery_val, cr_at_zonequery_eol, no_alt,

OBJ(int,1), 1, -1, "Seconds");
NOPREFIX (cr_at_nozonequery, cr_at_zonequery_val, cr_at_zonequery_eol);
NV GENS(cr_at_zonequery_nvgen, cr_at_nozonequery,

appletalk_command, ATALK_ZONEQUERY);
KE YWORD(cr_at_zonequery, cr_at_zonequery_nvgen, cr_at_arp,

"zip-query-interval", "Interval between ZIP queries", PRIV_CONF);

23.2.8   Nonvolatile Output Generation
When generating nonvolatile output, which is an expression that describes how a platform is 
configured, the entire parse tree must be traversed to accurately reflect the current state of the 
platform. 

Nonvolatile (NV) generation is performed by traversing the parse tree and calling the command 
function to output the data associated with a given command. As the parse tree is traversed, the 
keywords of each command are stored in the text string csb->nv_command. This string is used by the 
command function when generating the NV output. Storing keywords in csb->nv_command 
eliminates many of the character strings used for NV generation in the command functions. 

There is one limitation to this mechanism. Any command that must retrieve data from within the 
router must call the command function before the macro that parses the data item. For example, for 
the command ip route address1 address2, the ip_route_command function must be called prior to 
address1 when doing NV generation. This function takes the string “ip route” from 
csb->nv_command and traverses (walks) the routing table, generating the routing table entries. A 
special macro, NVGENS, tests whether NV generation is being performed. It calls action_func if this 
is true; otherwise, it transitions to alternate. 

23.3   Link Parse Trees

The #define of ALTERNATE allows parse trees to be stored in separate files, yet be linked together 
when included via #include statements in the chain.c file. 

23.3.1   Example: Link Parse Trees
The following example shows the linkage between parse trees defined in the two files 
exec_disable.h and exec_disconnect.h. Remember that the parse trees are read from bottom to 
top. 

In the file exec_disconnect.h, ALTERNATE is redefined to be exec_disconn, which is the name of 
the disconnect KEYWORD macro. In exec_disable.h, ALTERNATE is used as the name of the alternate 
node to process after checking for the disable keyword. When these two files are included via 
#include in the chain.c file in the order shown, ALTERNATE in exec_disable.h becomes 
exec_disconn, thus establishing the linkage between the two commands.
23-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Manipulate CSB Objects

 CISCO CONFIDENTIAL
exec_disconnect.h
/*
 * disconnect [ <connection-number> | <connection-name> ]
 *
 * OBJ(int,1) = <connection-number>
 * OBJ(string,1) = <connection-name>
 */
EO LS(exec_disconn_eol, disconnect_command, 0);

ST RING(exec_disconn_name, exec_disconn_eol, NONE,
OBJ(string,1), “The name of an active telnet connection”);

TESTVAR (exec_disconn_name_test, exec_disconn_name, NONE,
NONE, NONE, exec_disconn_eol, OBJ(int,1), 0);

NU MBER(exec_disconn_num, exec_disconn_eol, exec_disconn_name_test,
OBJ(int,1), 1, MAX_CONNECTIONS,
“The number of an active telnet connection”);

KEYWORD (exec_disconn, exec_disconn_num, ALTERNATE,
“disconnect”, “Disconnect an existing telnet session”, PRIV_USER);

#u ndefALTERNATE
#d efine ALTERNATEexec_disconn

exec_disable.h
/*
 * disable
 */
EO LS(exec_disable_endline, enable_command, CMD_DISABLE);
KEYWORD (exec_disable, exec_disable_endline, ALTERNATE,

“disable”, “Turn off privileged commands”, PRIV_ROOT);

#u ndefALTERNATE
#d efine ALTERNATEexec_disable

23.4   Manipulate CSB Object

23.4.1   Overview: CSB Objects
The CSB stores parsed data in a set of objects, which provides a generic way to reference the parser 
variables. If a variable changes, only the macro needs to be changed instead of changing each 
reference to the variable. You specify parser variables with the variable argument in the parser 
macros. 

There are two naming mechanisms for CSB objects:

• OBJ—Used in the parse chains to set an object value. 

• GETOBJ—Used in the command functions to access the object value. 

Both naming mechanisms specify the data type and instance identifier (number) of the stored object. 
Table 23-5 lists the allowable object data types and numbers.

Table 23-5 Data Type and Number of Stored CSB Objects

Data type Type name Storage type Number of objects

Unsigned integers int uint 1-22

String string char * 1-6
Command-Line Parse 23-13



 CISCO CONFIDENTIAL
IDB (interface descriptor block) idb idbtype * 1

PDB (protocol descriptor block) pdb void * 1

CDB (controller descriptor block) cdb cdbtype * 1

Protocol address paddr addrtype * 1-10

Hardware address hwaddr hwaddrtype * 1-4

Data type Type name Storage type Number of objects
23-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Examples of CSB Objects

 CISCO CONFIDENTIAL
23.4.2   Examples of CSB Objects
The following examples demonstrate the use of OBJ and GETOBJ in the parser.

In the following example, specifying OBJ(int,1) in a NUMBER macro stores the parsed integer in the 
first unsigned integer object:

NUMBER(snark_number, snark_eol, no_alt, OBJ(int,1), 1, 10, “Snark from 1 to 10”) 

In the following example, specifying GETOBJ(int,1) in a NUMBER macro returns the unsigned 
integer:

NUMBER(snark_number, snark_eol, no_alt, GETOBJ(int,1), 1, 10, “Snark from 1 to 10”) 

In the following example, specifying OBJ(paddr,10) in the IPADDR macro stores the parsed IP 
address in the tenth protocol address object:

IPADDR(boojum_ipaddr, boojum_ipaddr_eol, no_alt, OBJ(paddr,10), “An IP address”) 

In the following example, specifying GETOBJ(paddr,10)  in the IPADDR macro returns an addrtype 
pointer to the parsed address:

IPADDR(boojum_ipaddr, boojum_ipaddr_eol, no_alt, GETOBJ(paddr,10), “An IP address”) 

23.5   Add Commands Dynamically

When Cisco IOS subset images are created or when the user configures the router, the command-line 
parser should display only the commands that make sense in that subset image or configuration. You 
specify this using link points, which are locations in the parse tree. Link points allow the partial 
loading of commands—the commands are added at run time rather than when the Cisco IOS code is 
compiled. 

23.5.1   Create a Link Point
To create a link point to which to add commands at run time, use the LINK_TRANS macro: 

LINK_TRANS(name, accept) 

23.5.1.1   Example: Create a Link Point
The following example creates the link point identified by the transition option_extend_here  to 
which additional commands can be added at run time:

LINK_TRANS(option_extend_here, no_alt);
KEYWORD(option2, option2_accept, option_extend_here,

“2option”, “Second option”, PRIV_ROOT);
KEYWORD(option1, option1_accept, option2,

“1option”, “First option”, PRIV_ROOT);

To uniquely identify the link point, you must also add an enum to h/parser.h:

enum {
PARSE_LIST_END=0,
PARSE_ADD_EXEC_CMD,
...
PARSE_ADD_OPTION_CMD

};
Command-Line Parse 23-15



 CISCO CONFIDENTIAL
23.5.2   Register a Link Point with the Parser
After you create a link point, use the parser_add_link_point()  function to register it with the 
parser: 

boolean parser_add_link_point(int which_chain, const char *module, 
transition *lp); 

23.5.2.1   Example: Register a Link Point with the Parser
The following example registers a link point with the parser:

parser_add_link_point(PARSE_ADD_OPTION_CMD, “option command”,
&pname(option_extend_here);

23.5.3   Display Registered Link Points
To display link points that have been registered with the parser, use the show parser links hidden 
EXEC command: 

show parser links [link-name] 

The following is sample output from the show parser links command:

Router# show parser links
Current parser link points:

Na me ID AddrType
en d  of  list00x01
ex e c1 0x5CF041
.
.
.
op ti on  commandXXX0xXXXXX1

23.5.4   Link Commands to a Link Point
To link parser commands to a link point at run time, use the parser_add_command_list()  function: 

boolean parser_add_command_list(const parser_extension_request * chain, 
const char *module); 

23.5.4.1   Example: Link Commands to a Link Point
The following example adds a command from the snark subsystem to the option link point:

#define ALTERNATE NONE
#include “option_snark.h”
LINK_POINT(snark_option_commands, ALTERNATE);
#undef ALTERNATE

static const parser_extension_request snark_chain_init_table[] = {
{ PARSE_ADD_OPTION_CMD, &pname(snark_option_commands) },
{ PARSE_LIST_END, NULL }

};

void snark_parser_init (void)
{

parser_add_command_list(snark_chain_init_table, “snark”);
}

23-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Create Link Exit Points

 CISCO CONFIDENTIAL
To display the subsystems that have added commands to a link point, use the show parser 
links link-name EXEC command.

Router# show parser link points option command
Current links for link point ‘option command’:

snark

23.5.5   Create Link Exit Points
Link exit points are similar to link points, except that the parser goes from many commands to one 
link point instead of going from one link point to many added commands. You use the 
parser_add_link_exit()  function instead of the parser_add_link_point()  function. Link exit 
points are useful for adding options in the middle of a command and then returning. 

The parser_add_link_exit()  function has the following format:

boolean parser_add_link_exit(int which_chain, const char *module, 
transition *lp); 

23.5.5.1   Example: Create Link Exit Points
The following example uses the code for the snmp enable traps global configuration command to 
illustrate link exit points. 

First, the link point and exit are created and registered with the parser:

LINK_TRANS(conf_snmp_enable_return_here, conf_snmp_enable_trap_opts);
LINK_TRANS(conf_snmp_enable_extend_here, NONE);
...
void snmp_parser_init (void)
{

parser_add_link_point(PARSE_ADD_CFG_SNMP_ENABLE_CMD,
“config snmp trap/inform”,
&pname(conf_snmp_enable_extend_here));

parser_add_link_exit(PARSE_ADD_CFG_SNMP_ENABLE_EXIT,
“config snmp trap/inform exit”,
&pname(conf_snmp_enable_return_here));

}

Other subsystems can then add options to the command:

LINK_EXIT(cfg_snmp_enable_isdn_exit, no_alt);
KEYWORD_OR(cfg_snmp_enable_isdn, cfg_snmp_enable_isdn_exit, NONE,

OBJ(int,1), (1<<TRAP_ENABLE_ISDN),
“ISDN”, “Enable SNMP ISDN traps”, PRIV_ROOT);

LINK_POINT(cfg_snmp_enable_isdn_entry, cfg_snmp_enable_isdn);

const static parser_extension_request isdn_chain_init_table[] = {
{ PARSE_ADD_CFG_SNMP_ENABLE_CMD, &pname(cfg_snmp_enable_isdn_entry) },
{ PARSE_ADD_CFG_SNMP_ENABLE_EXIT,

(dynamic_transition *) &pname(cfg_snmp_enable_isdn_exit) },
{ PARSE_LIST_END, NULL }

};

void isdn_parser_init (void)
{

parser_add_command_list(isdn_chain_init_table, “ISDN”);
}

Command-Line Parse 23-17



 CISCO CONFIDENTIAL
23.6   Manipulate Parser Modes

23.6.1   Add a Parser Mode
You can add new parser modes using the parser_add_mode()  function: 

parser_mode *parser_add_mode (const char * name, const char *prompt,
const char *help, boolean do_aliases,
boolean do_privileges, const char *alt_mode,
mode_save_var_func save_vars,
mode_reset_var_func reset_vars,
transition *top, transition *nv_top) 

When a command is parsed to enter a new mode, the set_mode_byname() function is used to change 
the parser to that mode.

If a parse fails in the new mode, the parser calls the save_vars() function to save mode state 
information and then tries to parse the command using alt_mode mode. If the command is parsed in 
alt_mode mode, the parser changes the current mode to alt_mode mode, unless the command parsed 
changes the mode. If the command is not parsed in alt_mode mode, the parser calls the 
reset_vars() function to reset mode state information and remain in the current mode.

23.6.1.1   Example: Add a Parser Mode
The following example adds a new configuration mode named boojum. The new mode has the 
prompt Router(config-boojum)# . The mode can have aliases, and the privilege level of commands 
in the mode can be changed. The first transition in this mode is boojum_top. 

parser_mode *mode;

mode = parser_add_mode(“boojum”, “config-boojum”, “Boojum configuration mode”,
TRUE, TRUE, “configure”, NULL, NULL,
&pname(boojum_top), &pname(boojum_top));

23.6.2   Add an Alias to a Mode
To add a default alias to a mode, use the add_default_alias()  function: 

void add_default_alias(parser_mode * alias, const char *name,
cons t c har*command); 

23.6.2.1   Example: Add an Alias to a Mode
The following example adds an alias b which is expanded to boojum in snark mode.

add_default_alias(snark_mode, “b”, “boojum”);
23-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Writing, Testing, and Publishing MIBs
2 4
Writing, Testing, and Publishing MIBs
The Simple Network Management Protocol (SNMP) is the language for communication between a 
managing system running a network management application and a managed system running an 
agent. Between them they share the concept of a Management Information Base (MIB) that defines 
the information that the agent can make available to the manager.

MIBs and an agent are commonly provided in networked systems to allow remote observation and 
control using management applications on other systems.

This chapter provides an overview of SNMP and MIBs and describes a general procedure for 
establishing a new MIB, attempting in the process to answer questions commonly asked by MIB 
developers and to address mistakes commonly made by developers. Writing MIBs is more of an art 
than an exact programming science, so this chapter cannot begin to provide a design and 
programming solution for every possible case. The last section of this chapter describes the 
procedure for testing and then publishing a MIB.

Most of the information in this chapter was gathered from the Cisco SNMP Web page. As a rule, the 
Web page has more information about development specifics and is more up-to-date:

http://wwwin-eng.cisco.com/Eng/IOS/SNMP_WWW/cisco-snmp.html 

If you have questions about designing, writing, and testing MIBs that are not answered by this 
chapter or the SNMP Web site, contact the e-mail alias mib-consulting.

24.1   SNMP Overview 

The section presents a high-level overview of SNMP. The discussion in this section is applicable to 
both SNMPv1 and SNMPv2. This section discusses the following topics: 

• Internet Network Management Framework: Definition

• MIB: Definition

• SMI: Definition

• Transport Protocols

• SNMP Facilities

• Asynchronous Notifications
24-1



 CISCO CONFIDENTIAL
24.1.1   Internet Network Management Framework: Definition
SNMP network management is based on the Internet Network Management Framework. This 
framework defines a model in which a managing system called a manager communicates with a 
managed system. The manager runs a network management application, and the managed system 
runs an agent, which answers requests from the manager. The manager converses with the agent 
using the Simple Network Management Protocol (SNMP). Figure24- 1 illustrates the Internet 
Network Management Framework model.

Figure 24-1 Internet Network Management Framework Model 

24.1.2   MIB: Definition
The Management Information Base (MIB) defines all the information about a managed system that 
a manager can view or modify. The MIB is located on the managed system and can consist of 
standard and proprietary portions. 

The agent and manager each have their own view of the MIB. The agent presents the contents of the 
MIB and knows how to retrieve that information. The manager might use a MIB description to kno
what to expect in a given MIB and might store that information in a translation that it prefers. 

For more information about MIBs, see the section “MIB Concepts” later in this chapter.

24.1.3   ASN.1: Definition
Abstract Syntax Notation 1 (ASN.1) is the formal language used by SNMP. ASN.1 consists of two 
parts, one part referred to as ASN.1 and a second part called Basic Encoding Rules (BER). 

You use ASN.1 to describe SNMP MIBs. Specifically, you use the subset of ASN.1 that is defined 
in the SNMP Structure of Management Information (SMI). ASN.1 is a human-readable language 
that can also be understood by machines through a MIB compiler. 

BER is a method for taking information that is defined with ASN.1 and encoding it in a 
system-independent way so that it can be transmitted between computers (typically, between 
managers and agents) across a network. BER has specific rules for how to encode integers, text 
strings, and other values. BER is a machine-readable language. 

ASN.1 and BER are defined in the International Telecommunication Union (ITU) 
Recommendations ASN.1, X.208, and BER X.209. 

24.1.4   SMI: Definition
The SNMP Structure of Management Information (SMI) defines the components of a MIB and the 
formal language for describing them. The components include the following: 

• Sections of a MIB description, which include

— Setup

Managing System Managed System

MIB Manager MIBAgent

Protocol

SNMP

S
38

98
24-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Transport Protocols

 CISCO CONFIDENTIAL
— Data objects

— Notifications

— Conformance requirements

• Data types for the information in the MIB, which are

— Basic computer forms, such as integer and octet string

— SNMP-specific forms, such as a counter or gauge

For more information about the SMI, see the section “SMI Overview” in this chapter.

24.1.5   Transport Protocols
SNMP can be carried over a wide variety of transport protocols. The most common combination is 
UDP over IP. Other possibilities include AppleTalk, NetWare, and raw Ethernet. 

24.1.6   SNMP Facilities
SNMP has security facilities that identify the requester and the operational context in which a request 
can be performed by the agent. Examples of operational context are read-only or read-write access, 
providing a MIB subset for a particular group of users, and obtaining a MIB subset from another 
location or through another mechanism such as by proxy. 

SNMP MIB management operations allow SNMP to observe and control MIB information. These 
operations consists of reading (using get operations) and modifying (using a set operation). These 
operations allow you to get read-only information and get or set read-write information depending 
on your identity and the context you can reach. 

24.1.7   Asynchronous Notifications 
In most SNMP interactions, a manager makes a request to which an agent responds. It is also 
possible for agents to proactively provide information to a manager and for managers to provide 
information to each other. This is done using asynchronous notifications. 

SNMP has two types of asynchronous notifications:

• Traps—Unacknowledged datagrams that are sent by the agent to the manager 

• Informs—Acknowledged datagrams that are sent from one manager process to another 

24.2   MIB Concepts 

24.2.1   MIB: Overview
Most SNMP development and use centers around the Management Information Base (MIB). An 
SNMP MIB is an abstract data base, that is, it is a conceptual specification for information that a 
management application can read and modify. The SNMP agent translates between the internal data 
structures and formats of the managed system and the external data structures and formats defined 
for the MIB. 
Writing, Testing, and Publishing MIBs 24-3



 CISCO CONFIDENTIAL
The SNMP MIB is organized as a tree structure with conceptual tables. Relative to this tree structure, 
the term MIB is used in two senses. In one sense, a MIB is a branch of the MIB tree. A branch usually 
contains information about a single aspect of technology, such as a transmission medium or a routing 
protocol. In this sense, a MIB is more accurately called a MIB module, which is usually defined in a 
single document. In the second sense, the term MIB refers to a collection of MIB modules. Such a 
collection might comprise, for example, all the MIB modules implemented by a given agent or the 
entire collection of MIB modules defined for SNMP.

24.2.2   Standard and Enterprise MIBs
MIBs can be standard or enterprise (proprietary). Internet-standard MIBs are defined by working 
groups of the Internet Engineering Task Force (IETF) and published as Requests for Comment 
(RFCs). Enterprise MIBs are defined by other organizations, usually individual companies. They 
instrument technology not covered by standard MIBs, either completely or as an extension to a 
standard MIB. 

24.2.3   MIB-I and MIB-II
There are several revisions of the SNMP MIB standard. The original revision, which is referred to 
as MIB-I, is obsolete. It was followed by a second revision, referred to as MIB-II.

MIB-II contains branches for the basic areas of instrumentation, such as the system, its network 
interfaces, IP, and TCP. The initial specification of the MIB-II standard defined all these areas in a 
single MIB module. However, as SNMP evolves, portions of this MIB are being updated in 
technology-specific MIB modules, for example the TCP-MIB and UDP-MIB modules. 

24.2.4   Agent Implementations
An agent implementation is defined by well-defined compliance groups in MIB modules and the 
agent capabilities specified in RFC 2580. Neither the MIB description nor the agent capabilities 
definition can be used alone to predict the abilities of an agent. 

MIB modules define compliance groups in their ASN.1. Compliance groups are collections of 
objects from a MIB module that make up a logical subset of the MIB that might be mandatory, 
conditional, or optional in compliant implementations. An agent capabilities definition specifies 
which compliance groups an agent implements. 

Compliance groups, in combination with AGENT-CAPABILITIES  specified in RFC 2580, define the 
implementation of an agent, including variations in individual MIB objects. A MIB description 
cannot be used to predict the abilities of an agent. An agent capabilities definition comes closer, but 
ultimately an application must be able to smoothly deal with whatever it receives in response to its 
requests, for example, because a part of the MIB might be disabled through management control.

24.2.5   MIB Objects

24.2.5.1   Object: Definition
A MIB object, also sometimes called a variable, is a leaf in the MIB tree. Each leaf represents an 
individual item of data. Examples of objects are counters and protocol status. Leaf objects are 
connected to branch points. 
24-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



MIB Objects

 CISCO CONFIDENTIAL
The SNMP framework uses object somewhat differently than Open System Interconnection (OSI) 
management. An OSI object is a network entity, such as a router or a protocol, that has attributes. 
These OSI attributes and SNMP objects are essentially the same concept, that is, they both represent 
individual data values.

24.2.5.2   Lexicographic Ordering of Objects
The objects in the MIB tree are sorted using lexicographic ordering. This means that object 
identifiers are sorted in sequential, numerical order. Lexicographic ordering is important when using 
the GetNext protocol operation, because this operation takes an object identifier (OID) or a partial 
OID as input and returns the next object from the MIB tree base on the lexicographic ordering of the 
tree. 

24.2.5.3   Object Identifier: Definition
An object is uniquely identified by the list of branch points that extends from the top of the MIB tree 
down to the leaf, composing an object identifie . The final part of the OID, the instance identifie , 
designates the specific occurrence of an object. This means that an object identifier designates each 
leaf object and branch point in the tree. An object can have one or more instance identifiers. The 
instance identifier for an ordinary object that has a single instance (that is, a scalar object) is always 
0. Objects that compose conceptual tables have instance identifiers with other values to identify the 
row in the table.

An object identifier is expressed as a series of integers or text strings. Technically, the numeric form 
is the object nam and the text form is the object descriptor. In practice, both are called object 
identifiers, or OIDs. The numeric form is used in the protocols among machines. The text form, 
sometimes mixed with the numeric form, is for use by people. 

Figur e24-2 illustrates the lexicographic ordering of MIB object identifiers. The root of the MIB tree 
is iso, which has a numeric identifier of 1. The following OIDs refer to the system branch point in 
the MIB tree and are logically identical:

iso.org.dod.internet.mgmt.mib-2.system
1.3.6.1.2.1.1
iso.org.dod.internet.2.1.1

One of the objects in the system branch is sysDesc . Its full OID can be one of the following:

iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0
1.3.6.1.2.1.1.1.0
Writing, Testing, and Publishing MIBs 24-5



 CISCO CONFIDENTIAL
Figure 24-2 MIB Object Identifiers 

24.2.6   SNMP Conceptual Tables

24.2.6.1   SNMP Conceptual Tables: Definition
SNMP conceptual tables are the mechanism for defining a set of objects that appear repeatedly, 
indexed by some entry name. Tables can contain simple objects only; they cannot contain other 
tables. 

SNMP conceptual tables have a rigid structure, as defined in the SMI. 

An entry, or row, in a table specifies a set of objects for the same instance. The row is uniquely 
identified by one or more table indexes, or auxiliary objects. The OID of an object that is stored in 
a table consists of the OID for that object’s position in the MIB tree concatenated with a 
representation of all the table indexes for an entry in the table. The table indexes thus compose the 
instance identifier.

Each row is the set of objects for a particular instance, such as its state, speed, and description. Each 
column is the objects of the same type for all instances, such as all the speeds.

24.2.6.2   Simple SNMP Conceptual Tables
An example of a simple SNMP table is the ifTable, which is a key table in the interface MIB and 
is defined in RFC 1573. This table is simple because it has a single, integer index object, ifIndex. 
The index object of the ifTable key table is ifIndex, which is defined as an integer. The OID for a 
counter from the ifTable can be one of the following, which are semantically identical: 

iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifInOctets
1.3.6.1.2.1.2.2.1.10
24-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



SNMP Conceptual Tables

 CISCO CONFIDENTIAL
Adding the instance identifier for ifIndex 7 gives the following OID:

iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifInOctets.7
1.3.6.1.2.1.2.2.1.10.7

In OIDs, the row selection, which represents the instance of an object, follows the column selection. 
This OID structure can be confusing when you apply the principle of lexicographic ordering to a 
table. Note, however, that if you use the GetNext protocol operation to walk a table, the operation 
proceeds column by column rather than row by row. That is, the operation returns all the instances 
in one column before starting on the next column.

24.2.6.3   Complex SNMP Conceptual Tables
Complex tables are those with multiple indexes or variable-length indexes, or a combination of the 
two. The following example from the Cisco VINES MIB uses multiple indexes, including one that 
is of variable length. The INDEX clause from the ASN.1 definition is the following. In this example, 
The first two indexes are simple integers, with ifIndex being imported from the standard ifTable, 
and the third index is a variable-length octet string. 

INDEX { cvForwNeighborHost, ifIndex, cvForwNeighborPhysAddress }

24.2.6.4   Coding Index Objects
Coding the integers in the index is simple and obvious. 

Coding the variable-length index object is more complex. RFC 2578 contains rules for encoding 
variable-length index objects as instances. The general rule is that the value is preceded by a length, 
and the length and each part of the value are separate subidentifiers. For example, if you have a 
neighbor host number of 9, ifIndex 3, and an Ethernet neighbor physical address of 
0000.0c03.1ef0, the following is the instance portion of an object for that row:

9.3.6.0.0.12.3.30.240

In RFC 2578, SNMPv2 extends the instance encoding rules to include an IMPLIED keyword, which 
can be used on the final instance of a variable-length object. When this keyword is present, that part 
of the instance does not have a length in front of it. 

Lexicographic ordering for variable-length instance objects with a count effectively sorts the object 
by length. This means that an ASCII text index with a length is not in alphabetical order.

Index objects are often defined as part of the table, in the first positions, but this is not necessary. 
They can be defined in another table, or in another MIB module, as long as they are referenced 
appropriately in the table’s index clause.

In SNMPv2, index objects are not accessible because retrieving them is redundant: The OID for any 
object in a table by definition includes all the index objects. An application can therefore extract the 
appropriate index object values as a by-product of retrieving another object. Having index objects be 
inaccessible avoids problems with the meaning of read-write index objects and makes the GetBulk 
operation more efficient by not retrieving large numbers of unnecessary objects.

24.2.6.5   Tables Inside of Tables
SNMP does not allow you to nest tables inside of tables. However, you can achieve this effect with 
multiple table indexes. Using this method, the table that would have been inside another table has 
the indexes of the first table as its own first indexes. 
Writing, Testing, and Publishing MIBs 24-7



 CISCO CONFIDENTIAL
For example, the standard repeater MIB, defined in RFC 1516, organizes ports into groups. This 
MIB defines the index clause for the group table as follows, which allows each group in the group 
table to contain a port table: 

IN DEX{ rptrGroupIndex }

To make the port table a subtable of the group table, its index clause is defined as follows. In this 
example, the object rptrPortGroupIndex  is defined to be equivalent to the values of 
rptrGroupIndex.

IN DEX{ rptrPortGroupIndex, rptrPortIndex }

It is not necessary to redefine the object in this way. Instead, you can reuse the existing object by 
defining the index clause as follows. This method is preferable.

IN DEX{ rptrGroupIndex, rptrPortIndex } 

24.3   SMI Overview

The SNMP Structure of Management Information (SMI) defines the data structures and operations 
of MIBs and the formal language for describing them. Part of the technique for doing this selects and 
uses a subset of ASN.1. 

RFC 1155 defines the first version of the SMI, commonly referred to as SMIv1. RFC 1902, and later 
RFC 2578, updated the SMI. This second version is commonly referred to as SMIv2. This newer 
version of the SMI includes some new data types and some significant modifications to the macros 
used to describe MIB modules.

24.3.1   Primitive Data and Application Types
The SMI recognizes primitive data and application types. In most cases, you must use these data 
types as they are defined. The only aggregated type or ASN.1 SEQUENCE a MIB can contain is a 
conceptual table constructed according to rules discussed in the section “SNMP Conceptual Tables” 
earlier in this chapter. 

The SMI recognizes the following ASN.1 primitive data types: 

• INTEGER—Signed integer in the range -2,147,483,648 to 2,147,483,647

• OCTET STRING—String of bytes of length 0 to 65,535

• OBJECT IDENTIFIER—Numeric ASN-1-type object identifier

The SMI recognizes the following ASN.1 application types for general use: 

• IpAddress—Fixed-length, 4-byte Internet address

• Counter32—Unsigned, wrapping 32-bit integer in the range 0 to 4,294,967,295

• Gauge32—Unsigned, nonwrapping 32-bit integer in the range 0 to 4,294,967,295

• Unsigned32—Unsigned, nonwrapping 32-bit integer in the range 0 to 4,294,967,295; this is 
indistinguishable from Gauge32.

• TimeTicks—Unsigned 32-bit integer in the range 0 to 4,294,967,295 representing hundredths of 
seconds since an epoch started 

• Counter64—Unsigned, wrapping 64-bit integer in the range 0 to 18,446,744,073,709,551,615
24-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Textual Conventions

 CISCO CONFIDENTIAL
You can hide the primitive data types under textual conventions, as defined in RFC 2579 and 
described in the section “Textual Conventions” later in this chapter. 

24.3.2   Textual Conventions
SNMP and the SMI do not allow you to add data types. However, you can use the textual conventions 
defined in RFC 2579 to hide the data types. It is sometimes preferable to hide data types in this way, 
because the textual conventions can carry formatting hints not available to the basic data types. Also, 
the textual conventions make MIBs clearer, promote common solutions to common problems, and 
provide additional object-handling information to applications. 

Textual conventions allow you to supply a different name for and additional information about a 
primitive data or application type. For example, the standard DisplayString is based on OCTET 
STRING. DisplayString is limited to a maximum of 255 bytes rather than the 65,535 bytes allowed 
by OCTET STRING and prints only Network Virtual Terminal (NVT) ASCII characters as defined in 
RFC 854. 

Textual conventions can lead to common, human-readable definitions for objects with the same 
semantics. This means that applications can implement general handling for a textual convention and 
know which objects to apply it to. An example of this is the standard RowStatus, which defines an 
entire state machine for adding and deleting rows in tables. Textual conventions accomplish these 
useful ends without adding to actual encoding of the protocol. Whatever can be done with a textual 
convention, the information transmitted in the protocol is in the form of the underlying, real data 
type.

The following are the standard textual conventions as defined in RFC 2579: 

• DisplayString—Represents textual information taken from the NVT ASCII character set. 
Objects defined using DisplayString cannot be longer than 255 characters.

• PhysAddress—Represents media-level or physical-level addresses.

• MacAddress—Represents an 802 MAC address in the canonical order as defined by IEEE 802.1a. 
That is, the address is formatted as if it were transmitted least-significant bit first.

• TruthValue—Represents a boolean value.

• TestAndIncr—Represents integer information used for atomic operations. When the 
management protocol specifies that an object instance having this syntax is to be modified, the 
new value supplied by the management protocol must precisely match the value currently held 
by the instance. If not, the management protocol Set operation fails. If the current value is the 
maximum value of 2^31 - 1 (2,147,483,647 decimal), the value held by the instance is wrapped 
to 0; otherwise, the value held by the instance is incremented by 1.

• AutonomousType—Represents an independently extensible type identification value. For 
example, AutonomousType can be used to indicate a particular subtree that contains further MIB 
definitions, or it can be used to define a particular type of protocol or hardware.

• VariablePointer—Is a pointer to a specific object instance, for example, sysContact.0 or 
ifInOctets.3.

• RowPointer—Is a pointer to a conceptual row. The value is the name of the instance of the first 
accessible columnar object in the conceptual row. For example, ifIndex.3 would point to the 
third row in the ifTable. Note that if ifIndexwere not accessible, ifDescr.3 would be used 
instead.

• StorageType—Is an indication of how a row is stored in memory. It includes the types volatile, 
nonVolatile, permanent, and readOnl .

• TDomain—Is a type of transport service, such as UDP or TCP.
Writing, Testing, and Publishing MIBs 24-9



 CISCO CONFIDENTIAL
• TAddress—Is a transport service address, such as an IP address.

• RowStatus—Manages the creation and deletion of conceptual rows. 

• TimeStamp—Is the value of the MIB-II sysUpTime object at which a specific occurrence 
happened. The specific occurrence must be defined in the description of any object defined using 
this type.

• TimeInterval—Represents a period of time measured in units of 0.01 seconds.

• DateAndTime—Represents a date-time specification.

24.4   MIB Life Cycle

To write a MIB, you should be familiar with the phases in the life of a MIB: 

1 Conception—The need for a MIB commonly results from engineering or marketing pressures for 
standardized, distributed management of a technology. At this stage, it is important to determine 
whether an existing standard or a Cisco-enterprise MIB already exists that might provide some 
or all of the management pieces. Your primary avenues of research are to examine IETF work 
and MIBs already implemented by Cisco and to consult with the Cisco MIB police.

2 Design—The actual design of a MIB is discussed in the section “Design a MIB” later in this 
chapter.

3 Implementation—Implementing a MIB is discussed in the section “Establish a New MIB” later 
in this chapter.

4 Release—Releasing a MIB is similar to releasing any other software, except that a MIB release 
also includes the MIB description file. For details on the MIB release process, see: 
http://wwwin-eng.cisco.com/Eng/IOS/SNMP_WWW/Mib-Release/index.html. Also, see the 
section “Release a MIB” later in this chapter.

Part of the release process includes supplying converted MIBs in SNMPv1 or SunNet Manager 
schema form.

5 Maintenance—Maintenance of a MIB is primarily the responsibility of the original developer, 
group, or individual. See the section “Maintain a MIB” later in this chapter.

6 Death—When a MIB is superseded by another, its objects are deprecated as described in the SMI 
and eventually made obsolete. Removal of the MIB from code must follow normal Cisco 
procedures for backward compatibility.

24.5   Design a MIB

24.5.1   MIB Design: Overview
Like software design in general, designing MIBs is a combination of art and science. To do it well, 
you must consider the following: 

• Objective rules—The written requirements for MIB syntax and components, as defined for 
SNMPv2, plus Cisco’s requirements and conventions. Objective rules are discussed in the 
appropriate RFCs and in the section “Follow MIB Conventions” in this chapter. 

• Subjective conventions—Ways that people tend to design MIBs. Following subjective 
conventions reduces overall confusion and the likelihood of breaking objective rules, but 
sometimes an unconventional idea is a good one. Subjective conventions are those that come to 
24-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



SNMP Application Considerations

 CISCO CONFIDENTIAL
matters of opinion about what might best suit users or application programs. Such opinions are 
often intuitive and based on experience with other MIBs. The textual names (descriptors) for 
MIB objects and some of the organization of the MIB itself are examples of subjective 
conventions. Devising a creative, new way to use MIB objects can be dangerous, however, 
because you may do something that is invalid or so different from normal practice that it will not 
work even with reasonable applications.

• Audience—Who the MIB and its description are for. MIBs are primarily for the people who 
manage network devices, secondarily for people who support network managers, and least of all 
for software developers. If some part of the MIB is addressed primarily to software developers, 
you should indicate this explicitly, to avoid overly concerning the people who use the MIB to 
manage network devices. The MIB description is primarily for the MIB implementer, to define 
correct operation of the MIB objects in an implementation-independent way. It is secondarily for 
users of the MIB, although it often becomes their primary documentation.

• Purpose—Justification for the MIB. The purpose of every MIB object must be clear and relevant 
to monitoring and controlling the network device.

24.5.2   SNMP Application Considerations
An SNMP application is software that uses SNMP to control or observe systems other than the 
managing system. Examples are gathering statistics, configuring a system, and observing current 
operation. SNMP applications can range from simple, command-line programs that retrieve 
individual MIB objects to massive, graphical management systems. You can develop SNMP 
applications in C, higher-level languages such as TCL/TK, or something in between, such as C++. 

When designing SNMP applications, consider the following issues: 

• Platform—Consider the type of system on which an application will run and what services the 
platform will provide. There are a few popular platforms, such as SunNet Manager, 
NetView/6000, and HP OpenView, but they do not have common programming interfaces to their 
services. You often need to decide whether an application should be self-sufficient or should 
include platform dependencies. The latter solution results in multiple versions of the application. 

• User needs—User needs are generally unclear. Many users do not understand the technology to 
be managed or the technology used for management, and vendors commonly do not understand 
user problems. 

• MIB design—The success of SNMP has resulted in a plethora of MIBs with a myriad of objects, 
few of them well documented or well understood. It falls upon you to provide objects of 
recognizable utility rather than supplying every bit of information imaginable or only what is 
easy. It is part of the SNMP philosophy that applications should be complex so that agents can 
remain simple. However, agents must supply a solid, useful base of information. When possible, 
design a MIB along with representative applications, but try to keep it from becoming overly 
application specific. 

24.5.3   MIB Design Phases 
The following are the phases in designing a MIB: 

• Design the MIB Content

• Design the Notifications

• Design the MIB Organization

Designing the content of a MIB is by far the most difficult of the tasks. 
Writing, Testing, and Publishing  M I B24-11



 CISCO CONFIDENTIAL
When designing a MIB, you can use one of the following methodologies:

• Design a MIB by trial and error, shipping intermediate versions to see how they operate. You 
might be successful, but mistakes can be costly.

• Examine examples of well-designed MIBs. Newer Cisco MIBs such as the Ping MIB, the VINES 
MIB, and the Configuration Management MIBs are good examples. Most standard MIBs are also 
good examples.

• Get help from the Cisco Router Agent Software group, which offers in-house SNMP MIB 
consulting services. 

24.5.3.1   Design the MIB Content 
The basic SNMP philosophy is to provide MIB information that different applications can use in 
different ways and to put the computational burden on the application rather than on the agent or 
instrumentation. For example, MIB information is generally kept as counters that wrap and cannot 
be reset. Multiple applications can then sample the counters at different intervals for different 
purposes and perform computations on the raw data. 

MIB information must have a clear purpose. If you make every conceivable status and counter 
visible or every parameter controllable, the volume of available data becomes overwhelming. Make 
sure that every object is associated with an understandable failure or observational need and that 
every settable parameter has clear, observable reasons for its values.

If you must consider asynchronous notifications such as traps, resolve the problems of reliability and 
flow control. For more information about asynchronous notifications, refer to the section 
“Implement SNMP Asynchronous Notifications” later in this chapter.

24.5.3.2   Design the Notifications
Starting with SNMPv2, SNMP defines the concept of notifications. All notifications have the same 
protocol format as a response message and contain a standard set of objects to which the MIB 
designer can add other objects. Notifications are defined in MIB modules with the 
NOTIFICATION-TYPE  ASN.1 macro from the SMI. 

From RFC 1905, which defines SNMP protocol messages and operations, the standardized contents 
of a notification are the following: 

• sysUpTime.0—Timestamp indicating when the event occurred.

• snmpTrapOID.0—Unique identification for the notification, derived from NOTIFICATION-TYPE . 

There are two types of notifications:

• Traps—Architecturally, traps are considered an agent-to-manager function. The agent sends 
them as unacknowledged datagrams, so it is possible for a trap message to disappear without a 
trace. 

• Informs—Added in SNMPv2, architecturally, informs are considered a manager-to-manager 
function. A manager expects acknowledgment of a transmitted inform and can retransmit until 
an acknowledgment is received or the transmitting manager declares a failure. 

The proper use of asynchronous notifications is one of the major points of controversy in SNMP and 
network management in general. Most of this controversy is due to misunderstanding, but some is 
due to honest disagreement. The controversy centers around the following areas:

• Polling Versus Alerts

• Reliable Delivery 
24-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Check for Existing MIB Implementations

 CISCO CONFIDENTIAL
• Information Flow Control

Polling Versus Alerts
Some amount of polling is necessary to determine the state of the network. For example, sometimes 
systems break in such a way that they cannot report, and all systems cannot diagnose themselves. 
However, constantly polling a large number of systems on a network requires a powerful polling 
engine and uses a lot of bandwidth. 

Polling can be reduced by applying it intelligently and by distributing it. People tend to poll far too 
much, too often, in an inefficient way. This is somewhat the fault of management platforms, but is 
an area that must be improved. Distributing the polling can be done using mid-level managers. Work 
on this is under way in the IETF Distributed Management Working Group.

Asynchronous alerts have a place in the solution, but there are concerns regarding flow control. 

Reliable Delivery
SNMP traps are unreliable. Do not put important information in traps and nowhere else. This is bad 
management design. Information that is put into traps must be available through some other means, 
such as a history table. If it is not important enough to warrant such means, it is not important enough 
to send as a trap. 

Reliability has its limits. Reliability simply means that a sending system knows that a message has 
arrived at a destination. It does not mean the message has been understood or processed. Without 
extraordinary measures involving nonvolatile memory, no network communication can be more 
reliable than the network itself. If communication is lost and systems fail, information is lost. 

Information Flow Control
Ultimately, the problem to resolve is intelligent control in times of network stress. The basic concept 
is that higher-level managing systems are more intelligent than managed systems and can better 
determine when to collect information. The concern is that unintelligent managed systems will flood 
the network and the managers with relatively useless notifications, particularly when the network 
and the managers are already under stress. This means that what is reported asynchronously must be 
chosen wisely and that the source must control the flow of notifications. It must be possible to disable 
notifications. In general, notifications should be disabled by default. Managed systems should offer 
algorithms or controls to keep the rate of notifications reasonable, but ultimately they must defer 
such choices to the managing system.

24.5.3.3   Design the MIB Organization
The most difficult MIB organizational design issue is table indexing. Sometimes the proper indexing 
is obvious, but it can easily become a tangle of trade-offs among search overhead, complexity, and 
prediction of what organization is most useful to applications. You must understand these issues in 
the context of how you expect the MIB to be used in order to develop an efficient organization. 

24.5.4   Check for Existing MIB Implementations
Before implementing a MIB, determine whether an existing standard or a Cisco-enterprise MIB 
already exists that might provide some or all the management pieces. Examine MIBs from various 
sources, including the following: 
Writing, Testing, and Publishing  M I B24-13



 CISCO CONFIDENTIAL
• IETF standards—These are accepted Internet standards and do not change much. They are 
published as Requests for Comment (RFCs). They range from proposed to draft to full Internet 
standard. A proposed standard is most likely to change, a full standard is unlikely to change, and 
a draft is likely to change only in a backward-compatible way.

• IETF Internet drafts—IETF work in progress. Sometimes the best way to instrument technology 
is with an Internet draft MIB, which is typically being worked on by an IETF working group. 
These MIBs can be unstable, so you must capture the specific Internet draft and place the MIB 
within the Cisco enterprise MIB branch (not in the experimental branch). 

• Cisco enterprise MIBs—Cisco enterprise MIBs add instrumentation not covered by standard 
MIBs. As of Cisco IOS Release 10.2, Cisco has old MIBs and new MIBs. The old MIBs are from 
older software versions and often have somewhat unconventional features. The new MIBs are 
gradually replacing the old ones and adding new instrumentation. 

• MIBs from other companies—Non-Cisco proprietary. It is occasionally appropriate to 
implement a MIB defined by some other company, especially when implementing technology 
that they originated and instrumented. Using these MIBs has problems similar to using IETF 
drafts in that you must capture the version of the MIB definition. However, the MIB itself should 
remain wherever in the MIB space the originating company put it so that the MIB can easily 
support existing applications. 

To determine what MIBs Cisco implements, look at:
http://www.cisco.com/public/mibs/README ftp://ftp.cisco.com/pub/mibs/README. 
This file is the key to determining which MIBs are in which products. 

24.5.5   Ensure MIB Compliance
Currently, Cisco implementations of standard MIBs are often read-only or have some objects or 
object groups missing because of security concerns and time pressure for implementation. Each 
developer is responsible for documenting AGENT-CAPABILITIES specifics as described in RFC 2580. 
Eventually these documents will be made available to customers to supply to their applications. 

24.5.6   Follow MIB Conventions
Cisco MIBs scrupulously follow IETF MIB standards and conventions, as well as Cisco 
conventions.All new Cisco MIBs must be in the format specified by the SNMPv2 SMI. As a service 
to our customers, we also convert all MIBS to SNMPv1 form. 

24.5.6.1   Assigned Numbers 
MIB branches are identified with unique numbers. The Internet Assigned Numbers Authority 
(IANA) assigns branch numbers to private enterprises. The Cisco Assigned Numbers Authority 
(CANA) assigns branch numbers within the Cisco branch to Cisco developers. 

Before a MIB is approved by the Cisco MIB police, it might have a number in the ciscoExperiment 
branch. After the MIB is approved, the CANA assigns it a number in the ciscoMgmt branch. The 
ciscoMgmt number must be in place before you release the MIB.

To obtain a number in the ciscoExperiment or ciscoMgmt branch, use the CANA Web page:

http://wwwin-eng.cisco.com/Eng/IOS/SNMP_WWW/cana.html
24-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Follow MIB Conventions

 CISCO CONFIDENTIAL
24.5.6.2   Conventions for Writing MIBs
This section discusses some of the standard and Cisco-specific SNMP conventions that you should 
follow when writing MIBs. The conventions discussed here are those that people generally ask the 
most questions about. This discussion is not a complete description of MIB conventions. 

For a complete discussion of standard SNMP conventions, refer to the following RFCs: 

• RFC 2578—Structure of Management Information for Version 2 of the Simple Network 
management Protocol (SNMPv2) 

• RFC 2579—Textual Conventions for Version 2 of the Simple Network Management Protocol 
(SNMPv2) 

• RFC 2580—Conformance Statements for Version 2 of the Simple Network Management Protocol 
(SNMPv2) 

Cisco MIB Nomenclature
The Cisco conventions for overall MIB layout and naming comprise the following definitions. The 
capitalization of the MIB-specific items in the template represents the expected capitalization in the 
actual module. Do not use acronyms unless they are very well known for the given technology. 
Instead, use entire words or truncations, such as Notification or Notif, rather than leaving out vowels 
(for example, do not use Ntfctn). 

• MODULE-NAME—The MIB module name. This name consists of the prefix CISCO-, the module 
name itself, such as VINES or CONFIG-MAN, and the suffix MIB. The module name is used to form 
the name of the MIB file. For example, the CONFIG-MAN MIB file is named 
CISCO-CONFIG-MAN-MIB.m .

• name—The name of the MIB module without hyphens, such as vines or configMan. 

• imports—Standard IMPORTS statement for symbols from other MIB documents. 

• definition—ASN.1 definition appropriate to the surrounding ASN.1 macro. 

• n—The Cisco MIB number as assigned by CANA

• abbr—A short acronym for the MIB name, in the interest of keeping object descriptors 
manageable, such as cv or ccm for the VINES and configuration management.

• section—A MIB section name, such as General, IP, and Counters. 

• conventions—Textual conventions for this module, if any. 

• objectName—A MIB object name, such as Descr, Inde , and FramesSent. 

• eventName—A MIB event name, such as ConnectionClosed and LinkUp. 

• groupName—A MIB conformance group name, such as FixedLength and Objects.
Writing, Testing, and Publishing  M I B24-15



 CISCO CONFIDENTIAL
Cisco MIB Template
The following is the Cisco MIB template: 

MODULE-NAME DEFINITIONS ::= BEGIN
imports

ciscoNameMIB MODULE-IDENTITY
definition
::= { ciscoMgmt n }

ciscoNameMIBObjects OBJECT IDENTIFIER ::=  { cisco NameMIB 1 }

abbrSection OBJECT IDENTIFIER ::=  { ciscoNameMIBObjects 1 }

-- Textual Conventions

definitions

-- Section

abbrSectionObjectNamer OBJECT-TYPE
definition
::={ abbrSection 1 }

-- Notifications

ciscoNameMIBNotificationPrefix OBJECT IDENTIFIER ::= { cisco NameMIB 2 }
ciscoNameMIBNotifications OBJECT IDENTIFIER ::=

{ ciscoNameMIBNotificationPrefix 0 }

ciscoNameEventName NOTIFICATION-TYPE
definition
::= { ciscoNameMIBNotifications 1 }

ciscoNameMIBConformance OBJECT IDENTIFIER ::= { cisco NameMIB 3 }
ciscoNameMIBCompliances OBJECT IDENTIFIER ::= { cisco NameMIBConformance 1 }
ciscoNameMIBGroups      OBJECT IDENTIFIER ::= { cisco NameMIBConformance 2 }

-- Conformance

ciscoNameMIBCompliance MODULE-COMPLIANCE
definition
::= { ciscoNameMIBCompliances 1 }

-- Units of Conformance

ciscoNameGroupNameGroup OBJECT-GROUP
definition
::= { ciscoNameMIBGroups 1 }

ciscoNameGroupNameGroup NOTIFICATION-GROUP
        definition
        ::= { ciscoNameMIBGroups 2 }

END
24-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Follow MIB Conventions

 CISCO CONFIDENTIAL
Example: MIB in Cisco Template
The following is an example of a production Cisco MIB in the standard Cisco template. Most of the 
objects have been removed from the example to shorten it. 

CISCO-CONFIG-MAN-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
NOTIFICATION-TYPE,
TimeTicks,
Integer32,
Counter32,
IpAddress

FROM SNMPv2-SMI
MODULE-COMPLIANCE, OBJECT-GROUP

FROM SNMPv2-CONF
DisplayString,
TEXTUAL-CONVENTION

FROM SNMPv2-TC
ciscoMgmt

FROM CISCO-SMI;

ciscoConfigManMIB MODULE-IDENTITY
LA ST-UPDATED“9506130000Z”
OR GANIZATION“Cisco Systems, Inc.”
CONTACT-INFO

“       Cisco Systems
Customer Service

Postal: 170 W Tasman Drive
San Jose, CA  95134
USA

Tel: +1 800 553-NETS

E-mail: cs-snmp@cisco.com”
DESCRIPTION

“Configuration management MIB.”
RE VISION“9506130000Z”
DESCRIPTION

“Initial version of this MIB module.”
::= { ciscoMgmt 38 }

ciscoConfigManMIBObjects OBJECT IDENTIFIER ::= { ciscoConfigManMIB 1 }

cc mHistoryOBJECT IDENTIFIER ::= { ciscoConfigManMIBObjects 1 }

-- Textual Conventions

HistoryEventMedium ::= TEXTUAL-CONVENTION
ST ATUScurrent
DESCRIPTION

“The source or destination of a configuration change, save, or copy.

er aseerasing destination (source only)
ru nninglive operational data
comm andSourcethe command source itself
st artupwhat the system will use next reboot
lo callocal NVRAM or flash
netw orkTftpnetwork host via Trivial File Transfer
net workRcpnetwork host via Remote Copy
“

Writing, Testing, and Publishing  M I B24-17



 CISCO CONFIDENTIAL
SYNTAX  INTEGER { erase(1), commandSource(2), running(3), 
startup(4), local(5), 
networkTftp(6), networkRcp(7) }

-- Configuration History

ccmHistoryRunningLastChanged OBJECT-TYPE
SY NTAXTimeTicks
MAX-ACCESS read-only
ST ATUScurrent
DESCRIPTION

“The value of sysUpTime when the running configuration
was last changed.

If the value of ccmHistoryRunningLastChanged is greater than
ccmHistoryRunningLastSaved, the configuration has been
changed but not saved.”

::= { ccmHistory 1 }

ccmHistoryRunningLastSaved OBJECT-TYPE
SY NTAXTimeTicks
MAX-ACCESS read-only
ST ATUScurrent
DESCRIPTION

“The value of sysUpTime when the running configuration
was last saved (written).

If the value of ccmHistoryRunningLastChanged is greater than
ccmHistoryRunningLastSaved, the configuration has been
changed but not saved.

What constitutes a safe saving of the running
configuration is a management policy issue beyond the
scope of this MIB. For some installations, writing the
running configuration to a terminal may be a way of
capturing and saving it. Others may use local or
remote storage. Thus ANY write is considered saving
for the purposes of the MIB.”

::= { ccmHistory 2 }

-- Notifications
** Note: Much of the MIB is removed from this section.

ciscoConfigManMIBNotificationPrefix OBJECT IDENTIFIER ::= { ciscoConfigManMIB 2 }
ciscoConfigManMIBNotifications OBJECT IDENTIFIER ::= { 
ciscoConfigManMIBNotificationPrefix 0 }

ciscoConfigManEvent NOTIFICATION-TYPE
OBJECTS { ccmHistoryEventCommandSource, 

ccmHistoryEventConfigSource,
ccmHistoryEventConfigDestination }

STATUS  current
DESCRIPTION

“Notification of a configuration management event as
recorded in ccmHistoryEventTable.”

::= { ciscoConfigManMIBNotifications 1 }

-- Conformance
** Note: Much of the MIB is removed from this section.

ciscoConfigManMIBConformance OBJECT IDENTIFIER ::= { ciscoConfigManMIB 3 }
ciscoConfigManMIBCompliances OBJECT IDENTIFIER ::= { ciscoConfigManMIBConformance 1 }
ci scoConfigManMIBGroupsOBJECT IDENTIFIER ::= { ciscoConfigManMIBConformance 2 }
24-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Follow MIB Conventions

 CISCO CONFIDENTIAL
-- Compliance

ciscoConfigManMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION

“The compliance statement for entities which implement
the Cisco Configuration Management MIB”

MO DULE-- this module
MANDATORY-GROUPS { ciscoConfigManHistoryGroup }

::= { ciscoConfigManMIBCompliances 1 }

-- Units of Conformance

ciscoConfigManHistoryGroup OBJECT-GROUP
OBJECTS {

ccmHistoryRunningLastChanged,
ccmHistoryRunningLastSaved

}
STATUS current
DESCRIPTION

“Configuration history.”
::= { ciscoConfigManMIBGroups 1 }

ciscoConfigManHistoryNotifyGroup NOTIFICATION-GROUP
        NOTIFICATIONS { ciscoConfigManEvent }
        STATUS current
        DESCRIPTION
            "Configuration history notifications."
        ::= { ciscoConfigManMIBGroups 2 }

END

AGENT-CAPABILITIES Object Identifier
For MIBs in the ciscoMgmt tree, the AGENT-CAPABILITIES number is their MIB number plus 20.

64-bit Counters
For 64-bit counters, follow the SNMPv2 1-hour principle, which is defined in RFC 2578. For 
SNMPv1 compatibility, follow the RFC 2233 example by including a fast-wrapping 32-bit counter 
for the low 32 bits only. 

For standard MIB modules, the Counter64 type can be used only if the information being modeled 
would wrap in less than one hour if the Counter32 type was used instead.

Objects in NVRAM
When you write to NVRAM, you must write everything; you cannot update just a single parameter. 
Also, writing to NVRAM should be done explicitly and only by the user; it should not be done as a 
side effect of an SNMP Set operation (with one exception). This is because many users run with a 
configuration that is different than the one in NVRAM in order to test a new configuration, and other 
users run with a configuration that is loaded from a TFTP server because the configuration is too 
large to fit in NVRAM. Overwriting NVRAM in these cases is a bad thing.
Writing, Testing, and Publishing  M I B24-19



 CISCO CONFIDENTIAL
An SNMP Set request should behave exactly like the command-line interface configure command; 
it should modify the running configuration only. NVRAM should be written only when the copy 
running-config startup-config command is issued or when a Set request is issued to the SNMP 
object writeMem. Therefore, it is up to the user (or network management application) to ensure that 
one of these is performed before writing NVRAM. 

To save the configuration on a TFTP server, use the writeNet SNMP object.

Indexing History Tables
For time-based history tables, use a monotonically increasing integer as the index, keeping a window 
of as many entries as allowed. Let the index wrap. If the MIB allows, wrapping can flush existing 
entries. This makes the implementation easier. See the Cisco Configuration Management MIB Event 
History Table as an example.

24.5.7   MIB Compilers

24.5.7.1   Function of MIB Compilers
A MIB compiler parses the SNMP SMI subset of ASN.1. Most MIB compilers generate a summary 
of the MIB contents that is easy to understand and that is suitable to be read by another program. 
Some MIB compilers generate source code, for example in C. Most often, MIB compilers are used 
to determine whether a MIB module is syntactically correct so that it has a chance of compiling when 
the module is compiled by another compiler. 

When you are including a MIB with your code, your MIB is compiled as part of the standard make 
process. You should compile the MIB yourself to ensure that it will compile successfully during the 
make process. 

24.5.7.2   Available Compilers
The best, most complete, and most powerful MIB compiler is the SNMP Management Information 
Compiler Next Generation (SMICng), which was designed and implemented by Dave Perkins. The 
code for this compiler is in /nfs/csc/smicng. The /doc subdirectory contains a user manual in the 
file smicug.txt. 

Another commonly used MIB compiler is mos , which is part of the ISODE package. Although mosy 
is available at Cisco, it is not as complete as SMICng. 

24.5.7.3   Invoke the MIB Compiler 
To verify that there are no syntax errors in a new or modified MIB, use the update-mibs.pl script, 
which is supported by the MIB release group. This script invokes the SMIC MIB compiler. 

To invoke the update-mibs.pl script, follow these steps:

Step Login to a SunOS4.x or Solaris 2.x system.

Step Add the directory /nfs/csc/mib-release/bin  to your shell’s path variable.

Step If you have not done so already, create a MIB workspace:

mibco.pl [release]

Step Copy your new or modified MIBs into the text-mibs directory in your workspace.
24-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Agent Development

 CISCO CONFIDENTIAL
Step Change directories into the root of your workspace.

Step Compile the MIB:

If you are testing changes to an SNMPv2-style MIB, run the following command:

update-mibs.pl

If you are testing changes to an SNMPv1-style MIB, run the following command:

update-mibs.pl -1

24.5.8   Agent Development
Cisco’s SNMP agent is derived from code purchased from and supported by SNMP Research. 
Development of the agent itself is a task separate from the development of MIBs and is the 
responsibility of the Cisco router agent software group.

24.5.9   Cisco Internal MIB Design Support
Individual technology groups typically design and implement their own MIBs. The Cisco router 
agent software group is responsible for technical oversight of Cisco’s SNMP agent and MIBs and 
consulting with other groups throughout the company. This group is assisted by the MIB police who 
help people understand and follow the Cisco MIB conventions. To contact the MIB police, use the 
e-mail alias mib-police. 

The Cisco Assigned Numbers Authority (CANA) is responsible for assigning unique numbers to 
identify MIBs and certain other SNMP elements, such as machine identifications. To contact the 
CANA, use the e-mail alias cana. 

24.6   MIB Development Process: Overview

To develop a MIB, you perform the following tasks:

• Establish a New MIB

• Observe Modularity

• Implement MIB Objects

• Implement SNMP Asynchronous Notifications

• Compile a MIB

• Test a MIB

• Release a MIB

• Maintain a MIB

24.7   Establish a New MIB

To establish a new MIB, follow these steps. These steps use the sample MIB BOOJUM-MIB.m . 

Step Create a development tree. 

Step Do a make depend or a make dependancies) from the sys directory. This make 
generates code for all previously defined MIBs.
Writing, Testing, and Publishing  M I B24-21



 CISCO CONFIDENTIAL
Step Determine the top-level identifier for your MIB, which is the top-level object identifier 
from which all the objects in your MIB are rooted. 

Cisco MIBs typically have a standard structure. Using the CISCO-CONFIG-MAN-MIB.my  
MIB as an example, this MIB has the following top-level identifiers: 

ciscoConfigManMIB  is the root for everything in the MIB, including ordinary objects, 
notification objects, and the conformance section. 

ciscoConfigManMIBObjects  is the root of all the “ordinary” objects in the MIB.

ciscoConfigManMIBNotificationPrefix  is the root of the notification objects.

ciscoConfigManMIBConformance  is the root of the conformance section.

If your MIB implementation will not generate notifications, you can use the ordinary 
objects root (in this example ciscoConfigManMIBObjects ) as your top-level identifier. If 
your MIB implementation will generate notifications, use the root for everything in the 
MIB (in this example ciscoConfigManMIB) as the top-level identifier.

As an example of a typical case, suppose that you are providing SNMP support for the 
boojum subsystem. All the existing .c and .h files for this subsystem are in the directory 
sys/boojum. This is also where you want the files that will be generated by the MIB 
compiler in Ste p7 to end up. 

Assume that the MIB for boojum support is BOOJUM-MIB.m . The names of all the files that 
will be generated by the MIB compiler must have a common substring in common, a 
substring we get to choose. For this example, let’s use boojummi . Also, we need to find 
the top-level identifier in BOOJUM-MIB.m . Let’s assume that it is boojumObjects. 

Step Add the new MIB to the sys/MIBS directory:

(a) Check out the sys/MIBS directory from ClearCase.

(b) Place the file BOOJUM-MIB.my into the sys/MIBS directory.

(c) Issue a cleartool mkelem command to define the element to ClearCase. 

Note Before you can issue a cleartool mkelem command, you must have the parent 
directory checked out in your ClearCase view.

Step Create a MIB compiler configuration file.

Each invocation of the MIB compiler should be controlled via a configuration file. 
Continuing the example, you would create the file sys/boojum/sr_boojummib.cfg , 
which contains the -group group-name directive:

-group boojumObjects

ciscoConfigManMIB ciscoConfigManMIBObjects

ciscoConfigManMIBNotificationPrefix

ciscoConfigManMIBConformance
24-22 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Establish a New MIB

 CISCO CONFIDENTIAL
The -group group-name directive defines the group of MIB objects for which the MIB 
compiler should generate code. The group name is the top-level identifier 
(boojumObjects) identified in Ste p3. (Note that you can have multiple -group directions 
in the .cfg file, for instance if you wanted to include both the ordinary and notification 
objects.) 

The name of the stamp file must also include the common substring chosen in Step 3. 
Doing this is how the substring is communicated to the MIB compiler. This means that 
the stamp file name should be sr_common-substring.stamp, or, in this example, 
sr_boojummib.stamp .

In addition, add any other options that you want to be passed to the mibcomp.perl script 
when the MIB is compiled.

After creating the file, issue a cleartool mkelem command to define the element to 
ClearCase.

Step Update the sys/makemibs file to add the dependency for the new MIB. 

Invocation of the MIB compiler is specified in the file sys/makemibs using an implicit 
makefile rule. Continuing the example, you would add the following line to 
sys/makemibs:

../boojum/sr_boojummib.stamp: ../MIBS/BOOJUM-MIB.def 

Step Generate user-modifiable source files.

Files produced by the MIB compiler fall into two categories, nonmodifiable and 
user-modifiable. Most engineers are concerned only with the nonmodifiable files, which 
are generated during the make depend process. When implementing a MIB for the first 
time, however, you must also produce the user-modifiable files. You do this explicitly 
through the %.code rule in the makefile. Continuing the example, you would issue the 
following command from the sys directory, which causes the MIB compiler to generate 
both the nonmodifiable and user-modifiable files:

make boojum/sr_boojummib.code

The following nonmodifiable files are generated:

sys/boojum/sr_boojummibdefs.h
sys/boojum/sr_boojummibpart.h
sys/boojum/sr_boojummibsupp.h
sys/boojum/sr_boojummibtype.h
sys/boojum/sr_boojummiboid.c
sys/boojum/sr_boojummib.stamp

The following user-modifiable files are generated if they do not already exist:

sys/boojum/sr_boojummib.c
sys/boojum/sr_boojummib.h

The following user-modifiable file is generated if you specify the -userpart switch and 
the file does not already exist:

sys/boojum/sr_boojummibuser.h

The following user-modifiable file is generated if you specify the -snmpmibh switch and 
the file does not already exist:

sys/boojum/sr_boojummib-mib.h

Step Add your user-modifiable files to the ClearCase repository. 
Writing, Testing, and Publishing  M I B24-23



 CISCO CONFIDENTIAL
In Step 7, you generated two to four user-modifiable files if they did not already exist. If 
these files already existed, the MIB compiler does not overwrite these files because they 
are modified when you implement the MIB. Because they are dynamic source files, you 
should make them elements in the ClearCase repository.

You should never modify the other six fixes generated in Step7.  Therefore, you should 
not placed these files under ClearCase control.

Step Implement the MIB by adding code to your parameter files. 

In the sample MIB, the parameter files are the sys/boojum/sr_boojummib.c  and 
sys/boojum/sr_boojummib.h  files. You must add code to sys/boojum/sr_boojummib.c , 
specifically to the system-dependent method routines. You do not have to add code to 
sys/boojum/sr_boojummib.h .

If a sys/boojum/sr_boojummibuser.h  file was generated, this file should define the 
macros that cause the user-supplied fields to appear in the various structures.

If a sys/boojum/sr_boojummib-mib.h  file was generated, modify it to remove all but the 
most essential OID-to-identifier translation entries, because these entries consume code 
space but provide little benefit. At a minimum, remove the following entries:

Leaf object entries
Table entries
Notification entries unless explicitly referenced by the code
Compliance and Conformance entries

Typically only the following entries remain:

Top-level group entries
Entry entries

Step 1 0 Add .o file rules to the appropriate makefile so that the sr_boojummib.o and 
sr_boojummiboid.o  files are placed in the proper subsystems.

Step 1 1 Build the system and test the code. 

Step 1 2 Commit the code. 

Make sure you commit the MIB file in sys/MIBS, the makemibs file, the 
boojum/sr_boojummib.cfg  configuration file, the boojum/sr_boojummib.c  and 
boojum/sr_boojummib.h  files, the makefiles that were altered in St ep10, and if 
applicable, the boojum/sr_boojummibuser.h  and sr_boojummib-mib.h  files.

24.8   Compile a MIB

To compile a MIB, use the sys/scripts/mibcomp.perl  script, also referred to as mibcomp or the 
MIB compiler. 

Before you compile a MIB, you must determine the following:

• Which MIB or MIBs to Compile

• Which Groups to Compile

• Where to Place Files Generated by the MIB Compiler
24-24 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Which MIB or MIBs to Compile

 CISCO CONFIDENTIAL
24.8.1   Which MIB or MIBs to Compile
Generally, you compile only one MIB, the MIB you have implemented. The MIB filename must 
consist of the ASN.1 module name of the MIB followed by a .my extension. The MIB file must be 
in the sys/MIBS directory of your development tree. 

If you have two closely related MIBs, you can compile them together, producing code that 
implements both MIBs. In particular, if you are implementing a MIB that contains a table that uses 
the SNMPv2 AUGMENTS keyword, you must compile your MIB together with the MIB that contains 
the table being augmented.

24.8.2   Which Groups to Compile
MIBs generally contain a top-level ASN.1 identifier, followed by one or more group identifiers, with 
individual objects being defined on a per-group basis. In some MIBs, individual objects are defined 
directly beneath the top-level identifier. In most cases, you want to implement every object specified 
in the MIB. You indicate this by passing the top-level identifier to the MIB compiler

There are two exceptions. The first is that if you cannot implement any of the objects in a group, you 
can specify only those groups with objects you can implement. The second exception is that if the 
MIB contains groups that must be implemented in separate subsystems in the Cisco code base, you 
should invoke the MIB compiler separately for each subsystem.

24.8.3   Where to Place Files Generated by the MIB Compiler
The MIB compiler generates up to nine C source files. You must choose a directory into which the 
MIB compiler should place them. Whenever possible, especially for straightforward MIBs, such as 
protocol MIBs, place the files in the subsystem that corresponds to the protocol. For less 
straightforward cases, such as media-specific MIBs where an associated media-specific directory 
does not exist, you might need to place the generated files into the sys/snmp directory. It is also 
acceptable to create a new directory to hold a MIB implementation.

All the files generated by the MIB compiler have a generic form of sr_{id}*.c and sr_{id}*.h, 
where you specify a string for id. Choose a string that is descriptive, but yet as few characters as 
possible in order to keep the filenames as short as possible. The id is used in the code as part of some 
function names, so it must consist entirely of legal C identifier characters, preferably only letters. It 
is helpful to include the string mib at the end of the id.

24.8.4   Makefile Rules for Compiling MIBs
All invocations of the MIB compiler are controlled by makefile rules. All the rules that are specific 
to the MIB compiler are in sys/makemibs, which is a makefile that contains three externally 
available target rules and other internal rules. Although sys/makemibs is a makefile, you should 
never explicitly execute the make command on sys/makemibs directly. Instead, invoke it from 
sys/makefile when you perform a make dependancies or a make *.code. You do this because the 
files that sys/makemibs generates must be present when the dependencies rule attempts to create the 
.D.* files that it uses to build the file sys/dependancies. If the files have not been generated, 
erroneous dependencies are calculated for any existing files that reference the files to be created.

The following are the MIB dependencies rules in sys/makefile: 

@$(MAKE) $(MAKEFLAG-J) -C obj-68-c7000 -f ../makemibs --no-print-directory depend
@$(MAKE) $(MAKEFLAG-J) -C obj-68-c7000 -f ../makemibs --no-print-directory mibfiles
Writing, Testing, and Publishing  M I B24-25



 CISCO CONFIDENTIAL
The depend rule in sys/makemibs generates a .D.* file for each *.my file in the sys/MIBS directory. 
These files contain the dependencies for creating a .def file from the associated .my file. When all 
the .D.* files have been created, they are combined into a single sys/mibdependencies  file.

The mibfiles rule in sys/makemibs generates all the MIB source files. 

In addition to the above two rules, the following rule in sys/makefile causes an associated rule in 
sys/makemibs to be processed:

%.code:
@$(MAKE) $(MAKEFLAG-J) -C obj-68-c7000 -f ../makemibs \

--no-print-directory $@

This third rule causes the MIB compiler to generate user-modifiable source code, which is typically 
done only when a new MIB is being implemented.

24.8.5   Invoke the MIB Compiler 
To invoke the MIB compiler, use the sys/scripts/mibcomp.perl  script, also referred to as mibcomp 
or the MIB compiler. This script has the following syntax. Tabl e24-1 explains the options. 
(Table 24-2 lists the options supported for compatibility with previous version of the mibcomp 
scripts. These options will eventually be phased out.) All builds are performed in the various 
sys/obj* directories. Therefore, any path names that appear in makefiles must take this into 
consideration. 

mibcomp.perl options mibs

Table 24-1 MIB Compiler Script Options 

Option Description

-f name Specifies the name of a mibcomp configuration file.

-codegen Generates the user-modifiable files in addition to generating the nonmodifiable 
source files.

-postmosy name Specifies the group in the MIB to compile. You can specify multiple -group 
options. Each option can list only one group.

-debug Enables trivial debugging output.

-cache Enables the -cache switch in postmosy. This switch generates trivial caching in 
the system-independent method routines.

-row_status Enables the -row_status switch in postmosy. This switch generates code that 
implements the RowStatus TEXTUAL-CONVENTION .

-userpart Enables the -userpart switch in postmosy. This switch places a macro invocation 
in each structure in the sr_idtype.h file. By defining macros in this file, you 
can cause additional fields to be placed in the structures automatically generated 
by postmosy

When used in conjunction with the -codegen option, the -userpart option 
generates an sr_iduser.h file. 

-snmpmibh Enables the -snmpmibh switch in postmosy. When used in conjunction with the 
-codegen option, the -snmpmibh option generates an sr_id-mib.h file, which 
contains OID-to-textual-identifier mappings.

mibs MIB definitions to be compiled.
24-26 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



What the MIB Compiler Does

 CISCO CONFIDENTIAL
Table 24-2 MIB Compiler Script Options Supported for Backwards Compatibility

24.8.6   What the MIB Compiler Does
The mibcomp.perl MIB compiler script generates C source code files and header files for the MIB. 
The script is a wrapper around the postmosy program, which is provided by SNMP Research. 

The input to mibcomp.perl is MIB definition files with names in the format *.def. These files are 
produced from the initial *.my MIB files by the mosy program, which is also supplied by SNMP 
Research.

mibcomp.perl then passes its input to postmosy, which processes the *.def files and produces C 
code suitable for building the agent code required to instrument the MIB. For more information 
about the mosy and postmosy programs, see the documentation available from SNMP Research.

24.8.7   Output from the MIB Compiler
The MIB compiler generates up to ten files. The files are named according to the definition in the -f 
file option you provided to the mibcomp.perl MIB compiler script (or in the obsolete -s stampfile 
option). 

The MIB compiler always generates the following files. These filenames assume that you specified 
a -f option in the format ../my_directory/sr_idmib.cfg when you invoked the mibcomp.perl 
script.

• ../my_directory/sr_idmiboid.c

• ../my_directory/sr_idmibdefs.h

• ../my_directory/sr_idmibpart.h

• ../my_directory/sr_idmibsupp.h

• ../my_directory/sr_idmibtype.h

• ../my_directory/sr_idmib.stamp

If you invoked the MIB compiler with the -codegen option, it generates the following two files if 
they do not already exist:

• ../my_directory/sr_idmib.c

• ../my_directory/sr_idmib.h

If you invoked the MIB compiler with the -codegen and -userpart options, it generates the following 
two files if they do not already exist:

• ../my_directory/sr_id-user.h

If you invoked the MIB compiler with the -codegen and -smpmibh options, it generates the following 
two files if they do not already exist:

• ../my_directory/sr_id-mib.h

Option Description

-g group ... Deprecated version of the -group option.

-s stampfile Specifies the name of the stamp output file. This file defines the path to the 
directory where the MIB compile will place its output. It also defines the actual 
naming convention for the output files. Avoid using this option; using the -f 
option instead.
Writing, Testing, and Publishing  M I B24-27



 CISCO CONFIDENTIAL
24.8.8   Compile a MIB: Examples
This section provides some examples of compiling a MIB. Note that while these examples show the 
mibcomp.perl script being invoked directly, typically this is done via a makefile. 

Compile the DS1 MIB
The DS1 MIB illustrates a case of compiling a simple MIB. This MIB is specified in RFC 1406. Its 
ASN.1 module name is RFC1406-MIB. Hence, when you extract the contents of the MIB from the 
RFC, you place them in the file sys/MIBS/RFC1406-MIB.m . You then run this file through mosy to 
produce sys/MIBS/RFC1406-MIB.def . This MIB contains the following top-level identifier: 

ds1 OBJECT IDENTIFIER ::= { transmission 18 }

Cisco implements objects from every group. Therefore, you can specify ds1 as the only group for 
which code is to be generated. All the Cisco DS1 code is in the sys/hes directory, and ds1mib is a 
reasonable identifier to assign the generated code. Hence, to compile the DS1 MIB, you would create 
a configuration file sys/hes/sr_ds1mib.cfg  containing the following:

-group ds1

You would then invoke mibcomp.perl as follows:

mibcomp.perl -f ../hes/sr_ds1mib.cfg `mibreq.perl ../MIBS/RFC1406-MIB.def`

Compile MIB-II
MIB-II, defined in RFC 1213, illustrates a special case of compiling a MIB. The ASN.1 module 
name of the MIB is RFC1213-MIB. Hence, when you extract the contents of the MIB from the RFC, 
you place them in the file sys/MIBS/RFC1213-MIB.m . You then run this file through mosy to produce 
sys/MIBS/RFC1213-MIB.def . MIB-II is a special case because, although it contains the top-level 
identifier mib-2, it also contains the following groups: system, interfaces, at, ip, icmp, tcp, udp, 
egp, and snmp. Because the Cisco IP code is not in the same directory as the Cisco TCP or Cisco 
SNMP code, you cannot compile all the groups at once. 

We have decided to invoke the MIB compiler individually for each group. To do this, we create three 
distinct configuration files:

sys/ip/sr_ipmib2.cfg contains “-group ip”
sys/ip/sr_icmpmib2.cfg contains “-group icmp”
sys/snmp/sr_snmpmib2.cfg contains “-group snmp”

Then we invoke mibcomp.perl three times with the following commands, once for the IP portion, 
once for the ICMP portion, and a third time for the SNMP portion:

mibcomp.perl -f ../ip/sr_ipmib2.cfg `mibreq.perl ../MIBS/RFC1213-MIB.def`
mibcomp.perl -f ../ip/sr_icmpmib2.cfg `mibreq.perl ../MIBS/RFC1213-MIB.def`
mibcomp.perl -f ../snmp/sr_snmpmib2.cfg `mibreq.perl ../MIBS/RFC1213-MIB.def`

Because the IP and ICMP code is in the same directory—sys/ip—you could compile these two 
groups together with a configuration file and command similar to the following. However, if you are 
going to compile some groups separately, it is cleaner to compile all the groups separately.

sys/ip/sr_ipicmpmib.cfg contains “-group ip -group icmp”
mibcomp.perl -f ../ip/sr_ipicmpmib2.cfg `mibreq.perl ../MIBS/RFC1213-MIB.def`
24-28 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Observe Modularity

 CISCO CONFIDENTIAL
Compile the SNMPv2 MIB and SNMPv2 Party MIBs
RFC 2012 defines the TCP MIB, and the Cisco enterprise-specific TCP MIB provides some 
extensions to this standard MIB. Based on their ASN.1 module names, these MIBs are stored in the 
files sys/MIBS/TCP-MIB.my  and sys/MIBS/CISCO-TCP-MIB.m . The CISCO-TCP-MIB.my  file 
contains the following definition:

ci scoTcpConnEntryOBJECT-TYPE
SY NTAXCiscoTcpConnEntry
MAX-ACCESS not-accessible
ST ATUScurrent
DESCRIPTION
“Additional information about a particular current TCP 
connection beyond that provided by the TCP-MIB tcpConnEntry.
An object of this type is transient, in that it ceases to
exist when (or soon after) the connection makes the transition
to the CLOSED state.”
AUGMENTS { tcpConnEntry }
::= { ciscoTcpConnTable 1 }

Because CISCO-TCP-MIB has a table that AUGMENTS a table in the TCP-MIB, you must compile these 
two MIBs together. The Cisco TCP MIB has a top-level identifier of ciscoTcpMIB and the TCP MIB 
has a top-level identifier of tcp, so you would create the following configuration file:

sys/snmp/sr_tcpmib2.cfg contains “-group ciscoTcpMIB -group tcp”

You would then invoke mibcomp.perl as follows:

mibcomp.perl -f ../snmp/sr_tcpmib2.cfg \
`mibreq.perl ../MIBS/CISCO-TCP-MIB.def ../MIBS/TCP-MIB.def`

It is not necessary to specify TCP-MIB on the mibreq.perl command line, because the Cisco TCP 
MIB imports the TCP MIB. mibreq.perl determines that TCP-MIB is required. However, explicitly 
specifying both MIBs makes it clear that you are generating code for definitions in both MIBs.

24.9   Observe Modularity

You must observe modularity rules when dealing with SNMP subsystems and instrumentation. 

24.9.1   Subsystem
SNMP is a separate subsystem that can be omitted from a system. All MIB implementations must 
observe this same modularity. They might have dependencies on SNMP, but nothing can depend on 
them except through a proper registry so that they can be omitted with SNMP.

24.9.2   Instrumentation
Instrumentation must be distinct and separate from the MIB code itself. For example, the counters 
in an Ethernet driver belong to the driver, not to SNMP. An Ethernet MIB needs access to them, but 
must do so through some interface that depends on the driver, whether that is global variables or 
preferably a set of interface procedures. Think of the MIB code as a translator that stands between 
the SNMP agent and the real data, keeping them distinct and separate. Even if the instrumentation 
is created only for SNMP availability, it must be separate. An example of this is the configuration 
management MIB.
Writing, Testing, and Publishing  M I B24-29



 CISCO CONFIDENTIAL
24.10   Implement MIB Objects

This section discusses the following tips for creating SNMPv2 MIB method routines: 

• GCC Warnings

• Validation

• k_get Routines

• k_set Routines

24.10.1   GCC Warnings
The code that is output by the MIB compiler causes GCC to generate many warnings. You can 
eliminate most of these warnings by doing the following:

• Change all function declarations to ANSI form.

• Preinitialize *data to NULL in all get functions. This eliminates the warning “data possibly used 
without being set.”

• Delete all unused variable declarations.

24.10.2   Validation
Your test routines should perform sufficient testing so that when the set routines are called, they 
should not fail. Testing should include consistency checks among the objects in a row. If you are 
adding objects to the dp->data but you do not have all the objects required to fully create or modify 
a row, or if you have modified a field such that it becomes inconsistent with another field, set 
dp->state to UNKNOWN. This settings tells the SNMP engine that the given value was legal, but that 
the row currently is not legal.

In your test routines, you should almost always insert code in the case statement that performs 
some kind of validation. For example, the MIB compiler generated the following for MIB-II IP 
group:

switch (object->nominator) {

#ifdef I_ipForwarding
case I_ipForwarding:

SET_VALID(I_ipForwarding, ((ip_t *) (dp->data))->valid);

((ip_t *) (dp->data))->ipForwarding = value->sl_value;
break;

#endif /* I_ipForwarding */
24-30 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



k_get Routines

 CISCO CONFIDENTIAL
Validation was added to this code to produce the following:

switch (object->nominator) {

#ifdef I_ipForwarding
case I_ipForwarding:

if ((value->sl_value != D_ipForwarding_forwarding) &&
(value->sl_value != D_ipForwarding_not_forwarding))

return(WRONG_VALUE_ERROR);

if (!router_enable)
return(INCONSISTENT_VALUE_ERROR);

SET_VALID(I_ipForwarding, ((ip_t *) (dp->data))->valid);

((ip_t *) (dp->data))->ipForwarding = value->sl_value;
break;

#endif /* I_ipForwarding */

24.10.3   k_get Routines
k_get routines are generally fairly straightforward to create. For scalar items, you just need to get 
the items. For tabular items, you need to scan the associated table until you find the correct entry, 
and then copy the data into the holding area. 

24.10.4   k_set Routines
k_set routines are generally not so straightforward to create. The k_set stubs are not much help. In 
order to craft these routines, start by referencing back to the associated test routine to see which 
items are settable. To do this for scalar objects, you add code similar to the following for each item: 

if (VALID(I_{objectname}, data->valid)) {
set object based on data->{objectname}

}

For table objects, there are three possibilities:

• When updating an existing row, you should locate the appropriate entry using the index objects.

• When creating a new row, you should acquire an empty row using the index objects by whatever 
method is appropriate for the given table. You can use code similar to that shown for scalar 
objects to fill in the row.

• When deleting a row, you use the index objects to locate the row and then delete it by whatever 
method is appropriate for the table). You can use code similar to that shown for scalar objects to 
fill in the row. 

24.11   Implement SNMP Asynchronous Notifications

SNMP has two types of asynchronous notifications, traps and informs. Traps are unacknowledged 
datagrams. Informs are acknowledged datagrams sent from one manager process to another. 

Implementing SNMP notifications is relatively straightforward, although not particularly simple. 
Before attempting to implement SNMP notifications, you should be familiar with SNMP and the 
Cisco development environment.
Writing, Testing, and Publishing  M I B24-31



 CISCO CONFIDENTIAL
To implement SNMP notifications, you need to do the following:

• Decide Where to Place SNMP Notification Code

• Define the Notification

• Control the Notification

• Generate the Notification

24.11.1   Decide Where to Place SNMP Notification Code
Place the code for SNMP notifications in a “modularly appropriate place.” Finding such a place is 
not always obvious; you need to consider both basic modularity and Cisco IOS subsystems when 
identifying a location. The typical MIB implementation is concerned with three subsystems: the 
SNMP subsystem, the MIB module subsystem, and the subsystem (or subsystems) with the 
instrumentation. For the most part, the code to support notifications should be in the MIB module 
subsystem, which can then make direct calls into the SNMP subsystem. The instrumentation 
subsystems make registry calls to declare events to the MIB module subsystem.

24.11.2   Define the Notification
Notifications are defined in SNMPv2 MIBs with the NOTIFICATION-TYPE macro. A good way to 
design notifications is to look at an example. Remember that at best traps are an optimization. They 
do not eliminate the need for polling or for providing the information in some other way. 

Notifications automatically include a timestamp, so you do not need to provide code to do this. You 
also do not need instance objects as long as you include any object from a table, because the instance 
values are embedded in the OID of every object in the table.

Use notifications with care, because they can easily cause traffic problems on the network. 
Furthermore, traps are not reliable. If the information in the trap is important, make it available 
through some other means, such as an event history table. An example of a notification design using 
an event history table is in the Cisco Configuration Management MIB. The relevant parts of that 
design and implementation can be found in the development tree in the following files:

MIBS/CISCO-CONFIG-MAN-MIB.my
snmp/sr_configmanmib.c
snmp/config_history.c

24.11.3   Control the Notification
You need to specify a way to turn notifications on and off. At a minimum, you need a pair of 
command lines that affect all the notifications from a particular module or MIB. Some MIBs have 
an individual switch object for each of their notifications. It is debatable as to whether this is the 
correct model. A preferable model might have a central MIB for notification control that works 
across all MIBs rather than having to sort through all the MIBs to find many individual controls. 
However, such a standard or Cisco-proprietary MIB does not exist.

The following two commands control notifications. The older one is the snmp-server host 
command: 

snmp-server host host community-string [ family ...]
no snmp-server host hostname 
24-32 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Control the Notification

 CISCO CONFIDENTIAL
This command configures trap receivers, and optionally places limits on the types of traps that can 
be sent to those receivers. If no family is specified, all traps are sent to the specified host. This 
command does not enable or disable the traps themselves.

The newer command is the snmp-server enable command: 

[no] snmp-server enable {traps | informs} [family...]

This command enables or disables generation of a family of notifications. As of this writing, the 
portion of this command for informs is not yet implemented.

To implement control of a new notification family, make the code changes described in the following 
steps. In all the examples in these steps, snark is the family name and boojum is the individual 
notification name.

Step In the parser/parser_defs_snmp.h  file, add TRAP_ENABLE_SNARK , TRAP_SNARK, 
SNMPTRAPID_SNARK, and SNMPTRAPSTR_SNARK , following the conventions already there.

Step Add #includes similar to the following for the parser: 

#include “config.h”
#include “parser.h”
#include “../parser/actions.h”
#include “../parser/macros.h”
#include “../parser/parser_defs_parser.h”
#include “../parser/parser_defs_exec.h”

Step Add your option to the snmp-server host command:

• Add the parse chain, along with any other additional parse chains for your module, to 
snark_chain.c or in some other modularly appropriate place:

LINK_EXIT(cfg_snmp_host_snark_exit, no_alt);
KEYWORD_OR(cfg_snmp_host_snark, cfg_snmp_host_snark_exit, NONE,

OBJ(int,1), (1<<TRAP_snark), “snark”, “Allow SNMP snark traps”, PRIV_CONF);
LINK_POINT(cfg_snmp_host_snark_entry, cfg_snmp_host_snark);

• In a modularly appropriate place, add the following to an existing 
parser_extension_request  array or as a new one:

{ PARSE_ADD_CFG_SNMP_HOST_CMD, &pname(cfg_snmp_host_snark_entry) },
{ PARSE_ADD_CFG_SNMP_HOST_EXIT, (dynamic_transition *)

&pname(cfg_snmp_host_snark_exit) },

To create your own new extension structure, bracket these lines with the following:

const parser_extension_request snark_chain_init_table[] = {
your lines
{ PARSE_LIST_END, NULL }

};

Also, make the following call:

parser_add_command_list(snark_chain_init_table, “snark”);

• Add the function to generate a command line to save your configuration in some 
modularly appropriate place:

void config_history_snmp_host_nvgen (ulong flags)
{

nv_add(flags & (1 << TRAP_SNARK), “ snark”);
}

Writing, Testing, and Publishing  M I B24-33



 CISCO CONFIDENTIAL
• Add the following function to the registry in some modularly appropriate place at 
initialization time:

reg_add_snmp_host_nvgen(snark_snmp_host_nvgen, “snark_snmp_host_nvgen”);

Step Add your option to the snmp-server enable command:

• Add the parse chain, along with any other additional parse chains for your module, to 
snark_chain.c or in some other modularly appropriate place:

LINK_EXIT(cfg_snmp_enable_snark_exit, no_alt);
KEYWORD_OR(conf_snmp_enable_snark, cfg_snmp_enable_snark_exit, NONE, OBJ(int,1),

(1<<TRAP_ENABLE_snark), “snark”, “Enable SNMP snark traps”, PRIV_CONF);
LINK_POINT(cfg_snmp_enable_snark_entry, conf_snmp_enable_snark);

• Add the following to an existing parser_extension_request array or as a new one in a 
modularly appropriate place:

{ PARSE_ADD_CFG_SNMP_ENABLE_CMD, &pname(cfg_snmp_enable_snark_entry) },
{ PARSE_ADD_CFG_SNMP_ENABLE_EXIT, 

(dynamic_transition *) &pname(cfg_snmp_enable_snark_exit) },

• In a modularly appropriate place, add the function to set your control variable (called 
from your parse chain):

void snark_trap_cfg_set (boolean enable, ushort flags)
{

if ((flags & (1 << TRAP_ENABLE_SNARK))) {
snark_enabled = enable;

}
}

• In a modularly appropriate place, add the function to generate a command line to save 
your configuration:

void snark_trap_cfg_nvwrt (parseinfo *csb)
{

nv_write(snark_traps_enabled, “%s traps snark”, csb->nv_command);
}

• In a modularly appropriate place, add the functions to the registry at initialization 
time:

reg_add_Trap_cfg_set(snark_trap_cfg_set, “snark_trap_cfg_set”);
reg_add_Trap_cfg_nvwrt(snark_trap_cfg_nvwrt, “snark_trap_cfg_nvwrt”);

Step Identify to SNMP which family the notification is in. In some modularly appropriate 
place, at initialization time, add functions to tell SNMP about the notification:

static const OID boojumOID = {LNboojum, (ulong *)IDboojum};
static char boojumOID_str[80];
MakeDotFromOID((OID *)&boojumOID, boojumOID_str);
register_snmp_trap(TRAP_snark, boojumOID_str);

The character string boojumOID_str is needed to generate the notification, which is why 
it is defined as static.
24-34 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Generate the Notification

 CISCO CONFIDENTIAL
24.11.4   Generate the Notification
Outside of SNMP, the instrumented subsystem declares an event, most likely with a registry call to 
a notification-specific procedure in the related SNMP MIB module. Using input parameters from the 
instrumented subsystem, the notification procedure builds a list of objects to include in the 
notification and passes the event to SNMP, which is responsible for collecting the objects, building 
the message, and sending it. 

To generate the notification, make the code changes and take the actions described in the following 
steps. In all examples, boojum is the name of the notification.

Have the instrumented subsystems declare the event:

Step Define the following service in the registry for the instrumented subsystem:

DEFINE boojum
/*
* This service should be called when boojum happens.
*/

LIST
void
{ input parameter declarations }

END

Step Include the following registry in the related MIB module and in the instrumented 
subsystem. name is the registry name.

#include “../subdirectory/name_registry.h”

Step Register the service in the related MIB module:

reg_add_boojum(boojum, “boojum”);

Step In the instrumented subsystem, call the event declaration at the appropriate time. A 
typical input parameter might be a selector for a table entry.

reg_invoke_boojum(input_parameters);

Set things up so that SNMP can generate the notification. This example is based on the Configuration 
Management MIB, which has one notification with three objects, all from the same table with a 
single, integer index.

Step Define some constants.

boojumTrapOID and boojumTrapOID_str were defined above in the context of telling 
SNMP that the trap exists.

Define the individual notification number from the tail end of NOTIFICATION-TYPE.:

#define BOOJUM_NUMBER 1

Define the number of objects in the notification:

#define BOOJUM_VARBIND_COUNT 3

The OID as used for SNMPv1 traps:

static const OID enterpriseOID =
{LNboojum - 2, (ulong *)IDboojum};
Writing, Testing, and Publishing  M I B24-35



 CISCO CONFIDENTIAL
Make a list of the objects in the trap:

static const OID boojum_varbinds[BOOJUM_VARBIND_COUNT] = {
{LNobject1, (ulong *)IDobject1},
{LNobject2, (ulong *)IDobject2},
{LNobject3, (ulong *)IDobject3}

};

The LN and ID identifiers come from sr_???mibpart.h, which is #included with 
sr_xxx.h.

Step Set up the procedure and temporary variables:

void
boojum(int index)
{

ulong       instance[1];
int         i;
OID         *vbList[BOOJUM_VARBIND_COUNT+1];
OID         instanceOID;

}

Step Ensure that the family is enabled:

if (!boojum_traps_enabled)
return;

Step Build an instance vector:

instance[0] = index;
instanceOID.oid_ptr = instance;
instanceOID.length = 1;

Step Build the real, NULL-terminated list of objects by OID, including instances:

for (i = 0; i < BOOJUM_VARBIND_COUNT; i++) {
vbList[i] = CatOID((OID *) &boojum_varbinds[i], &instanceOID);

}
vbList[i] = NULL;

Step Have SNMP generate the trap:

snmp_trap(ENTERPRISE_TRAP, BOOJUM_NUMBER, vbList, (OID *)&enterpriseOID, 
boojumOID_str);

Step Clean up after CatOID:

for (i = 0; i < TRAP_VARBIND_COUNT; i++) {
FreeOID(vbList[i]);

}

24.12   Test a MIB

When testing a MIB, you check the following basic SNMP operations on objects and notifications: 

• Get 

• GetNext 

• Set 

• Trap 
24-36 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Test an Object

 CISCO CONFIDENTIAL
24.12.1   Test an Object
For each object in the MIB, test the following: 

• Check that all objects—including scalars and first, intermediate, and last table entry—can be 
retrieved with Get and GetNext asking for an exact OID. 

• Check that Get and GetNext work correctly in all situations of asking for a nonexistent OID, 
including before and after the MIB, before and after existing objects, OIDs that are too long 
(including variants of indexes in the instance portion that are too long), truncating subidentifiers 
from the right when using GetNext, and tables that are empty, partly filled, and full. 

• Check that Sets work with valid values and fail properly with invalid values. 

• Check that interdependent Sets work correctly when in the same request or separate requests and 
in any order. 

• Confirm that tables fill correctly and behave correctly on overflow, and that the create and delete 
the first, intermediate, last, and overflow entries. 

• Confirm that each object works as specified in the MIB, that a Get returns an operationally 
correct value, and that a Set has an operationally correct effect. 

24.12.2   Test a Notification
For each notification, test the following: 

• It is generated at the correct time with the correct information. 

• It is enabled and disabled correctly via command line or MIB object. 

• The correct control commands appear in system configuration. 

24.12.3   Tools for Testing a MIB
To test a MIB, you can use command-line tools, X Windows tools, and notification tools.

24.12.3.1   Command-Line Tools
You can use the following command-line applications to test MIB objects: 

• getone—Uses Get to obtain the value of one or more objects.

• getnext—Uses GetNext to obtain the value of one or more objects.

• getmany—Uses GetNext to obtain the values of a group of objects starting from a specified point 
in the MIB tree.

• setany—Uses Set to change the value of one or more objects.

Using these applications is relatively straightforward. Refer to the online man pages for details.

If you are working on a released MIB or know the translations, these applications can use the text 
form for OIDs and enumerations rather than just numbers. While you are developing a MIB, you can 
supply your own translations as follows:

Step Create a directory.

Step Copy all the files from /nfs/csc/snmpv2/mibs  into the directory you created.

Step In the new directory, change the makefile as follows: 
Writing, Testing, and Publishing  M I B24-37



 CISCO CONFIDENTIAL
• Add your new MIB. 

Step Do a make in that directory.

Step Set the environment variable SR_MGR_CONF_DIR to point at the new directory. 

24.12.3.2   X Windows Tools
In an X Windows environment, you can use xsnmptcl, which is a TCL/TK application that has a 
number of built-in tests. 

xsnmptcl, like all TCL tools, uses a lot of CPU, so you should run in on a nonmail server that has 
spare CPU cycles. 

To run xsnmptcl the test suite, follow these steps:

Step Change into the xsnmptcl directory:

cd /atm1/kzm/isode-8.0/snmpV2/tcl/library 

Step Start xsnmptcl for testing:

../xsnmptcl -f testing.tcl 

The main window appears . 

Step Use the buttons and dialog boxes on the main window to set up your test system as a 
context with a server name and community string.

Step Left double-click a test to start it. Right double-click for a description of the test.

If you start xsnmptcl with the following command, a variety of SNMP tools is also made available:

../xsnmptcl -f everything.tcl 

To supply xsnmptcl with the number to text mappings for your MIB, issue the following commands:

cp sdurham/public/objects.defs yourdirectory/yourobjects.defs 
/atm1/kzm/isode-8.0/snmpV2/mosy/xmosy yourrmib.my 
cat /xxx/objects.defs yourmib.defs > yourobjects.defs 
../xsnmptcl -o objects.defs -f testing.tcl 

Do not change the standard objects.defs file. Instead, make a own copy in your own area.

24.12.3.3   Notification Tools
To test your notification, you need to cause it to happen. To check whether the notification is being 
handled correctly, you can use the tcpdump command from a SPARC system: 

tcpdump -s 484 host routername and port snmp-trap

routername is the IP address of the router sending the notification. The tcpdump command first 
displays an error message about MIBs, then it waits for traps to arrive. It displays the objects in the 
trap by OID, type, and value. However, tcpdump does not interpret the trap header correctly. It will 
probably think your trap has something to do with X.25.

Remember that you must enable your traps and set up the SPARC as a trap host using the command 
options you just implemented.
24-38 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



SNMP Operations

 CISCO CONFIDENTIAL
To confirm that your test setup works, enable link-state traps on an interface, then shut it down:

config term
interface eth2
snmp trap link-status
shutdown

24.12.4   SNMP Operations
The following basic SNMP operations are the same for any MIB: 

• Get

• GetNext

• Set

• Trap

For each object in the MIB, confirm the following functions:

• All objects can be retrieved with Get and GetNext asking for an exactly correct OID, including 
scalars and first, intermediate, and last table entry.

• Get and GetNext work correctly in all situations of asking for a nonexistent OID, including 
before and after the MIB, before and after existing objects, OIDs that are too long (including 
too-long variants of indexes in the instance portion), truncating subidentifiers from the right when 
using GetNext, and tables that are empty, partly filled, and full.

• Sets work with valid values and fail properly with invalid values.

• Interdependent Sets work correctly when in the same request or separate requests and in any 
order.

Confirm the following table operation:

• Fill correctly and behave correctly on overflow.

• Created and delete first, intermediate, last, and overflow entry

24.12.5   Object Functions
Confirm that each object works as specified in the MIB: 

• Get returns an operationally correct value.

• Set has an operationally correct effect.

24.13   Release a MIB

24.13.1   Release MIB Code
Releasing MIB code is no different than releasing any other code; it requires testing and code review. 
At least one of the code reviewers should be an experienced MIB implementer. A good place to look 
for such a reviewer is the e-mail alias mib-police. 
Writing, Testing, and Publishing  M I B24-39



 CISCO CONFIDENTIAL
24.13.2   Release MIB Files
The MIB description files are released to customers along with the running code, and are an 
important part of the release. They are released via CCO. The procedure for putting them in the right 
place and generating SNMPv1 and SunNet Manager conversions has not been made public for 
general use. To initiate this process, contact the e-mail alias mib-release.

24.14   Maintain a MIB

As with other code, MIB code requires bug fixes and is not exempt from the requirements of 
backward compatibility. Once released, the semantics and naming of a MIB object are not formally 
allowed to change. Although practicality leads to breaking this rule occasionally, in general you must 
observe it. 

To change a released MIB object significantly, you must remove the old object and add a new one.

To remove a released MIB object, you change its status to deprecated to indicate that it is going away, 
but leave it in the code. In a future release, you change the object to obsolete to indicate that it is 
gone, and remove it from the code. At this point, you can remove details of its description; however, 
its descriptor and OID remain reserved.

To add MIB objects, append them in an appropriate place in the appropriate MIB module.

When you add or remove MIB objects, you must update the compliance groups at the end of the MIB 
module. You cannot change existing compliance groups, but rather must always add new ones to 
reflect the changes. One way to handle MIB versions is to use compliance groups with 
AGENT-CAPABILITIES  files.

The most typical modification to an existing MIB is to add new enumerations to an enumerated 
object. This type of change has no impact on any of the MIB sources that have been committed to 
the release tree. However, if an object is added, removed, or has its syntax modified, the resulting 
generated code will probably no longer be compatible with the sr_xxxmib.c code that was 
previously created. In this case, the sr_xxxmib.stamp file contains the skeleton code for the new 
MIB. It is up to you to compare the existing sr_xxxmib.c code to the new skeleton code in 
sr_xxxmib.stamp and to make all appropriate changes to the .c file before committing the MIB (and 
the .c file) to the release tree.

24.14.1   Use MIB Versions
SNMPv2 SMI provides version control with the following features, as specified in RFC 2578: 

• The MODULE-IDENTITY macro can have numerous REVISION clauses that specify the changes to 
the MIB. 

• Added, changed, or removed objects introduce new OBJECT-GROUPs and ne
MODULE-COMPLIANCE  statements. 

MIB compliance is specified by listing OBJECT-GROUPs in an AGENT-CAPABILITIES  file. 
MODULE-COMPLIANCE  statements in this file explicitly define the compliance.
24-40 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Use MIB Versions

 CISCO CONFIDENTIAL
The following hypothetical example illustrates the use of compliance groups. This example shows 
the CISCO-ENVMON-MIB MIB, which has the following compliance statement:

ciscoEnvMonMIBCompliance MODULE-COMPLIANCE
STATUS  current
DESCRIPTION

“The compliance statement for entities which implement
the Cisco environmental monitor MIB”

MODULE  -- this module
MANDATORY-GROUPS { ciscoEnvMonMIBGroup }

::= { ciscoEnvMonMIBCompliances 1 }

ciscoEnvMonMIBGroup  is defined as follows:

ciscoEnvMonMIBGroup OBJECT-GROUP
OBJECTS {
[..list deleted for brevity..]
}
STATUS  current
DESCRIPTION

“A collection of objects providing environmental monitoring
capability to a Cisco chassis.”

::= { ciscoEnvMonMIBGroups 1 }

The CISCO-ENVMON-MIB  MIB would declare compliance with the ciscoEnvMonMIBCompliance  
compliance statement.

To add an object to this MIB that reports the humidity in the chassis, you would do the following: 

Step Add a REVISION clause to the MODULE-IDENTITY macro explaining the update.

Step Update the LAST-UPDATED clause in the MODULE-IDENTITY macro.

Step Add an invocation of the OBJECT-TYPE macro to define the object:

ciscoEnvMonHumidity OBJECT-TYPE
SYNTAX     Integer32 (0..100)
MAX-ACCESS read-only
STATUS     current
DESCRIPTION

“The relative humidity of the air in the managed device,
measured as a percent of 100.”

::= { ciscoEnvMonObjects xx }

Step Add an invocation of the OBJECT-GROUP macro that describes the added object:

ciscoEnvMonHumidityMIBGroup OBJECT-GROUP
OBJECTS {

ciscoEnvMonHumidity
}
STATUS  current
DESCRIPTION

“A collection of objects providing humidity monitoring
capability to a Cisco chassis.”

::= { ciscoEnvMonMIBGroups 2 }
Writing, Testing, and Publishing  M I B24-41



 CISCO CONFIDENTIAL
Step Add an invocation of the MODULE-COMPLIANCE  macro that describes the new maximum 
level of compliance:

ciscoEnvMonMIBComplianceRev1 MODULE-COMPLIANCE
STATUS  current
DESCRIPTION

“The compliance statement for entities which implement
the Cisco environmental monitor MIB”

MODULE  -- this module
MANDATORY-GROUPS {

ciscoEnvMonMIBGroup,
ciscoEnvMonHumidityMIBGroup

}
::= { ciscoEnvMonMIBCompliances 2 }

Step Write AGENT-CAPABILITIES  that describe the software release at which compliance with 
the new MIB occurred.

An implementation of the revised MIB could claim conformance with either the 
ciscoEnvMonMIBCompliance  compliance statement if it does not support the humidity object or the 
ciscoEnvMonMIBComplianceRev1  compliance statement if it does support the humidity object. 

Instead of defining the new OBJECT-GROUP with just the humidity object, you could define one with 
all the objects. Then the new MODULE-COMPLIANCE  would specify only the new object group in its 
MANDATORY-GROUPS  clause.

To delete a MIB object, follow these stepxs: 

Step Update MODULE-IDENTIT . 

Step Update the STATUS clause of the OBJECT-TYPE macros of the objects to obsolete. You 
never remove objects from a MIB because one or more OBJECT-GROUP macros might 
reference it. An object to be deleted should usually go through a time when its STATUS is 
deprecated to indicate that it will be removed. During this period, it remains implemented 
but any existing usage should stop. 

Step Create a new OBJECT-GROUP macro that does not contain the deleted objects. 

Step Create a new MODULE-COMPLIANCE  macro that references the new object group macro. 

24.15   Testing and Publishing a MIB

This section, formerly Cisco IOS Technical Note 2: Testing and Publishing a MIB (30 October 1996, 
ENG-9867), describes how to test a Simple Network Management Protocol (SNMP) Management 
Information Base (MIB) that you have developed and then publish it so that it is accessible to 
customers.

24.16   Create or Update a MIB Workspace

Before you can test a MIB, you must create or update a MIB workspace, which is your personal copy 
of the MIB repository. As with the Concurrent Versions System (CVS) or ClearCase, you have a 
private directory where you can access files from the repository. You then perform your builds, 
compiles, tests, and other operations from within that workspace.

To create a new workspace or update an existing workspace, use the mibco.pl script, which does the 
following:

• Creates the directory structure of a MIB workspace if you are creating a new workspace
24-42 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Test a MIB

 CISCO CONFIDENTIAL
• Creates a MIBS subdirectory in the MIB workspace in which you can access all the MIB source 
files from a Cis coIOS source repository

• Copies all makefiles and diffs files from the MIB repository

You can use a MIB workspace to test both Cisco IOS and non-Cisc oIOS MIBs. That is, the MIB 
files you are testing do not already have to exist in a C iscoIOS source repository.

To create or update a MIB workspace, follow these steps:

Step Locate a disk partition that has at least 25-30 MB of free space.

Step Decide which MIB baseline version to use.

Most MIBs depend on other MIBs; that is, they import from other MIBs. Therefore, to 
test a particular MIB, you must have a baseline of all the other MIBs. The baseline 
versions currently available are  CiscoIOS Releases 11.1 and 11.2. 

Note The MIB release group currently supports only Cisco IOS Releases 11.1 and later. 
There are no plans to support earlier releases.

If you are adding or modifying a MIB for a particular Cisco IOS version, choose that 
version as your baseline. If you are adding or modifying a MIB for a future release, 
choose the most recent version as your baseline.

If you are testing a non-Cisco IOS MIB, choose the most recent Cisc oIOS version.

Step Change into the directory in which you want the workspace to be created.

Step Run the mibco.pl script:

mibco.pl [release ] 

release is the baseline release number. For Release 11.1, enter either 11.1 or 111. For 
Release 11.2, enter either 11.2 or 112. If you omit a release number, mibco.pl prompts 
you for it.

24.17   Test a MIB

After you have created a new MIB or modified an existing one, use the testing tools provided by the 
MIB release group to verify that the MIB contains no syntax errors. These tools include the SNMP 
Management Information Compiler (SMIC) MIB compiler, which is the most anal and thorough 
compiler known to the MIB release group. Even though your MIB gets compiled in CiscoIO S build 
trees, a process that commonly finds many syntax errors, many other syntax errors silently slip 
through this compilation phase, only to be caught by the SMIC compiler

The easiest way to test a MIB is to use the MIB release group’s update-mibs.pl script. This script 
runs tests driven from a set of makefiles. If you understand how the update-mibs.pl script works, 
you can also choose to use make directly as described in the section “Use Make Directly to Generate 
a MIB.”

To test a MIB, follow these steps:

Step Log in to a system that meets the following criteria:

• It is running SunOS 4.x or SunOS 5.x (also know as Solaris 2.x). Support for other 
operating systems will, hopefully, be added in the future
Writing, Testing, and Publishing  M I B24-43



 CISCO CONFIDENTIAL
• The executable /usr/local/bin/perl  is present. Several of the MIB release group 
tools are Perl scripts.

• If the Cisco IOS source code for your selected baseline version is being archived in 
ClearCase, ClearCase must be installed on the system.

On this system, you must have access to the following directories:

• /nfs/csc/mib-release , which contains the MIB release group tools and repositories.

• /nfs/csc/smicng, which contains the SMIC MIB compiler.

Step Add the directory /nfs/csc/mib-release/bin  to your shell’s path variable.

If you are running csh, use the following command:

set path = ( /nfs/csc/mib-release/bin $path)

If you are running sh, use the following commands:

PATH=/nfs/csc/mib-release/bin:$PATH
export PATH

Step If you have not already created a MIB workspace, as described in the section “Create or 
Update a MIB Workspace,” do so now.

Step Copy your new or modified MIB (the *.my files) into the test-mibs directory in your 
workspace.

Step Change your current directory to the root of your workspace.

Step If you are testing changes to an SNMPv1 MIB, issue the following command:

update-mibs.pl -1

Step If you are testing changes to an SNMPv2 MIB, issue the following command:

update-mibs.pl

24.18   Analyze Test Results

When the update-mibs.pl script completes, it informs you that either all the MIBs successfully 
passed the tests or there was a failure. If there was a failure, the script directs you to the log file for 
details of the failure. After checking the log file, edit your MIB files in the test-mibs directory and 
run the script again. 

All MIB files in the MIBS and test-mibs directories are passed through a publication filter before 
they are run through SMIC. For example, your test-mibs/TEST-MIB.my  is passed through a filter to 
create v2/TEST-MIB.m , which is the file that is run through SMIC. The filtering process probably 
removes some lines from your MIB file. The SMIC error and warning messages that are displayed 
contain line numbers that correspond to the lines in the v2/TEST-MIB.my file, not to the lines in your 
test-mibs/TEST-MIB.my  file. Therefore, you will need to consult the files in the v2 directory (or the 
v1 directory if you are testing an SNMPv1 MIB) to determine the line on which SMIC is reporting 
an error. However, we recommend that, when correcting errors, you edit only the files in the 
test-mibs or MIBS directory. 

24.19   Determine Whether You Have an SNMPv1 or SNMPv2 MIB

The section provides some tips for determining whether you have an SNMPv1 MIB or an SNMPv2 
MIB. 
24-44 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Generate an SNMPv1 Version of an SNMPv2 MIB

 CISCO CONFIDENTIAL
Several new macros have been defined for SNMPv2. You have an SNMPv2 MIB if you can find any 
of the following strings in your MIB:

• MODULE-IDENTITY

• MODULE-COMPLIANCE

• OBJECT-GROUP

• NOTIFICATION-TYPE

• TEXTUAL-CONVENTION

Also, MIB objects defined in an SNMPv1 MIB should have an ACCESS clause, while MIB objects 
defined in an SNMPv2 MIB should have a MAX-ACCESS clause.

If you still cannot determine which type of MIB you have, contact the MIB release group at the 
e-mail alias mib-release.

24.20   Generate an SNMPv1 Version of an SNMPv2 MIB

Not all customers can use SNMPv2 MIBs. For these customers, Cisco provides SNMPv1 versions 
of the MIBs. If your MIB is part of a shipping CiscoIO S release, the MIB release group creates the 
SNMPv1 versions and provides them to the customers. If your MIB is a non-Cisco I OS MIB or if 
circumstances require you to provide a customer-special release, you must create the SNMPv1 
version of the MIB. 

You can create an SNMPv1 MIB in one of the following ways:

• Run the update-mibs.pl script as described in the section “Test a MIB,” following the procedure 
for testing an SNMPv1 MIB.

• Use make directly as described in the section “Use Make Directly to Generate a MIB.”

24.21   Use Make Directly to Generate a MIB

You can run make directly to generate a MIB instead of using the update-mibs.pl script. If you 
choose to do this, you should first understand the following:

• How mibco.pl works; see http://wwwin-eng.cisco.com/Eng/IOS/SNMP_WWW/Mib-Release/ 
under-covers.html

• What the make targets are; see http://wwwin-eng.cisco.com/Eng/IOS/SNMP_WWW/ 
Mib-Release/make/make-targets.html

24.21.1   Use Make Directly to Generate an SNMPv2 MIB
To use the make command directly to generate an SNMPv2 MIB, follow these steps:

Step Change into the root directory in your MIB workspace.

Step Change into the v2 directory:

cd v2

Step Test the SNMPv2 MIB to ensure that its syntax is correct:

make depend
make all
Writing, Testing, and Publishing  M I B24-45



 CISCO CONFIDENTIAL
24.21.2   Use Make Directly to Generate an SNMPv1 MIB
To use the make command directly to generate an SNMPv1 MIB from an SNMPv2 MIB, follow these 
steps:

Step Change into the root directory in your MIB workspace.

Step Convert the SNMPv2 MIBs into SNMPv1 MIBs:

make depend

Step Test the SNMPv2 MIBs to ensure that its syntax is correct:

cd v1
make all

The resulting converted SNMPv1 MIB is placed in v1/mib-name-V1SMI.m .

Optionally, you can generate a single SNMPv1 MIB rather than generating them all. Before doing 
this, you should first familiarize yourself with the make targets.

24.21.2.1   Example: Use Make to Generate an SNMPv1 MIB
The following example shows how to generate an SNMPv1 version of the SMNPv2 MIB 
CISCO-FLASH-MIB.my :

make depend
cd v1
make CISCO-FLASH-MIB-V1SMI.v1

or

make CISCO-FLASH-MIB-V1SMI.smicng

The resulting converted SNMPv1 MIB is placed in the directory v1/smicng and is named 
CISCO-FLASH-MIB-V1SMI.m .

24.22   Publish a MIB

Publishing a MIB means making it accessible to customers. Cisco provides MIBs to customers 
through an FTP server and Cisco Connection Online (CCO). MIB administrators are responsible for 
releasing MIBs through FTP. The files in the FTP server are distributed using rdist to CCO on a 
nightly basis. This process is handled by the people at the e-mail alias cco-team.

MIBs for the latest shipping release are archived in the directory 
ftp://ftpeng.cisco.com/pub/mibs . The contents of this archive are mirrored in CCO.

MIBs for a beta release are archived in the directory 
ftp://ftpeng.cisco.com/betaxxx_dir/mibs_xxx, where xxx is the major release number without 
the periods. For example, the MIBs for the beta version of Cisco IOS Release 11.2 are archived in 
beta112_dir/mibs_112 .

24.22.1   Prerequisites for Publishing a MIB
To get a new MIB published, the following prerequisites must be satisfied:

• The MIB must be supported in a release that is scheduled to be shipped to customers.

• The MIB must be committed to the source repository appropriate for that release.
24-46 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



MIB-Related Files

 CISCO CONFIDENTIAL
• The MIB must cleanly pass the tests in the MIB release group’s test suite.

• You must send a request to the e-mail alias mib-release. The request should clearly state that 
you are requesting MIB publication and should include the following:

— MIB filename.

— Release in which the MIB is supported.

— Short description of the functionality provided by the MIB. For examples of short 
descriptions, see the file ftp://ftpeng.cisco.com/pub/mibs/v2/readme .

To have your MIB published in a timely fashion, notify the MIB release group before the day that 
beta starts shipping or before a release’s first customer ship (FCS) release.

Once the MIB release group has published a MIB for any release, you do not need to request 
publication for later releases. The MIB release group assumes that the MIB should continue to be 
published for all following releases. However, if this assumption is incorrect, notify the MIB release 
group. 

24.23   MIB-Related Files 

24.23.1   File Locations
All files and tools supported by the MIB release group—with the exception of the SMIC toolset—are 
located in the directory /nfs/csc/mib-release . This directory contains the following 
subdirectories:

• bin—Contains the MIB release group’s toolset

• lib—Contains Perl libraries used by the toolset

• docs—Contains documentation about the toolset

The SMIC toolset, which contains the SMIC MIB compiler and other related files is located in the 
directory /nfs/csc/smicng.

24.23.2   MIB Repository and Workspace
A workspace is your personal copy of the MIB repository. As with the Concurrent Versions System 
(CVS) or ClearCase, you have a private directory where you can access files from the repository. You 
then perform your builds, compiles, tests, and other operations from within that workspace. The 
repositories are located in /nfs/csc/mib-release/xxx, where xxx is the major release number (for 
example, 112 for Cisco IOS Release 11.2).

Both the structure and contents of a MIB repository and a MIB workspace are identical. When you 
create a MIB workspace, the relevant files, including the makefiles and diffs, are copied from the 
appropriate repository into your private workspace. Every operation that you can perform in a 
workspace can also be performed in a repository. 

Only MIB release group administrators can update the files in the MIB repository.

24.23.3   Files in the MIB Repository and Workspace
The MIB repository and workspace contain the following types of files:

• MIB files, which are the actual MIBs themselves.
Writing, Testing, and Publishing  M I B24-47



 CISCO CONFIDENTIAL
• makefiles, which are used to drive much of the MIB release group’s toolset. 

• diffs files. Many times MIBs or generated files need to be tweaked to deal with quirks in the 
MIB compiler. The diffs files record the tweaks that are necessary. Your MIB files are patched 
from these diffs files before being run through the MIB compilers. Under normal 
circumstances, you should never have to create or modify any diffs files. 

• schema files. All Cisco MIBs are converted to SunNet Manager’s schema file format. Under 
normal circumstances, you should never have to generate schema files. 

• SMIC support files, which are auxiliary files that must be created before a MIB file can be 
compiled with SMIC. The creation of these files is handled entirely by the makefiles. If you are 
interested in how SMIC works, look at the SMIC support files. 

24.23.4   Directory Layout for MIB Repository and Workspace 
A MIB repository or workspace has the following directory structure. Ta ble24-3 explains the 
contents of the directories. 

test-mibs/
MIBS/
v2/
diffs/
smicng/
diffs/

v2-to-v1/
diffs/
smicng/
diffs/

v1/
diffs/
smicng/
diffs/

schema/
diffs/
schema/
oid/
traps/

Table 24-3 MIB Repository and Workspace Directory Layout 

Directory Contents

test-mibs/ MIBs you are testing.

MIBS/ Full set of MIBs that have been committed to the source repository. Usually MIBs depend upon 
other MIB files; that is, they IMPORT from them. Therefore, you must have a baseline of all the 
MIB files in order to test any particular MIB.

v2/ SNMPv2 MIBs to be compiled. This directory is populated from files in the MIBS and 
test-mibs directories. Compilation takes place in the v2/smicng directory.

v2-to-v1/ SNMPv2 MIBs to be converted to SNMPv1 MIBs. This directory is populated from files in the 
v2 directory. The actual conversion takes place in the v2-to-v1/smicng  directory. The v1 
version of xxx-MIB.my is in the file xxx-MIB-V1SMI.m .

v1/ SNMPv1-style MIBs to be compiled. This directory is populated from files in the MIBS, 
test-mibs, and v2-to-v1/smicng  directories. (SNMPv1 MIBs converted from SNMPv2 
MIBs are taken from the v2-to-v1/smicng  directory.) Compilation takes place in the 
v1/smicng directory.
24-48 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Directory Layout for MIB Repository and Workspace

 CISCO CONFIDENTIAL
Most directories in a MIB repository or workspace contain a makefile, which contains the rules 
common to the directory in which it is contained. T able24-4 explains the files related to the 
makefiles.

Table 24-4 makefile Structure 

schema/ MIB files that need to be converted to SunNet Manager schema files. Converting the file 
xxx-MIB gets generates three files: xxx-MIB.schema, xxx-MIB.oid, and xxx-MIB.traps 
(if any SNMP traps are defined in the MIB), which are located in the subdirectories schema, 
oid, and traps, respectively.

.../diffs/ Patches to be made to files in the parent directory. For example, v2/diffs contains patches to 
be made to the SNMPv2 MIBs. diffs subdirectories exist in the v1, v2, v2-to-v1, schema, 
and all smicng directories. 

.../smicng/ SMIC support files. You run the SMIC compiler from this directory. smicng subdirectories 
exist in the v1, v2, and v2-to-v1 directories.

File/Directory Contents

makefile.defs Common definitions used by all makefiles, for example, program names, locations, and 
options, and lists of MIB files to process or ignore. This file is included by all makefiles in the 
tree.

makefile.common Rules common to all makefiles in the tree. This file is included by all the makefiles.

makefile.mib Rules common to the v2, v2-to-v1, and v1 directories. For example, the rules for copying 
MIB files from the MIBS and test-mibs directories and passing them through the 
publish-mib filter are defined here. This file is included by all the makefiles in these 
directories.

makefile.smic Rules common to the */smicng directories. For example, the rules for running the SMIC tools 
are defined here. This file is included by all the */smicng/makefiles.

Directory Contents
Writing, Testing, and Publishing  M I B24-49



 CISCO CONFIDENTIAL
24-50 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

IF-MIB
2 5
IF-MIB
If you are adding a new interface or subinterface type (for IF-MIB), or a new card/port/chassis type 
(for Entity-MIB), there are a series of integration requirements for SNMP that you must address.

25.1   Supporting Subinterfaces in IF-MIB

With the addition of the IF-MIB (RFC 2233), the Cisco IOS software can now support subinterfaces 
in the interfaces group of MIB-II. To provide support for these new subinterfaces, you need to 
understand four key IF-MIB tables, the subiabtype data structure, and the functions in the IF-MIB 
API. First, this chapter describes these components, then tells you how to use them in registering or 
deregistering sublayers. Then a sample implementation is provided, which uses Frame Relay 
sublayers. At the end of the chapter, there is some information about link up/down trap support. 

25.1.1   Tables
All newly registered interfaces and sublayers should support four tables of the IF-MIB:

• ifTable

• ifXTable

• ifStackTable

• ifRcvAddressTable

Read RFC 2233 to understand how this support should be carried out and which constraints are set 
by the IF-MIB and which by the sublayer media type. 

Note Cisco subinterfaces do not directly correlate to IF-MIB sublayers.

25.1.2   API
A series of files holds the support for registering, updating, and deregistering subinterfaces in the 
IF-MIB: snmp/ifmib_registry.reg, snmp/ifmibapi.[ch], h/snmp_interface.h, and the 
ifType file.
25-1



 CISCO CONFIDENTIAL
25.1.2.1   snmp/ifmib_registry.reg 
This file holds the external registry functions for all IF-MIB-related calls into the IF-MIB API. Use 
the functions in this registry. Only the files h/snmp_interface.h  and snmp/ifmib_registry.h  
should be included in any files requiring support for this API.

25.1.2.2   snmp/ifmibapi.[ch]
These files contain the internal support for the IF-MIB API. Do not use these functions directly; use 
the service points provided above. Reading these files gives you a fuller understanding of the IF-MIB 
API.

25.1.2.3   h/snmp_interface.h
This file contains the subiabtype data structure. Be sure that you study and understand this structure. 
It is the one that you use to pass information across the IF-MIB API.

25.1.2.4   ifType
The ifType for a given subinterface is now supported in the IANAifType Textual Convention (TC). 
See MIBS/IANAifType-TC.m . If an appropriate value for ifType for your sublayer type is not 
present in this TC, you should request a new value from the Internet Assigned Numbers Authority 
(IANA). This request should not be made lightly as it requires you to design the IF-MIB 
requirements in each table for your new media type. Wherever possible, use the Internet Engineering 
Task Force (IETF) media MIB guidelines. Also, verify that the IANAifType-MIB is current by 
checking the IETF Web site.

25.2   Adding Support to Register or Deregister Sublayers

The primary data structure used for sublayers is the subiabtype, as defined in h/snmp_interface.h . 
You should use this structure for any interfaces or sublayers that are not hwidb-based. The rest of this 
section describes how to correctly support your new sublayer in the IF-MIB.

25.2.1   Adding to Service Points
As can be seen in snmp/ifmib_registry.reg , there is a series of service points to which a new 
sublayer type must add support. These service points provide unique functions that the IF-MIB can 
call to update its information about a given sublayer. All RETVAL or LIST type service points use the 
ifType as the selection criteria. Note that most of these functions have a TEST phase (associated with 
the SNMP test phase) and a SET phase. The current service points that may need to be supported are 
these:

• reg_add_ifmib_get_operstatus()

This service point will retrieve the ifOperStatus for the sublayer. There is a default function, 
ifmib_get_operstatus_default(),  which may be used if the new sublayer ifOperStatus is 
reflected in the idb->subif_state value. If this is not true, then the new sublayer must add its 
own function.

• reg_add_ifmib_get_adminstatus()
25-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Adding to Service Points

 CISCO CONFIDENTIAL
This service point will retrieve the ifAdminStatus for the sublayer. There is a default function, 
ifmib_get_adminstatus_default(),  which may be used if the new sublayer ifAdminStatus is 
reflected in the idb->subif_state value. If this is not true, then the new sublayer must add its 
own function.

• reg_add_ifmib_admin_change()

This service point will allow the ifAdminStatus to be writable. If it is appropriate to 
administratively put the sublayer up or down, this service point must be supported. There is a 
default function, ifmib_admin_change_default() , which may be used if the new sublayer can 
use the shutdown_subif() function to control the interface state. If this is not true, then the new 
sublayer must add its own function if ifAdminStatus is to be fully supported as read-writable.

• reg_add_ifmib_cntr32()

This service point will retrieve the requested 32-bit counter value for the sublayer. The counter 
types are for each counter in the ifTable and ifXTable. There is one counter function for all 
counters, with an appropriate countertype passed in as the parameter to select which counter 
value to return. The counter types are specified in h/snmp_interface.h  as ifmib_cntr_t enum. 
There is no default function for this service point. If any counters in the ifTable or ifXTable are 
supported for this sublayer, then one appropriate function must be added to support these 
counters.

• reg_add_ifmib_cntr64()

This service point is the 64-bit equivalent Hispeed counter function for the sublayer. Check with 
RFC 2233 to see if the sublayer should support the HCCounters for the ifXTable. If these 64-bit 
counters must be supported, then the appropriate functions must be added to support these HC 
counters. There is no default function.

• reg_add_ifmib_rcvaddr_screen()

This service point screens additions and deletions to the ifRcvAddressTable . It is only 
appropriate if the ifRcvAddressTable  entries for this sublayer type are writable via SNMP. If the 
entries are not writable via SNMP, but additions and deletions are made via another source (i.e. 
the CLI, or as a result of changes to a media-specific MIB) please use 
reg_invoke_create_rcvaddr()  or reg_invoke_delete_rcvaddr()  to make changes to this 
table.

• reg_add_ifmib_stack_screen()

This service point screens additions and deletions to the ifStackTable. It is only appropriate if 
the ifStackTable entries for this sublayer type are writable via SNMP. If the entries are not 
writable via SNMP but additions and deletions are made via another source (that is, the CLI or 
as a result of changes to a media-specific MIB), please use reg_invoke_create_stacklink()  or 
reg_invoke_delete_stacklink()  to make changes to this table.

• reg_add_ifmib_add_subif()

This service point registers a sublayer. The selection is based on hwidb->enctype. It can only be 
used for sublayers that have a unique enctype; otherwise, use ifmib_register_subif() . 

• reg_add_ifmib_update_ifAlias()

This service point is used to manipulate ifAlias value for subiabs. It switches based on ifType. 
If the underlying sublayer structure is a swidb, then the default function will handle the ifAlias 
update via swidb->description.

• reg_add_fmib_get_last_change()
IF-MIB 25-3



 CISCO CONFIDENTIAL
This service point retrieves the sysuptime for the last state change on a sublayer. It will switch 
based on ifType. It is up to the media code developer to keep the last change timestamp updated 
whenever the interface changes state (ifOperStatus changes). There will be a default function 
available for sublayers based on swidbs, which will pick up the timestamp kept in the swidb 
structure.

• reg_add_ifmib_get_if_speed()

This service point retrieves the ifSpeed. Note that MAXULONG must be returned if the ifSpeed is 
greater than MAXULONG. If the underlying sublayer structure is swidb, then the default function will 
return ifSpeed based on swidb->visible_bandwidth .

• reg_add_ifmib_get_if_highspeed()

This service point retrieves the ifHighSpeed. If the underlying sublayer structure is swidb, then 
the default function will return ifHighSpeed based on swidb->bandwidth. Note that 
ifHighSpeed is defined in Mbps and, as such, is accurate to +/- 500,000 bits per second.

25.2.2   Registering a Sublayer
Once a sublayer is created, you should register it with the IF-MIB. Registration is accomplished with 
the reg_invoke_ifmib_register_subif()  function. You must fill in the following parts of the 
subiab appropriately before calling the reg_invoke_ifmib_register_subif()  function:

subiab->state

subiab->if_descrstring

subiab->if_name

subiab->ifPhysAddr

subiab->ifPhysAddrLen

subiab->ifType

subiab->maxmtu

subiab->idb_type

subiab->connector_present  (11.3P)
subiab->link_trap_enable  (11.3P)

Note Even if ifPhysAddr is inappropriate for the new sublayer type, these values should be filled 
in as zero.

In some cases, the sublayer may be created, but the ifPhysAddr is not yet known. In this case, the 
sublayer can be registered with zero ifPhysAdd , but it is up to you, the developer, to determine 
when the address is known and to make a call to reg_invoke_create_rcvaddr()  to add this new 
address to the ifRcvAddressTable, as well as to retrieve the appropriate snmpidb structure and fill 
in the subiab->ifPhysAddr  and subiab->ifPhysAddrLen .

25.2.3   Deregistering a Sublayer 
Once the sublayer has been deleted, it should be deregistered from the IF-MIB with 
reg_invoke_ifmib_deregister_subif() . This function will remove the ifTable, ifXTable, 
ifRcvAddressTable , and ifStackTable entries associated with the sublayer. The associated 
snmpidb and subiab memory will be free'd.
25-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Modifying the ifRcvAddressTable

 CISCO CONFIDENTIAL
25.2.4   Modifying the ifRcvAddressTable
This table can be modified directly via the IF-MIB (writing to the table), or indirectly via the CLI or 
a media-specific MIB. If the sublayer addresses can be modified via the IF-MIB, 
reg_invoke_rcvaddr_screen()  must have an appropriate function to verify that this modification 
can take place. Remember that this function can add or delete an entry. It also has a test mode, 
wherein the changes requested are verified without actually modifying the table. This is required for 
the test phase of an SNMP MIB write (k_ifRcvAddressEntry_test() ), and must be supported in 
the sublayer screen function. If the modification to the table is made outside the IF-MIB, it is 
assumed that the screening process has already taken place, and a call can be made directly to 
reg_invoke_create_rcvaddr()  or reg_invoke_destry_rcvaddr() ). These functions simply add 
or remove entries into the ifRcvAddressTable with little sanity checking.

25.2.5   Modifying the ifStackTable
This table can be modified directly via the IF-MIB (writing to the table), or indirectly via the CLI or 
a media-specific MIB. If the sublayer stack links can be modified via the IF-MIB, the 
reg_invoke_stack_screen()  must have an appropriate function to verify that this modification can 
take place. Remember that this function can add or delete an entry. It also has a test mode, wherein 
the changes requested are verified without actually modifying the table. This is required for the test 
phase of an SNMP MIB write (k_ifStackEntry_test()) and must be supported in the sublayer 
screen function. If the modification to the table is made outside the IF-MIB, it is assumed that the 
screening process has already taken place, and a call can be made directly to 
reg_invoke_create_stacklink()  or reg_invoke_destroy_stacklink() . These functions simply 
add or remove entries into the ifStackTable with little sanity checking.

25.2.6   Sparse Table Support
The IF-MIB contains many objects that might not be appropriate for a given sublayer type. As such, 
there is inherent support in the IF-MIB method routines to support a sparse table implementation. 
There is also support on the CLI to turn off this sparse table support, effectively returning 
zero/Nullstring where needed to provide full tables.

25.3   Sample Implementation: Frame Relay Sublayers

A sample implementation is available using Frame Relay sublayers. This is a simple example as 
there are no physical address equivalents for Frame Relay, and the ifStackTable is read-only for 
these entries.

25.3.1   Adding Service Points: Frame Relay
A counter32 service point was added for the Frame Relay counters:

reg_add_ifmib_cntr32(D_ifType_frame_relay,fr_subif_cntr32fn, "fr_subif_cntr32fn") ;

This was added in wan/sr_frmib.c - init_frmib(). Note that the function is added with the ifType 
of frame_relay as the selection criteria. 

Frame Relay uses the defaults for getting ifOperStatus, ifAdminStatus, and changing 
ifAdminStatus, so no specific code is added for these.
IF-MIB 25-5



 CISCO CONFIDENTIAL
Taking a look at the counter function fr_subif_cntr32fn() , one can see there is minimal support 
for counters in Frame Relay currently: only the ifInOctets and ifOutOctets are present. All other 
queries will return IF_CNTR_NOT_AVAIL  as an error response. The counter value itself is passed to this 
function as a pointer and filled in with the current counter value.

25.3.2   Registering a Sublayer: Frame Relay
Frame Relay sublayers are registered as they are created. This can be seen in if/network.c. The 
function reg_invoke_ifmib_add_subif()  is used. Looking at the function that is actually called 
here— snmp/sr_ifmib.c  - ifmib_add_subif()—one can see that the appropriate values are filled 
into the subiab data structure and passed to the reg_invoke_ifmib_register_subif() . This 
function will take care of allocating memory for the snmpidb and the subiab pointed to by this 
function, so the subiab structure in ifmib_add_subif()  can be a local data structure.

Also notice that this function adds the stacklink to the ifStackTable via 
reg_invoke_ifmib_create_stacklink() . In this simple case, it is known that the sublayer sits 
directly on the hwidb interface. In the more generic case, the sublayer may sit on another sublayer, 
or perhaps a many-to-one relationship exists. The developer must make the appropriate calls to the 
stack functions to add these links.

25.3.3   Deregistering a Sublayer: Frame Relay
This is a simple task of calling reg_invoke_ifmib_deregister_subif() and passing it the correct 
ifIndex for the interface to be deregistered. Note that subiab and snmpidb will be free'd. NULL 
checks are your friend.

Note There may not be one single place where a sublayer is created or destroyed. It is up to you to 
scope out all possible places for the sublayer to be modified and make appropriate calls to the 
IF-MIB service points.

25.4   Link Up/Down Trap Support 

Support for link up/down traps per sublayers has been added to 11.3P, but it remains that most 
sublayer types should default to link traps disabled (that is, never generated). Any deviation should 
be reviewed with the SNMP group before being implemented. Contact the group on the snmpv2-dev 
email list.
25-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



P A R T  7
Other Useful Information





C H A P T E R

 CISCO CONFIDENTIAL

Scalable Process Implementation
2 6
Scalable Process Implementation
This chapter was originally Cisco IOS Technical Note #5, written in January 1997 by Dave Katz, an 
engineer on the IOS Protocols team. It was incorporated into this guide in September 1998.

The Cisco IOS kernel has good potential for supporting scalable, well-behaved processes that can 
support very large networks. This chapter addresses shortcomings in the code that interfere with 
developing scalable processes and describes ways to avoid these shortcomings.

26.1   Introduction 

The Cisco IOS kernel has a lot of potential for supporting scalable, well-behaved processes that can 
support very large networks. Unfortunately, our track record in producing such software has been 
spotty. In the five years that I have worked on Cisco IOS code, I have seen (and fixed) lots of code 
that had common mistakes. The intent of this document is to discuss these shortcomings and describe 
ways to avoid them, in order to improve the scalability of the product without requiring massive 
rewrites under pressure. 

Because the bulk of my experience is in the area of routing protocols, I will be using them as 
examples. They are also quite illustrative in that they can be quite CPU and bandwidth intensive, not 
surprisingly the two biggest problem areas in writing good Cisco IOS code. This comment should 
be interpreted neither as an indictment of our routing protocol implementations, nor as an acceptance 
of the status quo in other parts of the code. The lessons to be learned from routing protocols apply 
across the product line. 

26.2   The Typical Scenario

Routing protocols are generally pretty complex beasts. As such, the effort required simply to 
understand a protocol well enough to implement it ends up burning the majority of the brain cells of 
the original implementer. 

Because a protocol itself is complex, there is a natural desire to implement it in the most 
straightforward way possible. This is a desirable engineering practice, because the initial goal is 
correctness rather than efficiency. Furthermore, premature optimization is the cause of more 
programming sins than almost any other primal urge. It is much more sensible to figure out where 
the hot spots are after you gain some experience with the implementation. Only then should you 
rework or reimplement as necessary. 

In practice, however, we have tended to take this mindset to its unfortunate extreme. The initial 
implementation tends to be so straightforward that architecturally it does not lend itself to later 
improvement. 
26-1



 CISCO CONFIDENTIAL
The initial implementation is written, tested, and then shipped even though it is in fact a prototype. 
The developer makes many hollow promises about “fixing it later,” but the pressure of deadlines, 
management, and the next project—and in the case of too much success, the pressure of hot sites 
from the field—makes it infeasible to return to the scene of the crime. The prototype ships, seems to 
work, and everyone is happy

The customers use the new code, and like it, and use it some more. They build bigger and bigger 
networks. Pretty soon, the nonlinearities in the implementation start to manifest themselves. This 
occurs most often in the form of high CPU utilization and then CPUHOG indications, or huge amounts 
of control traffic, or both. Sometimes, the code is metastable, moving quickly from being 
well-behaved to having sudden spasms. If left untreated, the code moves on to progressive 
widespread network instability and collapse. This is not fun. 

A series of quick patches is then applied. These patches treat the symptoms, but most often do not 
treat the root cause, and might in fact create more serious and tricky problems because the process 
was never designed to get big. The code and the coder are tied in knots. The developer desperately 
wants to work on something else—and sometimes succeeds, much to the chagrin of the unfortunate 
soul who inherits the code. 

Meanwhile, we give the customers some absurdly conservative numbers for the maximum network 
size, number of neighbors, and so forth, in order to keep their networks out of the failure regime. The 
competition chuckles at these numbers (but often has similar problems because they are not usually 
much smarter than we are; their networks are just smaller), and the customers are unimpressed. 

We then undertake either a slow, drawn-out, painful process, or else a fast, hurried, painful process, 
to rewrite what needs to be rewritten. If things get bad enough, we commit 40,000-line patches into 
maintenance releases. Been there, done that. 

This kind of insanity is avoidable if we can strike the right balance between simplicity and 
extensibility. The essential ingredient is to understand what the process is going to look like when 
things get complicated, to structure it accordingly while it is still simple, and to rewrite it if (and 
when) it turns out to be wrong anyhow. 

26.2.1   Specific Problems
There are a number of specific problems seen in naively implemented processes. They are often 
interrelated and might stem from similar faults. Some symptoms are more universal and appear as 
side effects of a multitude of problems. These problems include the following:

• CPU Utilization

• Excessive Protocol Traffic

• Adjacency Failures

• Brittle Networks

• Random Squirrely Failures

• Pathological Process Interaction

26.2.1.1   CPU Utilization
An early indication of implementation problems is CPU utilization difficulty. The CPU might peg at 
100% for significant periods of time, and CPUHOG errors might also result. Note that high CPU 
utilization in itself is not necessarily bad or even disruptive if the processor is being appropriately 
shared, but it should invite further investigation. CPUHOG errors are 100% evil, however, and indicate 
serious flaws in overall code architecture and poor choices in data structure and algorithms. 
26-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Addressing the Problems

 CISCO CONFIDENTIAL
26.2.1.2   Excessive Protocol Traffic
Many protocols are simply chatty, and we are stuck with them. However, most modern protocols are 
not inherently chatty, and most can be equipped with sufficient nerd knobs to allow a trade-off 
between chattiness and convergence rate. When links light up with 100% utilization because of 
control traffic, this situation is almost always avoidable, even if it is not incorrect. All that control 
traffic displaces data traffic, and the network just is not healthy. A related problem is the excessive 
loss of control traffic, which can trigger retransmissions in some protocols. The traffic loss is usually 
an indicator of poor implementation, either in the sender or receiver. Such loss can seriously impact 
network convergence, and thus overall stability, and often incurs significant CPU load as well. 

26.2.1.3   Adjacency Failures
An extremely serious symptom is the loss of neighbor connectivity in protocols that have adjacency 
maintenance functions. When neighbors drop and come back, a big impulse is usually thrust into the 
network. If stability is critical enough, the flood of control traffic itself can cause further neighbor 
loss. Then what you have is a network that has fallen and cannot get up. This usually results in VPs 
calling other VPs, and your being awa kened at 4a.m. Although fascinating in the same morbid sense 
as a multicar pileup, this scenario is one to be avoided. 

26.2.1.4   Brittle Networks
Brittle networks are a little more difficult to describe. Basically, this is a situation in which the 
network does not degrade gracefully. It might recover just fine, but it tends to be either very quiet 
and stable, or very tempestuous. This brittleness usually indicates poor control schemes in the 
system. For instance, if a system becomes more efficient as it becomes loaded, it has a chance of 
recovering smoothly. If it becomes less efficient under load, the load will increase even faster and 
things get unpleasant. 

26.2.1.5   Random Squirrely Failures
Random squirrely failures often happen when hapless attempts are made at addressing some of the 
other symptoms. Symptoms of these failures include buffer and memory management problems, 
NULL dereferences, and pointers overwritten by the “poison” pattern (0D0D0D0D). These problems 
usually result from either poor organization of resource management or race conditions introduced 
when trying to fix CPU utilization problems. They can be tough to diagnose and nearly impossible 
to reproduce. 

26.2.1.6   Pathological Process Interaction
Because the Cisco IOS environment is one of shared resources (memory, CPU, buffers, and 
bandwidth), one misbehaving process can trigger failures in another, often in ways that are not at all 
obvious.

26.3   Addressing the Problems

There is only one way to avoid this litany of mistakes—by building software that is structured 
cleanly and robustly. This goal must be addressed from the very beginning of a project, in the way 
that the process (or often multiple processes) are designed, how the functionality is divided up 
among processes, how data is organized, and so forth. The beginning of a project is the time to ask 
Scalable Process Implementation 26-3



 CISCO CONFIDENTIAL
questions like, “What would happen if there were 1000 interfaces?”, “What if the system had 500 
neighbors?”, and “What if the system cannot keep up with incoming control traffic or with the rate 
at which control traffic is being generated?” 

In this section I examine a number of strategies for avoiding the kinds of symptoms described in the 
previous section, and I attempt to provide some insight into the kinds of problems that result when 
things are not done carefully. 

26.3.1   Process Structure
The first question is a big one—how many Cisco IOS processes are actually needed to perform the 
task? When the size of the network is small enough, any problem can be addressed with a single 
process. However, Cisco IOS has some features (or a lack thereof) that almost always cause 
difficulties if only a single process is used. 

At this time, the Cisco IOS scheduler does not provide any preemption mechanism. This means that 
each process is responsible for releasing the CPU on a regular basis and for doing its own internal 
scheduling for handling events. 

Most protocols have two kinds of subtasks, those that are CPU intensive and those that are time 
critical. For instance, a link-state routing protocol might require several CPU seconds to calculate 
routes over a large routing database, and it might also require that hello packets be exchanged within 
a particular time period to maintain neighbor adjacencies. It does not take much thought to realize 
that if both of these operations are done in the same process, the implementation either will be 
hideously complex (requiring some kind of internal preemption) or will simply fail miserably when 
the CPU-heavy portion takes so long that the time-critical portions do not happen quickly enough. 

These requirements immediately lead us to the idea of using multiple processes and having the 
scheduler take care of the scheduling. (That’s its job, of course.) Preemption of the CPU-intensive 
portion must still be done explicitly, but the time-critical portion will fend for itself so long as nobody 
hogs the CPU. This is necessary but not sufficient. 

This process design more explicitly raises an issue that was already lurking in the background, but 
that few have noticed—atomicity. Certain operations are implicitly assumed to be atomic—they are 
executed to completion with the guarantee that all data used for the operation are unchanged. Look 
back at our expensive link-state calculation, for example. To be a good Cisco IOS citizen, the code 
performing this calculation must relinquish the processor regularly, on the order of every 
100 m illiseconds or so. However, the route calculation code almost certainly assumes that the link 
state database does not change while the calculation is taking place. When the first CPUHOG happens 
because the route calculation is taking too long, someone will start putting suspends in the code to 
fix it. But this opens up the distinct possibility that another process will jump in and modify the data 
structures on which the route calculation is relying. 

Things get even more complicated when there are other paths into the code from other process 
threads. Nearly every area of code in the system has a path into it from the EXEC process thread, 
which is used when someone is configuring the system. The configuration might change whenever 
a process suspends! Also common are callbacks from other processes. For example, when routes are 
redistributed between protocols, the code in the receiving protocol is often executed on the thread of 
the sending protocol. The old and dreaded “active timer” system adds yet another process thread 
from which unintentional consequences might result. 

There are two key concepts that come to bear in this situation: atomicity and serialization. They 
sometimes go together, and sometimes are at odds, and the art of process design comes in finding 
the appropriate balance. 
26-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Stability through Rate Control

 CISCO CONFIDENTIAL
The most obvious way to make an operation atomic is simply to refuse to give up the CPU during 
the operation. Assuming that we are not worried about interrupt code changing things, this method 
means we simply do not suspend the process until we are through. This is easy, is often done, and 
causes CPUHOG errors. Even if the code path looks small enough at the top, it may be calling 
procedures that turn out to be quite expensive. 

So how do we keep things atomic but not cause CPUHOGs? An operation is guaranteed to be atomic, 
even if the process suspends, so long as there is no path from any other process that can change 
things. (We have seen that this requires the utmost care.) This guarantee can be achieved by 
serializing any changes so that they do not actually take place until the atomic operation has 
completed. 

Serialization of Cisco IOS processes can be done in a couple of ways. The simplest way is to put all 
the operations that could change the critical data structure into the same process as the atomic 
operation. The process main loop has its own little scheduler. As long as the atomic operation is 
running—even if it is suspending—control does not return to the process main loop until the atomic 
operation is complete. 

Typically, there are events that take place in another process that affect the critical data structure. For 
example, the time-critical process might detect a new neighbor or the failure of an existing neighbor. 
The neighbor change necessitates a change in the data structure over which our atomic operation is 
being done. In this case, serialization can be accomplished by having the time-critical process post 
an event onto an event queue in the second process. The second process then processes the event, 
making the necessary changes, after it completes its atomic operation. 

This latter scheme effectively defers the handling of an event until some time in the indeterminate 
future. This is all well and good for our atomic operation, but it might break an assumption of 
atomicity that was part of the event. For instance, take a look at our configuration example. There is 
some assumption that the processing of a configuration command takes place immediately, before 
the next command prompt is presented to the user. By enqueuing an event and then returning, we let 
the user enter the next command before the previous one might have been processed. If some error 
condition is detected when the event is finally processed, we can only complain after the fact. 
Furthermore, if some configuration changes are deferred and some are done immediately, we might 
accidentally change the order of operations. There is no easy answer to this one, other than being 
careful to think through the consequences. 

26.3.2   Stability through Rate Control
One of the Holy Grails of protocol design and implementation is fast convergence. Indeed, this is the 
stuff from which marketing campaigns are built. Sometimes, there is customer pressure to make 
things go faster, for no reason other than that it must be better (as opposed to fixing any actual 
operational problem). Experience has shown, however, that being as fast as possible is not 
necessarily a good thing. 

Networks are distributed, loosely coupled systems that exhibit large-scale behavior that is a product 
of the behavior of the individual systems in that network. However, there is a lack of feedback in the 
network. A single machine cannot tell, particularly on an instantaneous basis, how the network as a 
whole is behaving. Furthermore, any attempts to signal this information becomes a part of the control 
stream and changes the behavior (the old Heisenberg uncertainty principle). 

Because there is little feedback, a single system must be careful how it impacts the rest of the 
network (which it does by sending control traffic). It is easy to see that if a system generates control 
traffic at a rate faster than the network can absorb it, bad things will happen. Trying to be “as fast as 
possible” translates into “send control traffic as fast as possible,” which is at cross-purposes with 
stability. 
Scalable Process Implementation 26-5



 CISCO CONFIDENTIAL
For the network to be stable, all traffic generation must be controlled and controllable. Packets must 
be transmitted at a rate that is in line both with the available link bandwidth and with the reception 
bandwidth of the guy at the other end of the link. This requirement must be an integral part of the 
implementation—for instance, done using a per-interface managed timer that fires at regular 
intervals to trigger transmission. If this infrastructural work is done in the implementation, it later 
becomes possible to vary the transmission rate automatically and manually to optimize the network. 

In addition to providing control over packet transmission rates, it is often useful to provide knobs to 
control the rate of CPU-intensive operations, if this is feasible. For instance, in link-state protocols, 
the interval between successive route calculations can be controlled. Any topological changes that 
occur in between these calculations are noted in the link-state database, but otherwise incur very 
little CPU penalty. 

Rate control comes at a price, of course, which is the rate of network convergence. However, 
extremely rapid convergence is overrated. If the network converges quickly enough so that the user 
does not have a chance to call the network administrator, that is quick enough. It is also the case that 
as networks get larger, they will converge more slowly. Fact of life. However, a stable but slightly 
pokey network is vastly preferable to a lightning-fast network that melts down periodically

26.3.3   Avoiding Receive Buffer Starvation
The Cisco IOS kernel uses a credit scheme for allocating I/O buffers to interfaces. When a packet is 
received on an interface, the interface loses one credit. If all credits are consumed, the interface drops 
incoming traffic until the credits are returned. 

Typically, control protocol packets are processed to completion and then returned, at which point the 
credit is returned. This means that the input credits are reduced while packets are waiting to be 
processed. 

For complex control protocols, the time required to process an incoming packet might be arbitrarily 
long. For example, IS-IS link-state packets (LSPs) must be queued while the route calculation is 
being performed, because the link-state database must remain consistent during this time. The 
calculation might take several seconds in a large network, and in this amount of time, many LSPs 
might arrive, enough to consume all credits and trigger the dropping of packets. 

Once packets start to be dropped, control traffic is lost as well. In particular, hello packets might be 
lost, which ultimately leads to lost adjacencies and further instability. 

One simpleminded way to fix this is to call clear_if_input()  and retain the packet, which returns 
the credit but hangs onto the buffer. This method can lead to runaway buffer utilization, however, 
which makes things even worse. 

The solution used by Enhanced IGRP and IS-IS is to use a secondary queue that is private to the 
protocol on which waiting packets are enqueued, and to limit the number of packets allowed on the 
queue, dropping those that do not fit. This puts an upper bound on the number of buffers that can be 
held by the protocol and in addition provides the opportunity to keep adjacencies alive by processing 
hello packets and then immediately discarding them. Additionally, Enhanced IGRP treats any packet 
received from another router as being equivalent to the last hello packet received from that system, 
providing a further measure of robustness. 

It is worth noting that control traffic must have priority over all user data, even at the cost of violating 
traffic delivery “guarantees.” If the control traffic cannot be delivered, there can be no delivery of 
user data. 
26-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Avoiding Infinite Transmit Queues and Stale Information

 CISCO CONFIDENTIAL
26.3.4   Avoiding Infinite Transmit Queues and Stale Information
A commonly held belief, at least as evidenced by our code, is that the network can carry control 
traffic at a higher rate than the rate at which the traffic is generated. This belief is sadly mistaken, 
particularly because customers do silly things such as trying to cram routing updates over Frame 
Relay PVCs with 4 kbps of bandwidth. 

In such situations, things get ugly. First of all, the information that is eventually transmitted might 
be stale. A route table entry might change several times in succession, so it is not helpful to transmit 
the intermediate states. Second, the transmit queue might pile up indefinitely, and third, in extreme 
cases the system might run out of memory. 

The root cause of this problem is a lack of back pressure from the protocol transport to the protocol 
engine. Such back pressure is not necessarily trivial to implement, but it is absolutely necessary for 
scalability. The key is to reverse the way things are normally done. Rather than having the engine 
blindly generate data, the engine needs to be clocked by the protocol transport so that it generates 
data at the rate at which it is being transmitted, and that rate must be controllable as described above. 

The key to making this work is to model the protocol as a series of state machines (typically one per 
interface) operating over a database. The database is updated asynchronously by events, such as 
incoming protocol traffic and interface state changes, and packets are built and transmitted 
independently. Events that update the database are no longer coupled to the transmission of 
information. 

Link-state protocol implementations lend themselves well to this kind of treatment, because they are 
already organized as a database. The packets to be transmitted are simply verbatim copies of 
database changes. 

Distance-vector protocol implementations require more thought, however, because they are not 
normally organized in this fashion and because the packets generated might be different on each 
interface. One way of organizing them is to thread the database temporally, that is, have a thread on 
which each entry is moved to the end as it is modified. The thread is then ordered by change time. 
Provide a pointer into the thread for each interface (or whatever the granularity of transmission is). 
In the steady state, all the interfaces point just past the end of the list. When something changes, it 
is moved to the end of the list and each interface state machine is started. Additional changes are also 
moved to the end. The information from an interface pointer to the end of the list is exactly the stuff 
that needs to be sent on that list. Each state machine packetizes the next bunch of information, sends 
it, moves the pointer, and waits for the transport to be ready again. This scheme also does the right 
thing if an entry changes multiple times—any interface that has not sent the previous version before 
it changes sends only the latest version. 

26.3.5   Complexity versus Efficiency
Balancing complexity and efficiency is the heart of the engineering trade-off. At Cisco, we have 
traditionally done initial implementations simply, and I think that this is a good thing. It takes enough 
effort to get the basic functionality running reliably without adding a lot of complication. However, 
where we have failed repeatedly is in analyzing scalability issues and reworking the things that need 
to be scaled. Rather, we have waited until a crisis in the field and then rushed in the fixes. 

However, the other approach—early optimism—is worse. Early optimization is one of the biggest 
sins of software development. It is usually difficult to determine ahead of time where the hot spots 
really are. Instead, the developer uses intuition to decide and often complicates code that is seldom 
executed. 

The development and maintenance of complex software needs to include periodic performance 
analysis to determine where the code is going to break under stress and to make the necessary 
improvements without waiting for front-page stories to be printed. 
Scalable Process Implementation 26-7



 CISCO CONFIDENTIAL
There is no free lunch, however. Coding for efficiency adds complexity in return for speed. This is 
usually reflected in complex data structures, sometimes frighteningly so. Such complexity can be 
manageable, but requires much diligence in code structure and quality. As an absolute minimum, 
there needs to be exactly one piece of code that does the manipulation to create, destroy, and relink 
a data structure. This is, of course, good programming practice in general, but it is amazing just how 
many places the same bits of code pop up. 

Multiple copies of this kind of code usually propagate because, in the first implementation, the 
operation was simple (a single pointer manipulation, for example), and the simple one-line operation 
was inserted directly wherever it was needed. Then things got more complicated, and the added 
complexity went everywhere. The obvious solution is to create a procedure to do even the most 
simple link, delink, allocate, and deallocate operations. (Use an inline if you do not want the 
overhead of the procedure call.) Then, making it more complex later is a lot easier. 

Any code that does a brute-force walk of a number of entries and performs an operation on a small 
subset of them should be suspect. “There will never be more than 24 interfaces” was a claim that was 
taken to heart only a few years ago. Enough said. 

26.4   Conclusion

If there is a common thread to the problems we have experienced over the years, it is that we like to 
ship prototypes, but then label them as production code. To some extent, the GD label has simply 
formalized this fact. The customers might have to wait ten maintenance releases before we trust the 
code enough to subject them to it by default. 

This is problematic enough, but we have a history of never quite getting back to fixing the things we 
promised ourselves that we would fix. The apparent stability of the code helps us forget these 
commitments, right up until the time where the P1 bug reports start coming in. 

We need to avoid quick hacks. Shipping half-baked code because it will improve time to market is 
almost always a false economy. The time required to do things well is seldom significantly greater 
than the time required to do a shoddy job, and the maintenance and rewrite overhead that comes later 
overwhelms any real or perceived time savings and makes the next product even later. 

We need to “design for success,” by assuming that a feature will be wildly popular and that people 
will build ridiculously large networks. Sometimes, it appears that we write code hoping that nobody 
will really use it. 

We need to spend much more effort in analyzing code performance, both during development and 
while the code is deployed in customer networks. Providing good instrumentation enables the 
detection of problems early, before they snowball into network meltdowns.
26-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Backup System
2 7
Backup System
The Backup System is a redundant network connectivity scheme. One interface (network) 
connection takes over when the other either goes down or exceeds a traffic threshold. (This is not to 
be confused with Enhanced High System Availability (EHSA), which is a redundant processor 
scheme, in which one processor takes over when the other dies or crashes. See “Enhanced High 
System Availability (EHSA)” in Chapt er2, “System Initialization.”)

In 1997, the backup system was studied as part of an initiative to provide better scalability in systems 
with a large number of interfaces. The study yielded the decision to rewrite the system for Release 
12.0, to improve not only scalability but also to improve its maintainability and performance. This 
chapter is an overview of the backup system, as modified for Release 12.0.

27.1   Overview

This section describes how the backup system operates and how you configure a backup interface.

27.1.1   Operation
The purpose of the backup system is to provide an auxiliary means of communication between two 
network devices and a definition for when this auxiliary path is used. The main interface or 
subinterface is known as the primary, and its auxiliary is known as the standby, or secondar . The 
primary may be a physical interface or a subinterface (as in an ATM, Frame Relay, or SMDS 
connection). The secondary is usually some form of dial-on-demand interface, such as a modem or 
switched 56K line, although other types are not precluded. Note that only physical interfaces may 
serve as secondaries; however, it does not make sense to use subinterfaces as standbys.

The backup system, as currently implemented, provides two mechanisms whereby the standby may 
be made active. The first is an ordinary backup mechanism. When traffic to a foreign network is of 
high importance and the primary link goes down, then the router may be configured to bring up a 
standby, which may also serve to route packets to the remote network. When the primary returns to 
its operational state, the secondary may then be returned to the standby state. Activation and 
deactivation of the secondary may occur at once, after a specified delay, or may be disabled 
altogether in this mechanism. 

The second mechanism is useful in eliminating bottlenecks in the network, for it makes the standby 
active when the network load on the primary interface exceeds a given threshold. The secondary is 
also deactivated when the load drops back down below another given threshold. Load triggers may 
also be disabled.
27-1



 CISCO CONFIDENTIAL
27.1.2   Configuring Interfaces
This section details how the interfaces are configured:

• Specifying the Standby Interface

• Specifying Backup Delays

• Specifying Backup Loads, Main Interfaces Only

27.1.3   Specifying the Standby Interface
To enter configuration mode, your router must be in the enabled state. Once in enabled mode, type 
configure terminal. After specifying the primary interface/subinterface (the interface to be backed 
up), use the backup interface command to specify the secondary interface:

  router# configure terminal
  Enter configuration commands, one per line.  End with CNTL/Z.

  router(config)# interface serial 0
  router(config-if)# backup interface serial 1

or:

  router(config)# interface serial 0.1
  router(config-subi)# backup interface serial 1

The above commands specify that the Serial 1 interface is to be used as a standby for the Serial 0 
interface, or for the Serial 0.1 interface in the second case. 

To unconfigure an interface from being backed up, specify no backup interface. This sets any other 
backup settings, such as backup delays and backup loads (described below), back to their default 
settings.

27.1.4   Specifying Backup Delays
By default, there are no backup delays unless defined. This means that if a primary goes down, the 
secondary is immediately brought up. It also means that if the primary comes back up, the secondary 
is immediately put back into standby mode. Delays offset the transitions in time and may be set as 
follows (in seconds):

router(config-if)# backup delay 5 10

or:
router(config-if)# backup delay 5 never

or:
router(config-if)# backup delay never 10

In the first case, we're saying that we want the secondary to come up after the primary has been down 
continuously for five seconds, and that we want the secondary to go back to standby mode after the 
primary has been up continuously for ten seconds.

In the second case, we want the secondary to come up after the primary has been down continuously 
for five seconds, but we never want it to be put back into standby mode. It should remain up. 

In the third case, we have specified that the secondary is never to come up if the primary fails, but 
we still want it to be brought down after the primary has been up continuously for ten seconds. This 
might be useful in the case where the secondary is already active but it was decided that it would not 
be allowed to come up again. The use of this third form is somewhat questionable, but it is available 
for use since it is already out in the field.
27-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Specifying Backup Loads, Main Interfaces Only

 CISCO CONFIDENTIAL
The fourth case, not listed above, is backup delay never neve . This is disallowed since it disrupts 
operation of the backup system. It is probably not useful, either.

If backup delays are left unspecified, the default is backup delay 0 0. Backup delays may be 
returned to their default by explicitly setting backup delay 0 0 or no backup dela . 

27.1.5   Specifying Backup Loads, Main Interfaces Only
The backup load mechanism is specified in terms of percentages of the possible load of the main 
interface, in the form of numbers from 1 to 100.

Note This means that the backup load command is not available on subinterfaces. 

The same never keywords are accepted here:

router(config-if)# backup load 70 50

or:
router(config-if)# backup load 70 never

or:
router(config-if)# backup load never 50

or:
router(config-if)# backup load never never

In the first case, when the backup load exceeds 70% of the available bandwidth of Serial 0, the 
secondary, Serial 1, will be brought up. When the load drops back below 50% of the available 
bandwidth of Serial 0, the secondary will be returned to standby mode.

In the second case, the secondary will go up after the load is exceeded, but it will not be disabled 
when the load drops back down. 

In the third case, the secondary will not go up after the load is exceeded, but it will be brought down 
after the load drops back down. 

To unconfigure and disable the standby from being affected by load transitions, backup load never 
never may be specified, and since it is the default, no backup load achieves the same result.

27.1.6   Notes On Operation
In this section, some fine points are addressed that concern a few peculiarities of the backup system.

First is the case where both a primary interface and one or more of its subinterfaces are being backed 
up. In this scenario, if the main interface goes down, the backup for the subinterface is not activated; 
instead, the backup for the main interface is activated in its stead. If only the subinterface goes down, 
though, then the backup for the subinterface is activated, as it would be if its main interface had not 
been backed up. This is to prevent double-backups from occurring needlessly. 

Second is the case where an interface that has been backed up due to an overload situation then goes 
down. This is known as the backup/overload situation. The secondary interface is not brought back 
to standby mode until two things happen: the primary interface has come back up and the load on 
the primary has dropped back below the given load threshold.
Backup System 27-3



 CISCO CONFIDENTIAL
27.2   Description of Changes

The pre-12.0 backup code contained a number of problems that made it a prime candidate for a 
rewrite. The changes made are documented in this section.

Problem
Passive timers were being polled to detect timeouts.  Polling occurred on all hardware IDBs and all 
subinterface software IDBs off of each hardware IDB, once per second.  

Solution
Passive timers were replaced by managed timers, and an existing background service routine was 
modified to service the new (managed) backup timers.

Problem
All interfaces were being checked on a periodic basis (currently five seconds) to determine if backup 
loads needed to be calculated.

Solution
From information provided by the runtime configuration, a private IDB list was constructed to 
include all interfaces which required backup load calculations.  This list is traversed during the 
normal five second interval, instead of scanning all IDBs.

Problem
All subinterfaces were being checked once per second to determine state changes, as there is not 
currently a registry call in place which is invoked when subinterfaces change state.

Solution
Again, a private IDB list was constructed from the runtime configuration which contained a list of 
all subinterfaces which required scanning. This list is traversed once per second.  (A better solution 
would be to implement a subinterface statechange call and instrument it throughout the code 
wherever subinterface statechanges are made.  Then, a callback routine could be registered by the 
backup system to detect and act on these state changes.  However, this solution is not in place at the 
current time).

Problem
Backup-related timers and parameters were stored in every hardware IDB and software IDB.

Solution
Almost all backup-related timers and paramters were moved into a newly created subblock type, the 
backup subblock.  Backup subblocks were allocated solely to interfaces which were being backed 
up (primaries) or operated as standby's (secondaries).
27-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Description of Changes

 CISCO CONFIDENTIAL
Problem
For standby interfaces, determining the primary interface was very difficult, and required running 
through each and every hardware and software IDB.

Solution
The subblock contains pointers to both an interface's primary interface (if it is a standby) and its 
standby interface (if it is a primary). This bidirectional link makes coding much simpler and more 
efficient.

Problem
The addition of subinterfaces to existing backup code created code duplication (one set for main 
interfaces and one set for subinterfaces). This made the code difficult to follow and hard to maintain.  
It provided an environment to possibly make changes inconsistently between the main interfaces and 
the subinterfaces.

Solution
The code was unified to make use of the subblocks instead of hardware and software IDBs. Thus, 
main interfaces and subinterfaces use exactly the same code.

Problem
Backup code was spread throughout many different procedures and was very difficult to maintain.

Solution
Backup code was modularized out and placed into its own module. Backup operation was converted 
from distinct calls located in *many* places to a finite-state-machine with event notification. Only 
a select few calls were made available for use outside of the backup system.

Problem
Backup code could not be easily pulled out of the mainline code.

Solution
Since the new backup code was made modular, it was turned into a subsystem. Backup initialization 
code was called as part of normal subsystem initialization. A new registry was created to contain the 
backup registry calls. Existing parser commands were taken out of the parser chain and reintegrated 
as part of the backup subsystem initialization in the form of a parser extension request.

Problem
There was no way to debug backup events.

Solution
A “debug backup” command was added to help debug backup events.
Backup System 27-5



 CISCO CONFIDENTIAL
Problem
There was no way to view backup states.

Solution
A “show backup” command was added to show backup states.
27-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Verifying Cisco IOS Modular Images
2 8
Verifying Cisco IOS Modular Images
This chapter was originally Cisco IOS Technical Note #4, written February 27, 1997. It was moved 
to this chapter in September 1998.

A modular image is a collection of linked object files that contain no unresolved references. This 
chapter explains how verify the Cisco IOS source code modularity using modular image targets in 
the sys/makefile files and in the platform-specific makefiles. 

28.1   What is a Modular Image?

A modular image is a collection of linked object files that contain no unresolved references. The 
object files that you choose to collect into a modular image are files that form a logical subset of the 
Cisco IOS software. 

Building the modular images on a regular basis allows an automated check of the degree to which 
Cisco IOS programmers are respecting the existing modularity of the Cisco IOS code base. 

What a Modular Image Is Not 
A modular image is not necessarily intended to run. It it merely intended to be an isolated set of files 
that have no external references.

A modular image does not in and of itself implement software modularity. 

A modular image is not a substitute for creating application programming interfaces (APIs) or 
application binary interfaces (ABIs). 

28.2   Why Create Modular Images?

The main purpose of creating and building modular images is to verify that a logical subset of the 
code that has been identified as a module is self-contained and has no unresolved references. You 
verify the modularity of an image when you first define the module and then on an ongoing basis to 
ensure that continuing work on the Cisco IOS code has not broken the modularity. Also, as part of 
the standard build process, existing module images are checked nightly and built weekly to verify 
that recent changes to the code have not broken the modularity.
28-1



 CISCO CONFIDENTIAL
28.3   Types of Modularity Checks

You can verify Cisco IOS modular images in two ways. Both of these methods are implemented in 
the sys/makefile files and platform-specific makefiles.

• Build modular images successfully, without link errors. You do this by running make using the 
sys/makefile files and platform-specific makefiles. In the sys/makefile files, you use the 
targets modular.all and modularity_check.all  to build modular images. In the 
platform-specific makefiles, you use the targets modular and modularity_check .

• Run the sys/scripts/connect  Perl script. This script takes a list of object files from STDIN and 
checks them for unresolved references. For help about the usage of this script, enter the command 
connect -h.

When you are developing Cisco IOS code, you are strongly encouraged to check the modular images 
for the platform on which you are developing before committing the changes. You do this especially 
if your code references data or functions in more than one subsystem. 

28.4   Modularity Targets

In the sys/makefile files, the modularity targets are modular.all and modularity_check.all . In 
the platform-specific makefiles, the modularity targets are modular and modularity_check.

You should never modify the list of modular images in the modular target. If you add a new feature 
to the Cisco IOS code, add its files to the list of modular images. 

28.5   Build Modular Images for a Single Platform

You can build all the modular images for a single hardware platform with the modular target in the 
platform-specific object directory. This target builds the complete set of modular images defined in 
the sys/makeimages file for that platform.

28.5.1   Build All Modular Images for a Single Platform
To build all the modular images for a single hardware platform, follow these steps:

Step Change into the platform directory:

cd sys/obj-processor-platform 

Step Build the modular images:

make -k modular >& log_file

The -k option, known as the “keep-going” option, permits the modular rule to continue 
even if a particular modular image fails to link. 

log_file is the name of a log file. This file will contain the output of the make command, 
including any error messages.

Each modular image built in  Step2 is deleted after it is created; it is never written to the /tftpboot 
directory. Any errors that occur during the build process are recorded in the log file. You should 
resolve all errors until the image builds successfully. When resolving errors, you should attempt to 
maintain the smallest possible modular image. Do not add other subsystems to the modular image if 
you can avoid it.
28-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Build a Specific Modular Image for a Single Platform

 CISCO CONFIDENTIAL
28.5.2   Build a Specific Modular Image for a Single Platfor
To build a specific modular image for a single hardware platform, follow these steps:

Step Change into the platform directory:

cd obj-processor-platform 

Step Build the modular images:

make -k modular-modularity_type >& log_file

The -k option, known as the “keep-going” option, permits the modular rule to continue 
even if a particular modular image fails to link. 

modularity_type is the defined logical grouping of functionality whose modularity you 
want to check. The modular-modularity_type targets are defined in the variable 
MODULAR in the file sys/makeimages. Currently, the variable contains the following 
targets:

MODULAR = modular-apollo modular-at modular-ataurp modular-atip modular-clns \
modular-dialer modular-dn modular-fr modular-fr-svc modular-ip \
modular-ipx modular-ipxeigrp modular-ipxwan modular-mop \
modular-nlsp modular-smds modular-snapshot modular-snmp modular-sntp\
modular-tb modular-tiny modular-ukernel modular-vax modular-vines \
modular-x25 modular-xns

log_file is the name of a log file. This file will contain the output of the make command, 
including any error messages.

Each modular image built in  Step2 is deleted after it is created; it is never written to the /tftpboot 
directory. Any errors that occur during the build process are recorded in the log file. You should 
resolve all errors until the image builds successfully. When resolving errors, you should attempt to 
maintain the smallest possible modular image. Do not add other subsystems to the modular image if 
you can avoid it.

28.6   Build Modular Images for All Platforms

You can build all the modularity images for all Cisco IOS platforms with the modular.all target in 
the sys/makefile file. The modular.all target compiles all the objects necessary to link the 
modular images. Running this target can take from approximately 3 hours to over 12 hours, 
depending on how many objects need to be compiled, the performance of your compile server, and 
the number of platforms and modular images defined in the sys/makeimages file. 

To build all the modular images for all hardware platforms, follow these steps:

Step Change into the sys directory:

cd sys 

Step Build the modular images:

make -k modular.all >& log_file

The -k option, known as the “keep-going” option, permits the modular rule to continue 
even if a particular modular image fails to link. 

log_file is the name of a log file. This file will contain the output of the make command, 
including any error messages.
Verifying Cisco IOS Modular Images 28-3



 CISCO CONFIDENTIAL
Each modular image built in  Step2 is deleted after it is created; it is never written to the /tftpboot 
directory. Any errors that occur during the build process are recorded in the log file. You should 
resolve all errors until the image builds successfully. When resolving errors, you should attempt to 
maintain the smallest possible modular image. Do not add other subsystems to the modular image if 
you can avoid it.

28.7   Check Modularity with the sys/scripts/connect Script

If you have already compiled all the object files in a modular image, you can quickly check for 
modularity breaks using the modularity_check.all  target, which is defined in the sys/makefile 
file. This target calls the Perl script sys/scripts/connect , which checks for unresolved references 
in the object files in the modular images. 

There are two advantages to using the modularity_check  target: it completes the check of all 
modular images for all platforms in about one hour, and it provides a list of all unresolved external 
references for all files in each image. 

The modularity_check  target does not check that all objects required to build a modular image are 
present, and it does not attempt to rebuild those objects before it runs sys/scripts/connect . This 
saves a significant amount of time. If a required object file is missing, the script prints an error 
message indicating this. 

Note We have observed that for images built with the MIPS linker, unresolved references are left 
in the image and they are called out as modularity breaks. These unresolved references occur both 
in the modular and production images. Currently, we are investigating this anomaly to determine 
whether the unresolved references indicate a bug in the linker or a bug in the utilities (nm and 
objdump) that read the unresolved references from the image files. 

28.8   Modularity Checking Done by the Nightly Builds

Starting with Release 11.2, the nightly build of Cisco IOS production images runs the 
modularity_check.all  target to verify the modularity of all modular images. Also, once a week, 
the nightly builds build the modular images using the modular.all target. The modular images are 
not archived, but are removed immediately after they are built. 

Reports of nightly build failures, which include modularity breaks, are mailed to the alias 
nightly-build-failures . A modularity break is defined as an unresolved reference in the modular 
image found either by the linker or the sys/scripts/connect  script. If a modularity break occurs, 
a DDTS bug report is filed against the development group with responsibility for the software.

The build group posts all nightly build results for a given release to the newsgroup 
cisco.eng.nightly.release_abbreviation-build. The nightly build newsgroup for the 
California release is cisco.eng.nightly.cal-build . 
28-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



C H A P T E R

 CISCO CONFIDENTIAL

Writing DDTS Release-Note Enclosure
2 9
Writing DDTS Release-Note Enclosures
This chapter was originally Cisco IOS Technical Note #3, which was written in January 1997. It was 
moved to this chapter in September 1998.

The text in a DDTS release-note enclosure describes a problem reported in DDTS to customers. This 
chapter provides guidelines for writing release-note enclosures. It assumes that you are familiar with 
DDTS. For information about DDTS, see the “Getting Help” section of this chapter.

29.1   What Is a Release-Note Enclosure

A release-note enclosure is the enclosure in a DDTS bug report that describes the problem to Cisco 
customers and partners. (Note that enclosures are sometimes also called attachments.) The purpose 
of release-note enclosures is to provide timely, accurate, and useful information about actual and 
potential problems with Cisco software, hardware, and documentation products. The description in 
a release-note enclosure should allow the customer to identify the problem and should provide a 
workaround if one is known. 

To describe the problem in the bug report to internal Cisco people, you use other DDTS enclosures, 
such as the Description enclosure.

29.2   How Customers See Release-Note Enclosure

Customers see release-note enclosures in one of the following ways:

• Cisco Connection Online (CCO). The CCO Bug Navigator, which is part of the Bug ToolKit, 
allows customers to view the headline, release-note enclosure, and other information about a 
DDTS bug report. All registered CCO users can view all bug reports that have release-note 
enclosures, regardless of the state the bug report is in, with the following exceptions:

— Bugs with release-note enclosure text whose first line is $$IGNORE 

— Bugs with no release-note enclosure; these are visible only to internal users and Cisco 
partners

The CCO user interface indicates whether a bug has been junked (state J), is a duplicate (state D) 
of another bug, or cannot be reproduced (state U). 

• Cisco Connection Documentation (CCD, formerly UniverCD). This is a monthly CD-ROM 
produced by the Knowledge Products group. For each currently supported Cisco IOS software 
release, CCD contains a file that lists all the release-note enclosures.
29-1



 CISCO CONFIDENTIAL
• Software release notes. These contains the release-note enclosures for catastrophic and severe 
problems reported in the DDTS database. Printed copies of the release notes ship with all 
software shipments. The release notes are also included on CCD.

When a bug report has a release-note enclosure, the report is also distributed to Cisco’s field 
personnel and various business partners via e-mail and anonymous FTP. 

Release-note enclosures for bug reports about software that is in the external verification phase are 
visible only in electronic form and only to internal Cisco audiences and external verification sites 
that have access to CCO. 

29.3   Who Writes Release-Note Enclosures

The initial release-note enclosure is written by the person who submits the bug report. Development 
Engineers (DEs) and Customer Engineers (CEs) can add information to or modify the information 
in a release-note enclosure. For details about writing responsibilities, see the “DDTS Release-note 
Enclosure Process” web page.

29.4   When Do Release-Note Enclosures Get Written

You write a release-note enclosure when you first submit a bug report. You or others can revise it at 
any time.

29.5   Writing Release-Note Enclosures

This section discusses the issues involved in writing release-note enclosures.

29.5.1   Naming a Release-Note Enclosure
A release-note enclosure is an enclosure in a DDTS bug report that has the following title:

Release-note

Note the exact spelling and capitalization. Deviations from this exact title can cause DDTS scripts 
to fail.

29.5.2   Writing Guidelines
Release-note enclosures must include enough information so that the customer can recognize the 
problem and, if possible, implement a temporary workaround or permanent solution. A release-note 
enclosure should include the following type of information:

• Conditions Under Which the Problem Occurs

• Symptoms of the problem

• Workaround or solution, if any

In the release-note enclosure, describes the problem as it exists, even if it has already been fixed. This 
is because the problem might not have been fixed in all releases (if a DDTS bug report applies to 
several software releases), or the fix might not have been integrated into all releases.

Remember that the audience for release-note enclosures is Cisco customers.
29-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Writing Style

 CISCO CONFIDENTIAL
29.5.2.1   Conditions Under Which the Problem Occurs
The conditions describe the customer environment under which the problem has occurred or might 
occur. Include the following information if relevant:

• Hardware configuration. If the problem affects only specific hardware versions, state this 
explicitly.

• Software configuration. If the problem affects only specific software releases, state this explicitly.

• Router configuration commands that cause the problem.

• Problem frequency. State whether the problem always occurs under the stated conditions, 
whether it occurs occasionally, or whether it occurs only infrequently. If the problem is infrequent 
or if there is only a low probability that a customer might encounter the problem, say this 
explicitly by stating, “Under rare conditions...” You do not want to alarm customers 
unnecessarily.

Example
On Cisco 4000 series routers running Release 10.3(4), ...

29.5.2.2   Symptoms
The symptom is a clear, brief description of the problem. This description should allow the customer 
to match the problem to something they might see on their device.

Example
If the source-bridge proxy-explorer command is configured, a Token Ring interface might 
intermittently not receive packets.

29.5.2.3   Workaround
If a temporary or permanent workaround or a permanent solution to the problem is known, describe 
it. If there are any limitations caused by the workaround or solution, state them.

Example
The workaround is to turn off proxy explorer. One side effect of doing this is that explorer traffic on 
the network will increase.

29.5.3   Writing Style
When writing release-note enclosures, following these writing-style guidelines:

• Write in present tense.

DO—If a serial interface is set to loopback via a hardware signal, the interface remains in 
loopback until the hardware signal is dropped.

DON’T—If a serial interface is set to loopback via a hardware signal, the interface will remain in 
loopback until the hardware signal is dropped.
Writing DDTS Release-Note Enclosure 29-3



 CISCO CONFIDENTIAL
• Write in active mood (active voice).

DO—If you configure secondary addresses on an interface that you have otherwise configured as 
unnumbered, the interface routes corresponding to these addresses are not advertised in IS-IS.

DON’T—If secondary addresses are configured on an interface that is otherwise configured 
unnumbered, the interface routes corresponding to these addresses are not advertised in IS-IS.

• Keep the problem description as short as possible. Do not include unnecessary information.

• Write in complete sentences.

DO—Cisco 2500 series routers might reload with a bus error at PC 0x30E9A8C.

DON’T—2500 Router reloaded with bus error at PC 0x30E9A8C for unknown reason.

• Use complete Cisco product names, such as Cisco 10005 router, Cisco 70000 series routers , or 
AS5100 access serve . Do not use abbreviations, such as c7000 or 7000 series, or internal code 
names, such as Volcano.

• Refer to specific releases of the Cis coIOS software as Cisco IOS Release x.y(z) or simply 
Release x.y(z). Do not use version x.y(z) or x.y(z).

• When referring to the Cisco IOS software, use Cisco IOS as an adjective. For example, say 
Cisco IOS code, not IOS code or IOS. This is necessary to protect our trademark of “Cisco IOS.”

• Avoid unnecessary or irrelevant comments that do not add useful information. For example, avoid 
the following types of comments:

— This is a weird bug.

— This is a new router

— The customer upgraded.

— The customer is very upset.

• Avoid using slang, jargon, and internal code names that the customer might not understand. For 
example, avoid the following terms:

— Crash
As alternatives, use reload (verb), system reload (noun), unexpected system reload (noun)

— Hang
As alternatives, use pause indefinitely, stop, or stop working

— Bug
As alternatives, use problem, possibly unexpected behavior, or aspect of the implementation

— Brain-dead design, stupid design, users stupid enough to do
Rewrite to omit these phrases

• Do not include any angle brackets (< and >) in the text of a release-note enclosure except for 
character formatting. These break the scripts that gather the release-note enclosures.
29-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Text Formatting Guidelines

 CISCO CONFIDENTIAL
29.5.4   Text Formatting Guidelines

29.5.4.1   Character Formatting Guidelines
Some scripts gather the release-note enclosure text for inclusion in formatted documents, such as 
FrameMaker documents. To properly identify commands, command arguments, and command 
keywords, include character formatting strings in the release-note enclosure text, as follows:

• Use bold for command names and command arguments.

• Use italics for command keywords.

• Use italics for any words that you want to emphasize, such as the word no.

Do not place single or double quotation marks around command name.

Table 29-1 explains the character formatting strings. Note that these strings are not case-sensitive.

Table 29-1 Character Formatting Strings 

Do not nest formatting strings within other strings. Nested strings are ignored.

DO—<CmdBold>route-map<NoCmdBold> <CmdArg>map-tag<NoCmdArg> 
<CmdBold>permit<NoCmdBold>

DON’T—<CmdBold>route-map <CmdArg>map-tag <CmdBold>permit<NoCmdBold>

Examples: Character Formatting Guidelines
The following is an example of release-note enclosure text that includes formatting tags:

If you use the <CmdBold>dialer string<NoCmdBold> <CmdArg>dial-string<NoCmdArg> 
command on an ISDN interface instead of a <CmdBold>dialer map<NoCmdBold> command, 
the router might crash.

In formatted documents, this text appears as follows:

If you use the dialer string dial-string command on an ISDN interface instead of a dialer map 
command, the router might crash.

Tag Function Example
End Result in 
Formatted Document

<CmdBold>

<NoCmdBold>

Marks the beginning of a command or 
command argument

Marks the end of a command or command 
argument

<CmdBold> dialer string<NoCmdBold> dialer string

<CmdArg>

<NoCmdArg>

Marks the beginning of a command keyword

Marks the end of a command keyword

<CmdArg>dialer-string<NoCmdArg> dialer-string
Writing DDTS Release-Note Enclosure 29-5



 CISCO CONFIDENTIAL
29.5.4.2   Other Formatting Guidelines
Certain characters interfere with the scripts that process release-note enclosures. So far, the only 
characters we know that cause problems are the angle brackets (< and >) when they are used for 
purposes other than character formatting. Follow these guidelines to avoid these problems:

• Spell out the terms greater than and less than.

• Do not enclose command arguments in angle brackets.

• Do not enclose variables that might appear in error messages in angle brackets.

• Remove angle brackets that might by displayed in error messages.

29.5.5   Guidelines for Using $$IGNORE in Release-Note Enclosures
DDTS bug reports that identify problems that should not be seen by customers should not have 
release-note enclosures. We do not want customers to see the following kinds of problems:

• Problems that affect an internal structure or operation of the code that is not visible to the user
Examples include problems in the Cisco IOS kernel, such as the scheduler or managed timers, 
and code restructuring.

• DDTS bug reports for makefile or other changes that affect how images are compiled.

• Problems that might involve sensitive competitive information. 

In all these cases, you must make a deliberate decision not to document the problem. 

To prevent a bug report from being seen by customers, create a release-note enclosure that contains 
the following text at the beginning of the enclosure:

$$IGNORE

If you use the $$IGNORE string in the release-note enclosure, the entire bug report is not visible to 
customers. However, it is still visible to internal users and to Cisco partners.

Make sure there are no spaces or blank lines before the $$IGNORE string. Any blank lines or other 
text before this string will not prevent the DDTS bug report from being visible to customers. 

The $$IGNORE string is case-sensitive, so make sure that you type it exactly as shown. 

In the remainder of the release-note enclosure, you can explain why the bug report is not being 
documented and who decided not to document it.

Do not use the $$IGNORE string if you do not have enough information to describe the problem to 
the customer or if you plan to write a release-note enclosure at a later date. If you have insufficient 
information, simply leave the bug report without any release-note enclosure. Doing this allows tools 
to distinguish between bugs that still need to be documented and those that are deliberately 
undocumented.

29.5.6   Sample Release-Note Enclosures
The following are examples of good release-note enclosures:

• The router may reload when trying to execute the <CmdBold>show accounting<NoCmdBold> 
command.

• QLLC cannot use X.25 PVCs for DLSw+. The workaround is to use RSRB or to use X.25 SVCs.
29-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Writing DDTS Headlines

 CISCO CONFIDENTIAL
• When multiprotocol traffic such as IP, DECnet, XNS, AppleTalk, and IPX is passed to a 
Cisco 2500 or Cisco 4500 router through a Token Ring interface, the router cannot accept all the 
traffic. This sometimes results in the Token Ring interface being reset and packets being dropped.

• On Cisco 7500 RSP platforms, FSIP serial interfaces may display the following panic messages 
on the RSP console. 
%RSP-3-IP_PANIC: Panic: Serial12/2 800003E8 00000120 0000800D 0000534C
%DBUS-3-CXBUSERR: Slot 12, CBus Error
%RSP-3-RESTART: cbus comple
If the string “0000800D” is included in on the panic message, the problem is related to this bug. 
The workaround is to load a new image that contains the fix for this bug.

The following examples show inappropriate release-note enclosures and provide examples for 
rewriting them:

• RSP2 reload at rsp_ipfastswitch

PROBLEM  Incomplete sentence; reference to internal software routine.

SUGGESTED REWRITE: RSP2 systems might reload while performing RSP fast switching.

• --- Release-note ---
All SNA traffic with local-ack while using reverse sdllc (rsdllc) feature will fail There is no 
known workaround, however a code fix has been identified and tested successfully. The fix will 
be available in 11.2(3.1) and 11.2(4).
engineer’s name and date
Another test was executed on 12/20/96 with images built out of the latest California branch. And 
it was successful (with no code change applied). So it seems the problem was fixed in the latest 
California branch unknownly. And no code change needs to be applied. engineer’s name and date

PROBLEM  Do not type the name of the enclosure— --- Release-note --- — in the text. Do not 
include your name or the date. Do not mention when a fix might be available. Do not include test 
information.

SUGGESTED REWRITE: All SNA traffic that uses local-ack and reverse SDLLC fails. There is no 
known workaround.

• After receipt of “rogue” XID3 from its partner, DSPU may become stuck in XID state; and 
therefore, connection will never become active.
Work-around is to stop and re-start the DSPU connection via “no dspu start”/“dspu start” 
configuration commands

PROBLEM  Incomplete sentence; placing commands in quotes.

SUGGESTED REWRITE: After receipt of a “rogue” XID3 from its partner, DSPU might become 
stuck in XID state and as a result, the connection will never become active. The workaround is 
to stop and then restart the DSPU connection using the <CmdBold>no dspu start<NoCmdBold> 
and <CmdBold>dspu start<NoCmdBold> commands.

29.6   Writing DDTS Headlines

Although not part of the release-note enclosure, the DDTS headline is visible to Cisco customers 
partners regardless of whether there is a release-note enclosure. Follow these guidelines when 
writing DDTS headlines:

• Write a concise description of the problem symptom. The headline can be up to 65 characters 
long. 

• Do not include references to unreleased products.
Writing DDTS Release-Note Enclosure 29-7



 CISCO CONFIDENTIAL
• Do not refer to released products by their internal project names. 

• Do not use offensive language. 
29-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Getting Help

 CISCO CONFIDENTIAL
• Do not refer to source code routines.

• Avoid references to other DDTS reports.

29.7   Getting Help

If you need help writing a well-composed release-note enclosure, try to find someone in your group 
who you think is a good writer and have them help you. If you are working with writers from 
Knowledge Products, ask if they could help you. If neither of these options works, ask the manager 
of the Engineering Education group if a writer or editor from the group can help.

For additional information about writing release-note enclosures, see the “DDTS Release-note 
Enclosure Process” Web page.

For information about using DDTS, see the Cisco Engineering Tools Guide .

To enroll in the DDTS course, go to the “Cisco Engineering Training” Web page.
Writing DDTS Release-Note Enclosure 29-9



 CISCO CONFIDENTIAL
29-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Appendixes





A P P E N D I X

Writing Cisco IOS Code: Style Issues A

 CISCO CONFIDENTIAL
A

Writing Cisco IOS Code: Style Issues
A.1   Purpose of This Chapter

Frequently, a newcomer to the Cisco IOS software engineering group is upbraided for not doing 
something “the right way,” and the newcomer will note something to the effect that “if someone had 
provided useful documentation, writing Cisco IOS code would be much easier.”

The purpose of this appendix is to document The Right WayTM to write Cisco IOS code. This 
appendix addresses the issues and conventions of the Cisco IOS software group. It does not address 
issues of other Cisco software groups, such as the microcode group.

A.1.1   Coding Conventions: Something for Everyone to Protest
The Cisco IOS software, despite popular misconceptions to the contrary, has conventions for 
designing, writing, and documenting code. However, the rapid growth of the software engineering 
community at Cisco has outstripped our earlier method of communicating these coding conventions 
to newly hired engineers and engineers in newly acquired companies. Previously, experienced 
engineers passed on the conventions, designs, technology, and wisdom in “nerd lunch” talks. 
However, with Cisco’s rapid growth and the wholesale assimilation of engineering groups from 
acquired companies, which are often no longer geographically co-located with the experienced 
engineers, the nerd lunch training method no longer scales. As a result, the Cisco IOS code base is 
growing into a mishmash of conflicting conventions and methodologies.

The purpose of coding conventions is quite simple: to facilitate the rapid understanding of any piece 
of Cisco IOS source code by any engineer. This results in clearer expression of engineering intent, 
fewer bugs, less time spent training engineers, and engineers being able to move from project to 
project with greater ease.

Some of the issues addressed in this appendix are magnets for controversy, especially topics such as 
pretty printing and white space conventions. Engineering practices that get a more reliable product 
to market more quickly can be directly translated into the tangible benefits of larger market share 
and higher revenues for the company as a whole. For you, the engineer, this translates into higher 
stock prices. And if you want to publicly claim to other Cisco employees that you do not care about 
making the stock price go up, you might as well smear yourself in A-1 Steak Sauce and jump into 
the polar bear exhibit in the Anchorage, Alaska, zoo. You’ll live longer in the exhibit with the bears.

The foregoing rationale for coding conventions might not be enough for some readers, who might 
offer protestations that their personal conventions, used for much, if not most, of their careers in 
software engineering previous to their employment at Cisco, are technically superior. And some of 
these arguments may well be correct. But a major goal in coding is consistency of coding style and 
implementation. Whether you think Cisco’s conventions are good, bad, or indifferent, the current 
-1



 CISCO CONFIDENTIAL
coding style is the one we chose more than 10 years ago. Everyone who has joined the company 
since then has had to conform to it. Unless there is an overriding reason to change (read: “We sell 
more product, resulting in higher stock prices”), you will also have to conform.

Because it is impossible to arrive at agreement about every coding convention issue, all engineers 
might find something in this document that is not to their ultimate liking. However, you are reminded 
that in a successful compromise, everyone feels equally shortchanged.

A.1.2   Definitions
The following terms are used throughout this appendix:

Platform-dependent code: Code that has real and intimate knowledge of the platform or device that 
it controls. Typical examples are the bootstrap code, device drivers, and Flash memory drivers. Also 
typically included in platform-dependent code is the fast-switching code, because the ultimate 
performance in the packet fast-path depends on very specific use of the platform’s hardware.

Platform-independent code: Code that does not care or specifically know which platform is 
running it. Examples include routing protocols, the scheduler, the error logger, and other high-level 
features.

Device drivers: Code used to control interface cards or specific chip sets in interface cards.

A.1.3   What This Appendix Addresses
This appendix addresses a number of higher-level issues in writing Cisco IOS software. These issues 
affect the integration of your individual code with other code in the Cisco IOS software engineering 
community. This appendix discusses the following topics:

• Design Issues

• Using C in the Cisco IOS Source Code

• Presentation of the Cisco IOS Source Code

• Variable and Storage Persistence, Scope, and Naming

• Coding for Reliability

• Coding for Performance

A.1.4   What This Appendix Does Not Address
No document about coding styles presented to an engineering audience the size of Cisco’s can hope 
to cover every topic. As such, there are some issues that this appendix explicitly does not cover and 
does not intend to cover in the future, including the following:

• Debugging a specific issue or problem (See Chapter18 , “Debugging and Error Logging.”)

• Debugging errors returned by the tool chain

A.2   Design Issues 

Before you add large new pieces of functionality and code to the Cisco IOS source, you should 
design them to use and fit within the Cisco IOS architecture. Although the architecture is often a 
moving target, your features and code should attempt to adopt the latest available interfaces, data 
A-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
structures, and libraries. The Cisco IOS source contains a large amount of legacy code. If you add 
new features to the Cisco IOS code that are implemented using old and possibly deprecated 
architecture, you are adding to the work of bringing the legacy code forward into the new 
architecture. You might think you are saving time, but it will likely cost you and the company more 
time and money to re-engineer the new features into the new architecture than it will take you to 
understand and use the new architecture in the first place.

There are several broad categories of design issues that are germane to all projects. The following 
sections are not meant to be all-inclusive but rather guidelines for design issues that, if addressed 
early in the implementation of your Cisco IOS features, will make your job considerably easier.

A.2.1   Do Not Use Conditional Compilation for Platform-Specific Code
The Cisco IOS source used to be very different than what you see now. In the versions of the 
Cisco IOS software before Release 9.21, little code was platform-independent. This was because 
much of the code was littered with conditional compilation statements similar to the following: 

#ifdef PAN
/* Logic for “Pancake” or IGS/C3000 platforms */
#else
#ifdef CBUS
/* Logic for AGS+ platforms */
#else
/* Logic for “High-end” or AGS/MGS/CGS platforms */
#endif
#endif

As a result of this coding practice, errors found and fixed on one platform might not be fixed on 
another, little object code was shared even among platforms using the same CPU, and porting the 
Cisco IOS software to a new platform was very difficult because the platform-dependent issues were 
spread throughout the code, not neatly encapsulated in well-defined places with well-documented 
interfaces.

As tempting as it might be to add conditional compilation for a specific platform, device, interface 
or chip, don’t do it. Take the extra time to separate generic code from platform-specific or 
device-specific code, and take the time either to use an existing interface between generic and 
nongeneric code or to develop a new interface.

A.2.2   Plan Your Feature as a Subsystem
When you are adding a new feature to the Cisco IOS code, it is very likely that it is something that 
is not absolutely essential for the Cisco IOS system to run. In other words, there might be some 
customers who are never going to use your feature and who would be rather irate at having to fill 
their router memory with features that they will never use. 

Currently, the only way to selectively omit features from an image is to write features in their own 
subsystems and to use the registry mechanism to create bindings at system boot-time between your 
feature’s code and the rest of the system. Again, you might be tempted to use conditional compilation 
to control whether your feature is included in a particular image, but as with platform-specific 
conditional compilation, if everyone does it, no one can maintain it. There are many examples 
throughout the source of how to effectively and easily design a feature as an optional part of the 
system. Two good examples to cite here are the AppleTalk and VINES subsystems.
Writing Cisco IOS Code: Style Issues A-3



 CISCO CONFIDENTIAL
A.2.3   Do Not Overload Existing or System Registries
In the past, there was a tendency to put new feature registry points into existing registry definitions. 
This might have been convenient, but it was not germane to the requirements of the new feature’s 
interface. 

An example of putting new registry points into existing registry definitions would be putting a 
protocol-specific interface point (for example, AppleTalk Echo packet reception) into a systemwide 
interface registry, which is the generic interface registry for all hardware interfaces. Although this 
works and the new functionality might well be modular, the pollution of the generic interface 
definition creates problems when porting the Cisco IOS code to new platforms. Also, adding a 
registry point in a nonobvious place makes it hard to document and maintain the functionality. It is 
better to create a new registry than “pollute” existing registries if your feature’s interfaces are not 
logically associated with the existing registry.

However, do not create new registries gratuitously. Interface design and specification require careful 
thought. Do the design work necessary to create easily understood and maintained registries. 

A.2.4   Don’t Be a Stub Slob; Use Registries
Registries allow portions of the Cisco IOS code to be isolated from other portions of the code while 
maintaining the modularity of the code. For example, you use registries to create platform-specific 
functions. 

Before registries were created, Cisco IOS code was made “portable” between various target 
platforms through conditional compilation and a rather festerous technique called “stub” functions. 
Stub functions were essentially functions with the same name as a function that had a real purpose 
on one platform but no purpose on other platforms. Typically, these stub functions were called via 
function vectors in structures or tables. If omission of the function entry point on a platform where 
the real function was not needed would cause a link error, a “stub” function was introduced into the 
source code to allow the image to link.

The correct technique to provide for optional functions on a per-platform basis is to use registries. 
Moreover, you should think of registries as generic interface points between functional layers or 
modules, not feature-specific or function-specific entry points. You should rarely, if ever, create new 
stub registries. For a good example of how a registry is created, see ip/ipfast.c. This registry 
correctly populates the IP fast-switching cache independently of the type of hardware assistance that 
might be available to use for fast switching.

A.2.5   Don’t Hog the Chip
It goes without saying that everyone writing code for the router would prefer that their code were the 
only code that the CPU were running. Alas, this isn’t the case, and you must share the resource. The 
Cisco IOS code does not force you to share the CPU. Rather, it is incumbent upon every process 
running on the router to surrender control of the CPU at frequent intervals to allow other processes 
to get their share of the CPU. This is what is referred to as cooperative multitasking, and in the 
Cisco IOS code it operates much the same as Windows 3.1 and Macintosh systems. 

The benefits of cooperative multitasking are that the amount of CPU used by the Cisco IOS code to 
schedule processes is much less than would be used by a preemptive multitasking scheduler. Also, 
the latency in handling real-time events is lower, because you can design a process to handle small, 
well-defined tasks quickly and without preemption. The downside of using a scheduler without 
preemption is that each process and subsystem must be designed carefully to ensure that the whole 
system runs smoothly.
A-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
To make your job of implementing and supporting your features easier, keep the following in mind 
when designing features:

• Design potentially CPU-intensive tasks so that they consist of small, atomic fragments of work 
that lend themselves to checkpointing and process suspension. This type of design is very 
difficult to add after your feature has been written, because checkpointing and frequent surrender 
of the CPU require more complex data structures. 

• Handle events that must happen at appointed times—for example, generating and transmitting of 
routing keepalive packets—in their own process, not by grating the events onto a process already 
loaded with work.

• Be aware that some Cisco IOS primitives are not explicitly associated with the scheduler. If these 
primitives are called, the scheduler can suspend your process if another process is ready to run.

• If you do not observe recommendations that your process frequently return control of the CPU 
to the scheduler, your process will be identified by the system as a CPU hog for all to see. Further, 
if you fail to surrender the CPU for a very long period of time (more than one minute), the 
Cisco IOS code will assume that the router is hung in an infinite loop and will fire a watchdog 
timer that will cause the router to reload.

A.3   Using C in the Cisco IOS Source Code

So you think that all there is to writing Cisco IOS code in C is heaving curly braces into an Emacs 
buffer? (What? You’re not using Emacs? Too bad. You must like doing extra work.) Guess again. 

A.3.1   Use ANSI C
The current compiler used by Cisco IOS engineering is GCC, the Gnu CC compiler. This compiler 
has significant features that make it robust for our code development. One of the most notable 
features of GCC is its ability to enforce ANSI C compliance in the source code by invoking switches, 
which causes the compiler to issue warning messages when it encounters non-ANSI source code. 

The following is a good language reference for ANSI C:

The Annotated ANSI C Standar
American National Standard for Programming Languages—C
Annotated by Herbert Schildt
ANSI/ISO 9899-1990
ISBN 0-07-881952-0

You can also refer to the ANSI C standard itself, but the examples and background information 
presented by Schildt are very useful. 

To find the reference manual for GCC, refer to the GNU documentation at 
http://wwwin-swtools.cisco.com/Eng/Release/SWTools/Tools/. You can also use 
GNU Emacs Info-mode, but it is unlikely that the information pages will be kept current. 

Some coding habits that were commonplace in Kernighan & Ritchie (K&R) C environments are 
unacceptable in Cisco IOS source code: 

• In K&R, functions are not prototyped. In Cisco IOS code, prototype your functions.

• In K&R, int is used as a function return type when no valid value is returned or checked, and 
void is used when nothing meaningful is returned. This coding style is not acceptable in 
Cisco IOS code.
Writing Cisco IOS Code: Style Issues A-5



 CISCO CONFIDENTIAL
• In K&R, #define macros are used when a static inline function would be more readable. In 
general, there is little reason anymore to use #define to replicate code inline.

The GCC compiler is one of the best tools we have to reliably implement the necessary features and 
speed. Use its features to your best advantage.

A.3.2   Fifty Ways to Shoot Yourself in the Foot
About 10 years ago, a wag in Datamation remarked, “C is a language for consenting adults, Pascal 
is a language for children, and Ada is a language for hardened criminals.”

The writer was referring to how closely the compilers for these languages herd programmers into 
doing things The Right Way. C allows an engineer to solve the problem at hand with a great deal of 
freedom and personal discretion. However, just because the compiler allows you to do something in 
a quick-and-dirty fashion does not imply that you should use the quick-and-dirty solution. With the 
freedom from constraints offered by the C language comes the responsibility not to abuse this 
freedom. When the language offers a more robust and structured solution to the problem at hand, 
choose that solution even though it might require additional effort. 

Although ANSI C offers much more data type checking than K&R compilers do, C is largely 
promiscuous about what it accepts. C does not check array boundaries, and it does not place checks 
on your pointer conversions or mathematics to ensure that your result is pointing to something valid. 
C allows you to overflow simple numeric calculations silently and with stunning efficiency. C allows 
you to scribble over your stack frame, which will guarantee that when you return from the function 
you are currently in, you will return to the Land of Oz. In short, C does not hold your hand when you 
need help, nor will it smack you on the wrist when you err.

As such, the demands placed on the programmer are far greater in C than in some other languages. 
You alone are responsible for checking your intermediate results for conformance with reality before 
your code makes assumptions for later execution. It is to your advantage to use what is available in 
the ANSI C language to help you write code that does what you mean, not just what you say:

Function Prototypes
Use function prototypes. There is no excuse for not using them. You should define a function 
prototype only once in the entire source, in one header file. Defining multiple prototypes defeats the 
purpose of having a function prototype in the first place.

Order of Functions within a File
Deliberately arrange the order in which the functions are defined in a file so as to make forward 
declarations unnecessary and your source easier to maintain and follow. Typically, you do this by 
placing the function that calls most other static functions at the bottom of the source file and placing 
the functions at the bottom of the caller/called hierarchy towards the top of the file. 

Typecasting
Do not use gratuitous typecasting. One of the most annoying things to observe in C code is a typecast 
that, with more careful attention to coding, would not be needed. The vast majority of the cases in 
which typecasting is used are a direct result of either ignorance (“I didn’t know that I could do that 
without casting”), apathy (“So what? It doesn’t slow anything down”), or both (“I’m both stupid and 
slovenly, so there!”). 

Functions that return void * (known as an opaque type) need no typecasting of the returned pointer. 
Doing so defeats the whole purpose of declaring the function with an opaque type.
A-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Obscure C Features
Avoid using obscure C language features, such as the “,” operator.

Ensuring Correct Results
Do not depend on nonobvious associativity and side effects for correct results. It is unwise to rely on 
the order of evaluation of side effects performed on variables passed to functions, and it is extremely 
unwise to use side effects in the invocation of a macro.

Static Class
Use the static storage class to reduce the scope of variables and functions. Do not make any 
variable or function an extern unless it is used outside the file in which it is defined. This not only 
helps to keep the name space cleaner, but it also reduces the size of the symbol table passed to the 
linker. Smaller symbol tables in the link step of the build mean faster link times. 

Const Qualifier
Use const type qualifiers to allow the compiler to enforce read-only declarations of read-only 
global storage and pointers that should not change at run time. Without memory protection, there is 
no way at run-time to prevent someone from writing code that creates a pointer to a non-const 
variable, sets the value of this pointer to point to your storage that has been declared const, and 
subsequently overwrites the storage that had been defined as read only. However, using const 
allows the compiler to flag code that might try to write directly to what you want to be read-only 
storage. 

In addition to declaring initialized storage to be const, you should also declare and define the 
read-only parameters of functions to be const.

Register Storage Class
Do not use the register storage class unless you are sure—and have verified by looking at the 
generated code—that using the register declaration generates better code than not using it. GCC 
does not treat the register storage class as a mandate, only a “strong hint.” 

Format of Data Structures
Do not make assumptions about the layout or padding of a structure or the allocated size of a data 
structure. These depend on the compiler implementation and can vary significantly with the type of 
target CPU. 

Conversion from Signed to Unsigned Types
Pay attention to the conversion from signed to unsigned types. This is one area where the 
transition from K&R C to ANSI C occasionally surprises people. 

Enumerated Types and #defines
When possible, use ordinals declared using enum, especially for arguments to switch statements. 
GCC will warn you about unhandled values, a warning you will not receive when using arguments 
of type int or unsigned integers. 
Writing Cisco IOS Code: Style Issues A-7



 CISCO CONFIDENTIAL
If you are creating a list of #define macros for enumerated constants, consider whether you can use 
a real enumerated type rather than the #define idiom. You can assign explicit values to enumerated 
type names if required, as shown in this example: 

enum {
first_value=1,
next_value=2,
last_value=3

}

If you must use the #define idiom, write the #defines so they are self-indexing. There are few 
reasons to use the #define idiom instead of an enumerated type. One reason would be that the 
constant definitions can be processed by both the C preprocessor and other, non-C, macro languages. 
For example:

#define EXAMPLE_ITEM_ONE (1)
#define EXAMPLE_ITEM_TWO (EXAMPLE_ITEM_ONE+1)
#define EXAMPLE_ITEM_THREE (EXAMPLE_ITEM_TWO+1)

Passing Structures
Do not pass large structures (structures larger than 12 bytes or so) by value to a function, especially 
on code targeted to RISC architectures. One of the “silent” changes between K&R C and ANSI C is 
that while K&R C always passes structures by reference to a function, ANSI C makes it possible to 
pass structures by value. Likewise, do not return structures larger than 4 bytes from a function. 
Instead, return a pointer to the result. 

Mixing C and Assembly Language
GCC allows you to insert assembly language instructions directly into your C code. For reasons of 
readability and maintenance, we recommend that you contain all such code in as few source files as 
possible and do not spread such constructs widely across the source code. 

Floating-Point Operations
While it might seem outrageous that we even need to mention it, using floating-point operations in 
Cisco IOS source code is a great way to have someone else shoot you in the foot. Many of our router 
platforms (the 680x0-based platforms) have no floating-point hardware and never will, and the 
MIPS-based platforms use their floating-point scratch registers for saving interrupt context. If you 
use floating point math on a MIPS-based platform, you will crash the router in mysterious ways, 
especially if you are not intimately familiar with the interrupt handler for MIPS-based platforms. 

Floating point is unnecessary. Those who offer protestations to the contrary will be flogged. Besides, 
the only people who like floating-point code are pipe stress freaks and crystallography weenies.

Header Files
Bracket the contents of header (.h) files with conditional compilation statements to allow multiple 
inclusion without generating errors, as shown in this example: 

#ifndef __FILENAME_H__
#define __FILENAME_H__
/* Contents here. */
#endif
A-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
A.4   Presentation of the Cisco IOS Source Code 

Presentation of the Cisco IOS source code is also known as pretty printing. Although the 
arrangement of white space in the code has little, if any, net effect on code operation, it affects the 
speed with which your fellow engineers can read and understand your code. Unless you think that 
unreadable code assures you some measure of job security, there is no logical reason why you would 
not want your fellow engineers to understand your code as clearly and quickly as possible. 
(Unreadable code does not lead to job security. Far from it, such code will more than likely lead to 
your fellow engineers’ discontent.) Nonetheless, pretty-printing conventions seem to be one of the 
issues in software engineering that generate a most rancorous debate.

Fortunately, there are tools that make maintaining a consistent pretty printing and white space very 
easy. Both the GNU Emacs editor and the indent utility allow for easy formatting of C code with 
a minimum of manual effort.

A.4.1   Specific Code Formatting Issues
The following points address specific code formatting issues:

Standard Cisco Header
Each file should have a standard Cisco header. Templates for the headers of all common types of 
source files are in the sys/templates/header.*. 

#include Directives
All #include directives should occur after the file header. 

Standard Indention
The standard indention is four spaces. The exception is switch statements, where the case 
statements are kept at the same indention level as the enclosing switch {...}. 

Spaces in Function Definitions and Prototypes
In the function definition, there should be a space following a function name and before the opening 
parenthesis of the argument list. In the prototype argument list in function declarations, there should 
be no space between the function name and the opening parenthesis. The following is an example of 
this formatting style: 

In the file boojums.h:

extern void boojum(int, struct snark *);

In the file boojums.c:

void boojum (int arg1, struct snark *ptr)
{
/*
* Do a bunch of stuff.
*/
}

Writing Cisco IOS Code: Style Issues A-9



 CISCO CONFIDENTIAL
If...Else Statements
The else clause of an if {...} else {...} should be “cuddled” as shown in this example: 

if (boojum) {
/* Do some stuff here. */
} else {
/* Do something else. */
}

Spaces around Parentheses
Put a space between flow control reserved words and the opening parenthesis of the control 
statement’s test expression: 

Correct: if (test_variable)
Incorrect: if(test_variable)

The return statement should follow the same rule: 

Correct: return (TRUE):
Incorrect: return(TRUE)

There should not be a space between the name of a function and the opening parenthesis of the actual 
argument list:

Correct: ret_value = boojum_function(arg1, arg2, arg3);
Incorrect: ret_value = boojum_function (arg1, arg2, arg3);

Stubbing Out code
Do not use #if 0...#endif to “stub out” code. To stub out code, use an undefined preprocessor 
variable that gives some clue about why the code is stubbed out, with comments indicating why the 
code is stubbed out, by whom and when it might be used. For example:

/*
* This feature will be enabled in release 10.0(2)
*/
#ifdef TO_BE_ENABLED_IN_RELEASE_100_2
...
#endif

An exception to this rule is debugging code, which you place under a conditional compilation 
variable DEBUG or GLOBAL_DEBUG:

#ifdef DEBUG
...
#endif

Formatting Block Comments
Format block comments as follows: 

/*
* This is a block comment. Don’t embellish these with lots of “stars 
* and bars.”
*/
A-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
A.4.2   Some Comments about Comments
Yes, we’ve all heard the refrain “comment your code” until we’re all tired to death of hearing it. Well, 
this is a perfect place to say it again, but with some more specific points. 

Comments should tell the reader something non-obvious. A comment that repeats what is blindingly 
obvious is annoying at best. The following is an example:

boojum += 10; /* Add ten to boojum */

This tells you a lot, doesn’t it?

It is often better to aggregate comments about high-level and architectural issues in one place, to 
allow the reader and maintainers of your code to learn much more in a shorter time than if they had 
to piece together the issues and ideas about your features from comments strewn throughout several 
files. A good example of aggregating comments is the large block comments in the files 
iprouting/igrp2.c and iprouting/dual.c. These comments explain the large issues of the 
Enhanced IGRP transport protocol and DUAL routing engine, respectively. 

Keep comments up to date with the code. Comments that no longer accurately represent what the 
code is doing are often worse than nonexistent comments.

Devote block comments be devoted to content, not fancy, exquisitely formatted “stars and bars” 
borders.

If you’re about to execute one of those stunningly elegant, minimalist representations of excessive 
cleverness that C allows all too easily, give the reader a clue about what the outcome of your little 
pearl of syntax construction should be. (But better than that, don’t become yet another obfuscated C 
coder: rewrite your stunning little pearl.)

A.5   Variable and Storage Persistence, Scope, and Naming

For variables, functions, and program storage, use the minimal scoping required to get the job done. 
In other words, do not define a variable to be static when an auto will do the job, and do not 
define a variable to be extern if a static scoping will work. 

The naming of variables and functions must adhere to different standards according to their scope. 
auto variables must be unique only within the function in which they are declared. static 
variables and functions must be unique within their compilation unit. External variables and 
functions must be unique throughout the entire lot of the source code going into the link step. As 
such, prefix variables and functions defined with extern scoping with a well-understood and 
consistent prefix that identifies the module and subsystem, and use these prefixes for all extern 
variables and functions contained within the module or subsystem. The prefix should be at least two 
characters long.

The following are well-known and obvious prefixes for extern variables and functions:

• ip

• atalk

• idb

• sched

The prefix my is neither well known nor obvious.
Writing Cisco IOS Code: Style Issues A-11



 CISCO CONFIDENTIAL
A.6   Coding for Reliability 

Even if your algorithms and code implement all of a specification or requirements document, your 
code can and will be subject to incorrect, out-of-specification, or malicious data. In order for your 
code to survive (and for the router not to crash), you must check for out-of-specification or 
unexpected data values and act accordingly and reliably when such input values are passed to your 
code. This is sometimes called coding defensivel . This section gives examples of defensive coding. 

Checking NULL Pointers
Check for NULL pointers passed into your externally visible functions. If you choose to assume that 
you have passed valid data to your internal or helper functions, that is fine because you are directly 
responsible for validating the arguments that are passed between your internal code. But for data 
coming into your modules from other, possibly unknown, areas of the Cisco IOS code, never assume 
that you have been passed a non-NULL pointer, much less a valid one. 

Specifying Default Cases
Include default cases on all switch statements, and do not allow an unhandled value to fall through 
into the code that follows the switch statement. Also, make note of when you intend a case of a 
switch statement to fall through into the next case selector. For example:

switch (number) {
case 0:

buginf(“You entered zero. I assume you meant 1.\n”);
/* Fall through */
case 1: frobozz():
break;
case 2:
...
}

Pointer Arithmetic
Do not perform pointer arithmetic based on values computed or received in packets from outside the 
router without checking the result of the pointer arithmetic for sanity. This is not only a reliability 
issue, but also sometimes a security issue. 

Pointers within Structures
Check pointers contained within structures that point to other structures to ensure that they are 
non-NULL before assuming that they are good pointers. 

Checking the malloc() and getbuffer Return
It seems obvious, but it needs to be said: when you call malloc() or getbuffer(), check to see 
that the pointer returned was not NULL. 
A-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Arithmetic Overflow
Check for arithmetic overflow in cases where it would result in a wildly bogus result. There used to 
be a whole class of especially embarrassing bugs in the router that were caused by arithmetic 
overflow in timer variables as millisecond timers in the router overflowed from signed to unsigned 
32-bit ranges at 24.45 days after boot time.

Data Alignment
Never assume that data values of greater than 8 bits in size are aligned on their natural boundaries in 
packet or network data. Always use the GETSHORT and GETLONG macros to read large atomic data 
in packet buffers, and the PUTSHORT and PUTLONG macros to write large atomic data. 

The following examples of code fragments that are scattered throughout the system—and which you 
might think are there for reliability—are actually examples of band-aids patched on top of poor 
designs:

• Using validmem() to check pointers contained in your structures because you have designed in 
a race condition where one thread of execution might be using a pointer to a block of malloc’d 
memory and another thread might be freeing the same block. validmem() is an expensiv
function. Redesign your data structure and all code that uses this function to handle concurrent 
access. 

• Using onintstack() to determine when your code is being called from an interrupt. Make 
every effort to minimize the code executed in interrupts in the router. The more time the router 
spends in an interrupt code path, the fewer interrupts the router can service, which on most 
hardware platforms translates directly into a decrease in router throughput. When there are valid 
reasons to be aware of when your code is executing in an interrupt, call onintstack() once and 
save the result, passing it into the functions that need to know this information.

• raise_interrupt_level() and reset_interrupt_level() calls around large sections of 
code indicate that concurrent access to a data structure shared between multiple threads has not 
been well designed. In this case, the one thread sharing access to the data structures is the 
interrupt thread. Using this technique to disable interrupts is valid, but only around the small 
sections of code where the shared data structures are manipulated.

• Writing assertions and buginf() messages when an anomaly is detected, and then continuing 
execution as though nothing were wrong, is a great example of useless code that adds no 
reliability. If you have checked for a condition that requires the user be informed, then do 
something smart about the condition.

A.7   Coding for Performance

You should be concerned with three levels of performance in the Cisco IOS code: 

• Performance of Algorithms and Data Structures

• Performance Resulting from Use and Abuse of the Cisco IOS Infrastructure

• Instruction-level Performance

Large-scale performance issues are more heavily influenced by the choice of data structures and 
algorithms, and the wise use of the Cisco IOS fundamental services than by instruction-level 
optimization. The exceptions to this are well-defined code paths during hardware interrupts, with the 
most frequent example being the fast-switching implementations for the various protocols.
Writing Cisco IOS Code: Style Issues A-13



 CISCO CONFIDENTIAL
How do you know you have a performance problem? You use the profiling capability that is built 
into the Cisco IOS code and run a select set of tests to exercise your code to find the “hot spots.” As 
a rule, unless something is blatantly wasteful of memory and CPU, you should work to get your code 
executing correctly first before worrying about speeding it up.

In general, it is best to address the performance issues arising from the choice of data structure and 
algorithm first, before worrying about instruction-level tuning. As an example, it would be pointless 
to be counting instructions in a protocol’s fast-switching code if the data structure for the protocol’s 
fast-switching cache were a linear, singly linked list that contained 3,000 unsorted entries. Any 
improvements you get from eliminating 10 instructions will be dwarfed by several orders of 
magnitude of poor performance caused by an ill-chosen algorithm and data structure.

A.7.1   Performance of Algorithms and Data Structures
Reams of paper and millions of trees have been expended publishing books about data structures and 
algorithms. Many of these books are good, some are great, and some are utter tripe and twaddle. All 
we will do here is recommend the following and direct you to read them: 

• Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, 
MIT Press, ISBN 0-262-03141-8

This book is by far one of the most comprehensive data structures and algorithms books 
available. It is clearly written and gives excellent treatment of the subject of estimating resource 
usage. In addition, the first six chapters give an excellent review of discrete mathematics and 
probability. For those looking for a collection of lots of data structures and algorithms in one 
place, this is a good reference volume. There are errata available from MIT Press by an e-mail 
responder.

• The Art of Computer Programming, Fundamental Algorithms, Second Edition, by Donald Knuth, 
Addison-Wesley, 1973, ISBN 0-201-03809-9
The Art of Computer Programming, Sorting and Searching, by Donald Knuth, Addison-Wesley
1973, ISBN 0-201-03803-X

This is a series of references that should need no introduction. Volumes 1 and 3 are most 
applicable to Cisco IOS programming. Volume 4 is due to appear in 1997, and the preliminary 
table of contents indicates that it should be applicable to those working on routing protocols.

The importance of the proper choice of algorithms and data structures in Cisco IOS features and code 
cannot be underestimated. Cisco routers are used to build some of the largest networks in the world. 
As such, your features and code should be designed to scale into very large networks. While a hash 
table might be a suitable method of retrieving items based on a key in a smaller router, a hash table 
might not be suitable in the networks that run on Cisco IOS software. All the effort spent explaining 
the “big-Oh” worst-case running time in data structures books is no longer a mathematical 
abstraction, but a very real difference between having to rewrite large pieces of functionality and 
providing out-of-the-box customer satisfaction. Several routing protocols in the Cisco IOS software 
have had to be rewritten because fundamental data structures were chosen improperly when they 
were first written.

Before implementing a data structure, read the Cisco IOS Programmer’s Guide and the Cisco IOS 
API Reference. Many data structures that allow the Cisco IOS code to scale into the largest networks 
in our customer base have already been implemented, tested, and used for many releases of the Cisco 
IOS software. If you cannot find what you need in existing Cisco IOS code, and if the data structure 
or algorithm might have use in other places in Cisco IOS code, write the data structure so that it can 
be used by other parts of the code.
A-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
When implementing a complicated data structure, consider that memory in our router products is a 
finite and expensive resource. Unlike target environments of UNIX, VMS, and other demand-paged 
virtual memory systems, there is no configuration knob that allows more memory to magically 
appear.

A.7.2   Performance Resulting from Use and Abuse of the Cisco IOS 
Infrastructure

You could use the best algorithm, write the slickest code possible, and your feature could still run as 
fast as a sweating pig stuck in the Georgia mud in August. Why? More than likely, you are misusing 
the Cisco IOS primitives, and you are not being smart in how you use the following commonly 
misused Cisco IOS facilities: 

• malloc() and free()—If you find yourself frequently creating and destroying many 
fixed-sized blocks, consider creating a chunk and using the chunk manager. See the Cisco IOS 
Programmer’s Guide for more details. If you find that the chunk manager does not meet your 
needs, consider a private free list or other ways to avoid calling malloc() and free() where 
possible.

• sprintf()—Try to do as much formatting in one call as possible, rather than spreading your 
string formatting out over many small calls to sprintf(). 

• raise_interrupt_level() and reset_interrupt_level()—Disabling interrupts to 
protect against concurrent access to data structures is a poor, but sometimes unavoidable, method. 
You should disable interrupts for as little time as possible, most specifically around the very small 
areas that need to be protected against concurrent access. For instance, you do not need to disable 
interrupts, walk a linked list, unlink or delete the item in question and re-enable interrupts. All 
that needs to be protected is the actual unlinking operation. A far more preferable primitive to 
protect access in data structures shared between threads is semaphores.

• memcmp() (previously bcmp())—Using these functions to compare Ethernet, Token Ring, and 
FDDI MAC-level addresses is wasteful. There are macros that perform the required number of 
word comparisons inline. 

• Managed timers—You should generally not use managed timers to implement accounting or 
simple timestamps. Managed timers are more expensive, both in time and CPU usage, and have 
excellent applications. However, timestamps are not one of them.

In general, remember that the Cisco IOS software offers a rich set of primitives and services for you 
to use, but they are not free.

A.7.3   Instruction-level Performance
There are two areas where you can affect instruction-level performance in the Cisco IOS software 
and on the hardware used in the routers: 

• Write code that is easier for the compiler to optimize.

• Write code that is more agreeable to the CPU’s memory architecture assumptions.

A.7.3.1   Helping GCC Turn Glop into Gold
When it comes to code generation, many people think that C is the next best thing to a macro 
assembler on steroids. That might have been the case when we were all writing C on PDP-11s (for 
those of you too young to remember the PDP-11, let’s clear this up right now: the PDP-11 was the 
single best computer ever created for an assembly programmer), but it is not the case in today’s RISC 
Writing Cisco IOS Code: Style Issues A-15



 CISCO CONFIDENTIAL
architectures. Further complicating the issue is the simple fact that the Cisco IOS software contains 
so much more code in its execution paths than many, if not most, software products written in C, and 
the Cisco IOS software is by definition and market requirements an embedded, real-time application. 
A dozen wasted instructions here, a couple of dozen wasted dereferences there, and when you repeat 
this across millions of lines of code, it starts to add up.

Instruction-level optimization is the wrong thing to do at the beginning of the development cycle. 
You should “make it right, then make it fast,” and concern yourself more with algorithms and data 
structure optimization in the early part of the development cycle. Few things in the Cisco IOS source 
require instruction-level optimization beyond what the compiler will do.

To aid you in getting the most out of GCC’s optimization, consider these issues when writing code: 

• Inline functions. The best candidates for inlining are functions that are small and limit their side 
effects, and for which the call/return overhead would comprise a significant portion of their total 
execution time. Be careful, however, because inlining functions with wild abandon can quickly 
bloat the size of the resulting image. 

In general, define functions as inline only when they are small and well defined, and there is a 
compelling reason of speed to expand the functions inline.

• Repeated code. Hoist code that is repeated in both the if and else clauses out of the conditional, 
either above the conditional or below it, as appropriate. Certainly, GCC can do this, but if you do 
it, you know it is done. 

• Register declarations. Do not declare variables with the register allocation unless you have 
examined the resulting code and determined that the generated code is actually better with the 
register declaration than without it. GCC does not consider a register declaration to be imperative. 
Rather, GCC uses register declarations as a “strong hint” in the optimization phase. Also note 
that when you use a register declaration, you cannot take the address of the variable so 
declared.

• volatile keyword. When you do not want a variable promoted to a register during 
optimization, use the volatile keyword. You typically do this for variables that are changed by 
hardware interrupts behind your back. If you do not declare things like memory-mapped 
hardware-manipulated locations to be volatile, you can get some very surprising execution 
results. 

The volatile keyword also affects instruction re-ordering, particularly on RISC architectures. 
If instruction order is important to the intermediate values in an expression, the variables must be 
declared volatile.

• Multiple dereferencing. If you find that you are performing the same double-dereference (or 
triple-dereference) more than a very few times in the same function, it is likely to be more 
effective to cache the result of the first dereference in a local variable. For example, if the 
following type of pattern occurs several times in a function: 

if (idb->hwptr->status & IDB_ETHER) {...

GCC reloads a register with struct1->struct2 every time you write the above expression. In 
this case, the most effective way to code is to cache the final 32-bit value of the expression and 
use it where necessary. Even if you are dereferencing idb->hwptr several times to access 
different fields of struct2, it is more efficient to cache the value of struct2.

• This is rather esoteric, but for those portions of your code that truly must be as fast as possible, 
pay attention to whether your target CPU prefers to do branch prediction for the branches taken 
or not taken, and write your code according. Should you choose to do branch prediction, examine 
the output of the compiler to verify that you get the instruction stream you expect, and comment 
the code to indicate why the speed of the code depends on such innocuous things as the sense of 
the conditional tests.
A-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
• Bit field instructions are not terribly fast. Use them where necessary, but keep in mind that some 
of our target CPUs do not have bit field instructions. This is particularly true of the QUICC chip, 
which has an ALU that is basically a 68020 instruction set without bit field and rotate 
instructions. 

• If you are copying most or all fields of a structure from one instance of the structure to another 
instance, consider using either memcpy() or a struct copy. A struct copy of a small structure 
(32 bytes or less on 680x0 systems and 64 bytes or less on RISC systems) generates a sequence 
of inline instructions to copy the fields of the structure. For larger structures, a call to memcpy() 
or bcopy() is generated by the compiler. 

• Bit fields in C structures are one of the few features of the language that are a speed trap. If you 
are using single bit values in a structure bit field for true/false values, you can realize much better 
speed with an array of unsigned char, especially on RISC architectures. Further, you should 
never use C bit fields in data structures that are passed across the network. A C compiler is, by 
definition, free to implement bit fields in a structure any way it sees fit. The bits can be allocated 
starting at whichever end of the machine word the compiler chooses, with any padding necessary 
to the target architecture. So while the C definition of a data structure passed on the network 
might read as exactly the same on two different implementations, the code might produce very 
different results on the wire.

The advantage of using bit fields in C structures is that it is semantically cleaner and easier to 
understand the author’s intent, especially if more bits are defined in aggregate than fit in one 
machine word.

A.7.3.2   Not All Memories Are Golden
The speed with which the CPU accesses the memory in your data structures can vary widely if you 
do not pay attention to how your data is aligned and accessed. Follow these guidelines to maximize 
CPU access speed: 

• Align your data, especially structure elements, on their native boundaries. This means that 
shorts should start on any even address, longwords on addresses evenly divisible by four, and 
64-bit values (quadwords) on addresses evenly divisible by eight. On some CPUs, such as the 
680x0, failure to properly align your data results in a significant performance impact because the 
misalignment is handled by the hardware. On other CPU families, such as the MIPS 
architectures, the performance impact is even greater because the exception is handled in 
low-level software.

• Use “natural” sizes. If a target architecture accesses a 16-bit memory location faster than it 
accesses an 8-bit location, consider declaring your storage to be a 16-bit large area. You must then 
weigh this increase in size against other factors, such as cache hit ratios and cache line packing.

• If several fields of a structure are accessed during speed-critical code paths but many more that 
are not, group all the fields of the structure that are accessed in the speed-critical code path(s) 
together in the struct, even if doing so might not be as aesthetically pleasing as you would like. 
By grouping the fields together, you increase the likelihood that more of them will be pulled into 
cache memory on the first access, and you reduce the number of cache entries required to hold 
all your speed-critical fields.

• Do not misuse special memory regions. In some router architectures, there are small regions of 
specialized memory, such as shared, nonvolatile, and Flash memory. If you need to read 
something from these memory regions, do it once and cache the results in normal processor 
memory. Your code will be much faster for having done so.
Writing Cisco IOS Code: Style Issues A-17



 CISCO CONFIDENTIAL
A-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A P P E N D I X

Cisco IOS Software Organization B

 CISCO CONFIDENTIAL
B

Cisco IOS Software Organization
This appendix lists many of the subsystems in Cisco IOS Releases 11.1 and 11.2. The purpose of 
this appendix is to give you an idea of how the Cisco IOS software is organized. The information 
presented here is based on the subsystems available for use by a Cisco 2500 platform. Other 
platforms might contain additional or fewer subsystems, and will contain platform-specific code. 

For information about the contents of Cisco IOS images, see 
http://wwwin-eng/Eng/Release/subsettool/audit.

B.1   Description of the Cisco IOS Subsystems

Table B-1 through Table B - 13 list many of the subsystems in Cisco IOS Releases 11.1 and 11.2.

Table B-1 Cisco IOS LAN Protocol Subsystems 

Subsystem Description

shr_atmib2.o Address translation MIB

shr_arap.o AppleTalk Remote Access (ARA) protocol

shr_arp.o Address Resolution Protocol (AARP)

shr_atalk.o
shr_atalkmib.o
shr_atalktest.o
shr_atfast_les.o
ataurp.o (Release 11.2 only)
atcp.o (Release 11.2 only)

AppleTalk, AppleTalk fast switching, and AURP

shr_smrp.o
shr_smrptest.o
shr_atsmrp.o
at_smrpfast.o
at_smrpfast_les.o

AppleTalk Simple Multicast Routing Protocol (SMRP)

shr_atdomain.o AppleTalk domain support

shr_ateigrp.o AppleTalk Enhanced IGRP

shr_atip.o AppleTalk IP support

tfast_les.o Fast tunnel for low-end systems

shr_tunnel.o Virtual interface that acts like a point-to-point link over IP
-1



 CISCO CONFIDENTIAL
vinesfast_les.o
shr_vines.o
shr_vinesmib.o
shr_vinestest.o

Banyan VINES protocol support

shr_tarp.o Target ID for the Address Resolution Protocol (ARP)

shr_bgpmib.o
shr_bgp.o

Border Gateway Protocol (BGP) and MIB

shr_chat.o Chat script processing

shr_cls.o Cisco link services

ccp.o (Release 11.2 only) Compression Control Program

cpp.o (Release 11.2 only) Combinet Packet Protocol

dnfast_les.o
shr_decnet.o
shr_decnetmib.o

DECnet

shr_dncnv.o DECnet Phase 4-to-Phase 5 conversion

dhcp_client.o 
(shr_dhcp.o in Releas e11.1)

Dynamic Host Configuration Protocol

shr_egp.o
shr_egpmib2.o

Exterior Gateway Protocol (EGP)

shr_eigrp.o Enhanced IGRP

shr_routing.o Integrated routing subsystem

shr_mop.o Maintenance Operation Protocol (MOP) booting for DEC 
environments

shr_ftp.o File Transfer Protocol (FTP)

shr_gre.o Generic Route Encapsulation (GRE)

shr_icmpmib2.o Internet Control Message Protocol (ICMP) MIB

shr_ident.o RFC1413 Ident protocol

shr_igrp.o Interior Gateway Routing Protocol (IGRP)

sh_ip_policy.o IP policy routing

shr_ipip.o Raw IP-over-IP support

ipasm.o
ipfast.o
ipfast_les.o

IP fast switching

shr_iprouting.o Generic IP routing functions

shr_ipservices.o
shr_tcpmib2.o

Basic IP services, including the TCP driver and DNSIX

ipttcp.o TTCP command, which is used to generate TCP traffic from one 
router to another (or one router to a workstation) to measure 
network and protocol stack performance

http.o HTTP server

shr_rip.o Routing Information Protocol (RIP) for IP

Subsystem Description
B-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
shr_hpprobe.o (Release 11.2 only)
shr_ipaccount.o (Release 11.2 only)
shr_ipalias.o (Release 11.2 only)
shr_ipboot.o (Release 11.2 only)
shr_ipbootp.o (Release 11.2 only)
shr_ipcdp.o (Release 11.2 only)
shr_ipcompress.o (Release 11.2 only)
shr_ipcore.o (Release 11.2 only)
shr_ipdiag.o (Release 11.2 only)
shr_ipdns.o (Release 11.2 only)
shr_ipgdp.o (Release 11.2 only)
shr_iprarp.o (Release 11.2 only)
shr_ipudptcp.o (Release 11.2 only)
shr_tacacs.o (Release 11.2 only)
shr_udpmib2.o (Release 11.2 only)
shr_iphost.o (Release 11.1 only)

IP host functions

udp_flood_fs.0 UDP fast-switch flooding

ipnacl.o (Release 11.2 only) IP named address lists

shr_ipmib2.o
shr_ipmroutemib.o
shr_igmpmib.o
shr_ipmulticast.o
ipmfast_les.o

IP multicast

rsvp.o
rsvpmib.o

Resource Reservation Protocol and MIB

traffic_shape.o Traffic shaping routines

ipnat.o (Release 11.2 only) IP network address translation

shr_pimmib.o Protocol Independent Multicast (PIM) 

shr_ripsapmib.o
shr_novellmib.o
shr_ipxmib.o
novfast_les.o
shr_ipx.o
ipxnasi.o
ipxwan.o (Release 11.2 only)
ipxeigrp.o (Release 11.2 only)
ipxcp.o (Release 11.2 only)

Novell IPX 

shr_ipxcompression.o IPX compression

shr_ipxnhrp.o IPX Next Hop Routing Protocol (NHRP)

shr_ipxnlsp.o
shr_nlspmib.o

IPX NetWare Link Services Protocol (NLSP) and MIB

shr_isis.o
shr_isis_clns.o
shr_isis_ip.o
shr_isis_nlsp_debug.o

Intermediate System-to-Intermediate System (IS-IS) dynamic 
routing protocol

shr_eon.o EON-compatible ISO CLNS-over-IP tunneling

clnsfast_les.o
shr_clns.o
shr_clns_adj.o

ISO Connectionless Network Protocol (CLNS)

shr_lpd.o Subset of the UNIX line printer daemon (LPD) protocol

Subsystem Description
Cisco IOS Software Organization B-3



 CISCO CONFIDENTIAL
Table B-2 Cisco IOS WAN Protocol Subsystems 

shr_nrhp.o
shr_ipnhrp.o

Next Hop Routing Protocol (NHRP)

ntp_refclock.o (Release 11.2 only)
ntp_refclock_master.o (Release 11.2 
only)
ntp_refclock_pps.o (Release 11.2 only)
ntp_refclock_telsol.o (Release 11.2 
only)
shr_ntp.o (Release 11.1 only)

Network Time Protocol (NTP)

shr_ospf.o
shr_ospfmib.o

Open Systems Path First (OSPF) routing protocol and MIB

xnsfast_les.o
shr_xns.o
shr_xnsmib.o

XNS protocol

shr_griproute.o Routing Information Protocol (RIP) for XNS, Apollo Domain, and 
Ungermann-Bass

shr_apollo.o Apollo Domain

Subsystem Description

shr_atm_dxi.o ATM DXI

sr_atommib_es.o  (Release 11.2 only) AToM MIB support for end stations

shr_compress.o Generic compression

sub_callmib.o
shr_dialer.o

Dialer support for dialers attached to serial interfaces; used for 
DDR, BOD, and ISDN

shr_frmib.o
fr_fast_les.o
shr_frame.o
frame_arp.o (Release 11.2 only)
frame_svc.o (Release 11.2 only)
frame_traffic.o (Release 11.2 only)
frame_tunnel.o (Release 11.2 only)

Frame Relay

sub_isdn.o
sub_isdnmib.o

ISDN and MIB

shr_ppp.o
ipcp.o

Point-to-Point Protocol (PPP)

mlpvt.o (Release 11.2 only) Multichassis multilink PPP

shr_smds.o SMDS

shr_snapshot.o
shr_snapshotmib.o

Snapshot routing

shr_v120.o V.120 protocol over ISDN

shr_lapbmib.o
shr_pad.o
shr_x25.o
shr_x25mib.o

X.25

Subsystem Description
B-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Table B-3 Cisco IOS Bridging Subsystems 

Table B-4 Cisco IOS Communications Server Subsystems 

Subsystem Description

shr_rsrbmib.o
shr_bridge_rsrb_ui.o

Remote source-route bridging (RSRB)

fastsrb_les.o
shr_srbmib.o
srbmib.o (Release 11.2 only)
shr_bridge_sr.o
shr_bridge_srb_ui.o
srbcore.o (Release 11.2 only)

Source-route bridging (SRB

tshr_bridge_t.o
shr_bridge_t_ui.o
tbridge.o
tbridge_les.o
shr_tbmib.o
bridge_t_cmf.o (Release 11.2 only)

Transparent bridging and MIB

vpn.o (Release 11.2 only) Virtual private dial-up network

shr_vtemplate.o Virtual template interface services

Subsystem Description

shr_comm.o Communications server

shr_config_history.o Configuration history database

shr_confmanmib.o Configuration management MIB

crypto.o (Release 11.2 only)
cryptomib.o (Release 11.2 only)

Network-layer 56-bit DES encryption and MIB

exportable_crypto.o  (Release 11.2 only) Network-layer 40-bit DES encryption

shr_kerberos.o Kerberos

keyman.o Lock and ke

shr_lat.o Local-area transport (LAT)

shr_menus.o User-definable menus for accessing Cisco IOS commands

shr_modem_discovery.o Automatic recognition of modems

shr_modemcap.o Modem capabilities database

shr_pt.o
shr_pt_auto.o
shr_pt_lat.o
shr_pt_latauto.o
shr_pt_latpad.o
shr_pt_latslip.o
shr_pt_pad.o
shr_pt_padauto.o
shr_pt_padslip.o
shr_pt_padtcp.o
shr_pt_slip_ppp.o
shr_pt_tcp.o
shr_pt_tcpauto.o
shr_pt_tcplat.o
shr_pt_tcpslip.o

Protocol translation
Cisco IOS Software Organization B-5



 CISCO CONFIDENTIAL
Table B-5 Cisco IOS Utilities Subsystems 

Table B-6 Cisco IOS Driver Subsystems 

shr_radius.o Livingston’s “Radius” network authentication protocol

shr_tacacs_plus.o TACACS+

shr_tn3270.o
tn3270s.o (Release 11.2 only)
shr_tsmib.o (Release 11.2 only)

TN3270 and MIB

shr_xremote.o XRemote

Subsystem Description

shr_ifmib.o Interfaces MI

shr_des.o Data Encryption Standard (DES)

Subsystem Description

sub_pcbus.lnm.o Network Management for AccessPro ISA

sub_pcbus.o AccessPro ISA bus driver

sub_c3000.o Cisco 2500 series-specific support

sub_cd2430.o Asynchronous driver for the Cisco 2509, Cisco 2510, Cisco 2511, 
and Cisco 2 5 12 access servers

sub_hub.o Driver for Cisco 2500 series hubs

sub_brut.o Console/auxiliary port driver for Cisco 2500 series

shr_ether.o
shr_ethermib.o

Generic Ethernet driver

sub_lance.o Platform-specific Ethernet driver

shr_fastswitch.o Generic fast switching

shr_flash_les_mib.o Low-end Flash MIB

shr_flashmib.o Flash MIB

sub_bri.o ISDN BRI driver

shr_lex.o LAN Extender driver

sub_lex_platform.o LAN Extender platform support

lex_ncp.o (Release 11.2 only) LAN Extender network control program

shr_serial.o General serial driver

sub_les_serial.o Low-end serial driver

sub_hd64570.o Platform-specific serial driver

sub_rptrmib.o Repeater MIB

shr_tring.o
shr_trmib.o

Generic Token Ring driver

sub_tms380.o Token Ring platform-specific support

sub_partner.o Miscellaneous drivers for OEM platforms

Subsystem Description
B-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Table B-7 Cisco IOS Network Management Subsystems 

Table B-8 Cisco IOS VLAN Subsystems 

Table B-9 Cisco IOS Kernel Subsystems 

Table B-10 Cisco IOS IBM Subsystems 

Subsystem Description

shr_cdp.o
shr_cdpmib.o
cdp_ncp.o (Release 11.2 only)

Cisco Discovery Protocol (CDP)

shr_chassismib.o Physical representation of the platform

entity.o (Release 11.2 only) Physical and logical managed entities

shr_queuemib.o Queue MIB

shr_rmon.o
shr_rmonlite.o

Remote monitoring 

sr_rs232mib.o
sr_mempoolmib.o

SNMPv2 bilingual agent code

shr_syslog_history.o
shr_syslogmib.o

Syslog messages

Subsystem Description

vlan_les.o
ieee_vlan.o
isl_vlan.o
shr_vlan.o

Virtual LAN

Subsystem Description

shr_core.o (Release 11.2 only)
sub_core_platform.o (Release 11.2 
only)
shr_ukernel.o (Release 11.2 only)
sub_ukernel_platform.o (Release 11.2 
only)
sub_kernel.o (Release 11.1 only)

Cisco IOS kernel. For Release 11.2, the kernel is divided in 
platform-independent and platform-dependent portions. 
shr_ukernel.o contains the essentials necessary for the 
scheduler to operate, including memory management, list support, 
timer support, subsystem and registry support, and basic clock 
support. shr_core.o contains other things that were in 
sub_kernel.o, including packet buffer support, authentication, 
common access list support, async/TTY interface/modem support, 
login, compression, host name support, error logging, the printf 
routine, priority queueing, and virtual interfaces.

Subsystem Description

shr_dlur.o
shr_appn.o
shr_appnmib.o
shr_appnutil.o

Advanced Peer-to-Peer Networking (APPN)

sub_bsc.o Bisync

shr_bstun.o (Release 11.2 only)
shr_bstunmib.o (Release 11.2 only)
sub_bstun.o (Release 11.1 only)
sub_bstunmib.o (Release 11.1 only)

Bisync serial tunnel
Cisco IOS Software Organization B-7



 CISCO CONFIDENTIAL
Table B-11 Cisco IOS Library Utility Subsystems 

shr_dlcsw.o
shr_dlc_base.o
shr_vdlc.o (Release 11.2 only)

CLSI 

fastdlsw_les.o
shr_dlsw.o
sr_cdlswmib.o

Data Link Switching (DLSw) and MIB

shr_dspu_ui.o
shr_dspumib.o

Downstream PU (DSPU)

shr_ibmnm.o IBM Network Management protocol

shr_lack.o Local Acknowledgment

shr_lanmgr.o
shr_lanmg_ui.o

Token Ring LAN manager

shr_llc2.o LLC2

ncia.o (Release 11.2 only)
ncia_ui.o (Release 11.2 only)

Native Client Interface Architecture (NCIA)

shr_netbios.o
netbios_as.o
shr_netbios_ui.o

NetBIOS over LLC2 and Novell IPX

shr_netbios_acl.o
shr_netbios_acl_i.o
ibuint.o (Release 11.2 only)

NetBIOS over LLC2 and Novell IPX access lists

shr_qllc.o Qualified Logical Link Control (QLLC)

rtt_dspu.o (Release 11.2 only)
rtt_mon.o (Release 11.2 only)
rtt_monmib.o (Release 11.2 only)
rtt_snanm.o (Release 11.2 only)

Response time reporter

shr_sdlc.o
shr_sdlc.ui.o

Serial Data Link Control (SDLC)

shr_sdllc.o
shr_sdllcmib.o

SDLC media translation

shr_sna.o
shr_sna_pu.o

SNA

shr_snanm.o SNA network management

shr_snasdlcmib.o SNA SDLC MIB

shr_stunmib.o
shr_stun.o
shr_stun_ui.o

Serial Tunnel (STUN)

Subsystem Description

access_expr.o Boolean expression analyzer

avl.o AVL trees

fsm.o General-purpose finite state machine driver

inet_aton.o Convert an Internet address to a binary address

iso_chksum.o ISO checksum routines

Subsystem Description
B-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Table B-12 Cisco IOS ANSI Library Subsystems (Release 11.2 only)

itemlist.o Placeholder for files to be added in Release 11.1

libgcc_math.o 64-bit math support culled from GCC libgcc2

md5.o MD5 source code from RFC 1321

md5_crypt.o One-way cipher function based on MD5

memmove.o ANSI/POSIX-compatible memory move routine

msg_radix.o Message file for radix trees

msg_util.o Message definitions from utility routines

nsap.o NSAP address definitions

nsap_filter.o Filter facility used by CLNS and ATM

peer_util.o (Release 11.1 only) Common utility routines for DLSw, RSRB, and STUN peers

qsort.o Quicksort routines

radix.o Radix tree manipulation package

random.o
random_fill.o

Random number generator routines

range.o Routines for range arithmetic

regexp.o
regexp_access.o
regsub.o

Routines for regular expressions

rif_util.o (Release 11.1 only) RIF utilities

sna_util.o (Release 11.1 only) SNA PIU manipulation utilities

sorted_array.o Manipulation of sorted arrays

string.o (Release 11.1 only) Platform-independent standard C library

tree.o Red-Black trees

wavl.o Wrapper functions for multithreaded AVL trees

Subsystem Description

_tolower.o Translate uppercase characters into lowercase 

_touuper.o Translate lowercase characters into uppercase 

abs.o Integer absolute value

atoi.o ASCII-to-integer conversion routine

atol.o ASCII-to-integer conversion routine

calloc.o Allocate and zero memory

div.o Divide two integers

errno.o Provide errno

isalnum.o Determine whether argument is an alphanumeric character

isalpha.o Determine whether argument is an alphabetic character

isascii.o Determine whether character is in an ASCII range

iscntrl.o Determine whether argument is a control character

isdigit.o Determine whether argument is an ASCII decimal digit

Subsystem Description
Cisco IOS Software Organization B-9



 CISCO CONFIDENTIAL
Table B-13 Cisco IOS Cisco Library Subsystems (Release 11.2 only)

isgraph.o Determine whether argument is a printable character (except space)

islower.o Determine whether argument is a lowercase ASCII character

isprint.o Determine whether argument is a printable character

ispunct.o Determine whether argument is a punctuation character

isspace.o Determine whether the argument is a white space character

isupper.o Determine whether argument is an uppercase character

isxdigit.o Determine whether argument is a hexadecimal digit

labs.o Integer absolute value

ldiv.o Divide two long integers

memchr.o Scan memory for a byte

memcmp.o Memory comparison routine

memcpy.o Copy nonoverlapping memory areas

memset.o Set the value of a block of memory

reent_init.o Initialize a reentrancy block

strcat.o Concatenate two nonoverlapping strings

strchr.o Search for a character in a string

strcmp.o Compare two strings

strcoll.o Compare two strings using the current locale

strcpy.o Copy a string

strcspn.o Search a string for characters that are not in the second string

strerror.o Convert error number to a string

strlen.o Return string length

strncat.o Copy a counted nonoverlapping string

strncmp.o Character string comparison routine

strncpy.o Counted string copy

strpbrk.o Find characters in a string

strrchr.o Reverse search for characters in a string

strstr.o Find string segment

strtol.o Convert a number string to a long

strtoul.o Convert an unsigned number string to an unsigned long

toascii.o Force integers into ASCII range

tolower.o Translate uppercase characters into lowercase 

toupper.o Translate lowercase characters into uppercase

wctomb.o Convert a wide character string to a multibyte character string

Subsystem Description

atohex.o Convert two ASCII characters into a hexadecimal byte

atoo.o Convert an ASCII value to octal

Subsystem Description
B-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
B.2   Description of the IP Subsystems

This section details the object files in the following IP routing protocol subsystems f or CiscoIOS 
Release 11.1.

• IP Host Subsystem

• IP Routing Subsystem

• IP Services Subsystem

B.2.1   IP Host Subsystem
The IP host subsystem contains object files for the following IP functions:

• Traceroute

• ARP and reverse ARP

• HProbe

badbdc.o Return nonzero if BCD string has a bad entry

bcdtochar.o Convert BCD string to a character

bcmp_generic.o Byte comparison routine

bzero.o Zero a block of memory

chartohex.o Convert a character to a hexadecimal nibble

cmpid.o Compare two byte strings for a specified number of bytes

concat.o Concatenate two strings to create a third string

deblank.o Remove leading white space

firstbit.o Return the bit number of the first bit set from left to right

firstrbit.o  Return the bit number of the first bit set from right to left

ls_string.o Determine whether string is an ASCII string

lcmp.o Long compare routine

lowercase.o Convert a string to lowercase

null.o Check for NULL or empty string

num_bits.o Return the number of bits set in an integer

sstrncat.o Cisco safe version of strncat

sstrncpy.o Cisco safe version of strncpy

strcasecmp.o Case-insensitive character string comparison

string_getnext.o Get a buffer into which to write a short string

strncasecmp.o Case-insensitive character string comparison

sys_ebcdic_to_ascii.o Convert from EBCDIC to ASCII

termchar.o Determine whether character is a space

tohexchar.o Location for a table of hexadecimal digits

uppercase.o Convert a string to uppercase

Subsystem Description
Cisco IOS Software Organization B-11



 CISCO CONFIDENTIAL
• BOOTP

• GDP/IRDP

• TFTP

• TACACS

• TCP core

• TCP compression

• IP support

• Accounting

• Access lists

• rcp

• rsh

• Telnet

• SNMP

• ICMP

• System error logging

• Domain service support

Table B-14 IP Host Subsystem Object Files

Object File Description

ipaddress.o 
ip_init.o 
ipsupport.o
ip_debug.o
ip_setup.o
ip_test.o
msg_ip.o
ipname.o

Basic nonrouting core IP services

syslog.o Message transmission to syslog daemon

domain.o Domain service support

ip_media.o Media-dependent IP routines

ipinput.o IP input and gateway processing

ipparse.o
ip_actions.o
ip_chain.o

IP command-line parsing

ipoptions.o
msg_ipsecure.o
ipoptparse.o

IP security options

icmp.o
icmpping.o

Internet Control Message Protocol (ICMP)

path.o IP routing using ICMP redirects

iptrace.o Traceroute
B-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
ip_arp.o
rarp.o

ARP and Reverse ARP

probe.o
probe_chain.o

HP Probe (Hewlett-Packard’s version of ARP)

bootp.o BOOTP boot code

gdpclient.o
gdpclient_chain.o
gdp.o
gdp_chain.o

Gateway Discovery Protocol (GDP)

tftp.o
tftp_server.o
tftp_chain.o
tftp_debug.o
tftp_util.o

Trivial File Transfer Protocol (TFTP)

tacacs.o
xtacacs.o
tacacs_chain.o
msg_tacacs.o

TACACS

ipaccess1.o
ipaccount.o
ipaccount_chain.o

IP accounting

tcpfast.o
tcpinput.o
tcpoutput.o
tcpservice.o
tcpsupport.o
tcptop.o
ttcp.o
tcpvty.o
tcp_chain.o
tcp_debug.o
msg_tcp.o
tuba.o
ip_tuba.o
tuba_default.o
udp.o
udp_debug.o

TCP core services

tcpcompress.o
tcpcompress_chain.o

TCP compression

rcp.o
rsh.o
msg_rcmd.o

Remote copy (rcp) and remote shell (rsh)

telnet.o
telnet_debug.o
msg_telnet.o

Telnet

ipaccess2.o
ipaccess_chain.o

IP access lists

ipalias.o
ipalias_chain.o

IP aliases

ip_snmp.o
msg_snmp.o

SNMP support

Object File Description
Cisco IOS Software Organization B-13



 CISCO CONFIDENTIAL
B.2.2   IP Routing Subsystem
The IP routing subsystem contains object files for the following IP functions:

• Common IP routing routines

• Next Hop Routing Protocol (NHRP)

• IGRP

• Radix trees

• ICMP router discovery

• Hot standby

• IP community list

• IP mobility

Table B-15 Cisco IOS IP Routing Subsystem Object Files 

Object File Description

iprouting_init.o IP routing protocol initialization

route1.o
route2.o
route3.o
ipstatic.o
ipfast.o
ipfast_chain.o
route_map.o
iprouting_chain.o
iprouting_setup.o
iprouting_debug.o
msg_iproute.o
msg_ipfast.o
iprouting_actions.o
ip_routing.o

Common IP routing routines

ipigrp2.o IP IGRP

radix.o
ipradix.o
msg_radix.o

Radix trees

irdp.o
irdp_chain.o

ICMP router discovery protocol

community.o IP community list-related functions

standby.o
msg_standby.o

Host Standby Routing Protocol (HSRP)

ipmobile.o
ipmobile_chain.o

IP host mobility protocol

nhrp.o
nhrp_cache.o
nhrp_vc.o
msg_nhrp.o
ipnhrp.o

Next Hop Routing Protocol (NHRP)
B-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
B.2.3   IP Services Subsystem
The IP services subsystem contains object files for the following IP functions:

• TCP driver

• DNSIX

Table B-16 Cisco IOS IP Services Subsystem Object Files 

B.3   Description of the Cisco IOS Kernel Subsystems

This section details the object files in the subsystems for the following Cisco IOS kernel components 
for Cisco IOS Release 11.1:

• Scheduler Subsystem

• Chain Subsystem

• Media Subsystem

• Parser Subsystem

• Core TTY Subsystem

• Core Router Subsystem

• Core Memory Management, Logging, and Print Subsystem

• Core Time Services and Timer Subsystem

• Core Modular Subsystem

• Miscellaneous Subsystems

B.3.1   Scheduler Subsystem
Table B-17 lists the object files in the Cisco IOS scheduler subsystem.

Table B-17 Scheduler Subsystem Object Files 

Object File Description

tcpdriver.o TCP driver

dmdp.o
dnsix_nat.o
dnsix_chain.o
dnsix_debug.o

DNSIX

Object File Description

sched.o
sched_compatibility.o
sched_test.o

Scheduler
Cisco IOS Software Organization B-15



 CISCO CONFIDENTIAL
B.3.2   Chain Subsystem
Table B-18 lists the object files in the Cisco IOS chain subsystem, which contains parse chains and 
code for Cisco IOS diagnostic functions.

Table B-18 Chain Subsystem Object Files 

B.3.3   Media Subsystem
Table B-19 lists the object files in the media subsystem.

Table B-19 Media Subsystem Object Files 

B.3.4   Parser Subsystem
Table B-20 lists the object files in the parser and EXEC subsystem.

Table B-20 Parser Subsystem Object Files 

Object File Description

free_chain.o Parse chains and code for memory pool commands

buffers_chain.o Parse chains and code for buffer pool commands

registry_chain Parse chains and code for registry commands (in registries.o)

region_chain.o Parse chains and code for memory region commands

sched_chain.o Parse chains and code for scheduler commands

list_chain.o Parse chains and code for list manager support

subsys_chain.o Parse chains and code for subsystem support

Object File Description

ieee.o IEEE 802.x definitions

msg_datalink.o Message file for generic datalink facility

static_map.o
static_mapchain.o

Support for generic static maps

Object File Description

chain.o C file into which the token macros, action routines, and token chains 
are built

command1.o
command2.o
command_chain.o

EXEC command support

config.o Configuration commands

parser_util.o Utility functions for the parser

parser.o Parser-specific routines

parser_debug.o Debugging routines for the parser

actions.o Action functions for parse tokens

ctype.o Character types
B-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
B.3.5   Core TTY Subsystem
Table B-21 lists the object files in the Cisco IOS core TTY subsystem.

Table B-21 Core TTY Subsystem Object Files 

B.3.6   Core Router Subsystem
Table B-22 lists the object files in the core router subsystem.

Table B-22 Core Router Subsystem Object Files 

latgroup.o
setup.o

LAT group code handling

exec.o
exec_chain.o

EXEC functions

debug.o Debug command support

msg_parser.o Parser error messages

alias.o Command alias functions

mode.o Parser mode functions

privilege.o Parser privilege functions

Object File Description

aaa.o
aaa_acct.o
aaa_chain.o
keyman.o

System authentication, authorization, and accounting functions

connect.o
connect_chain.o

Connection management services

hostname.o Host command support

async.o
async_chain.o
async_debug.o

Asynchronous port support

login.o
login_chain.o

Old system authentication (replaced by aaa object files)

modemsupport.o Modem support

monitor1.o ROM monitor support

ttycon.o
ttysrv.o
ttystatem.o

Terminal services

Object File Description

access.o
access_chain.o

Common access list support

if_groups.o Interface groups

if_vidb.o Virtual IDB support

Object File Description
Cisco IOS Software Organization B-17



 CISCO CONFIDENTIAL
B.3.7   Core Memory Management, Logging, and Print Subsystem
Table B-23 lists the object files in the core memory management, logging, and print subsystem.

Table B-23 Core Memory Management, Logging, and Print Subsystem Object Files 

B.3.8   Core Time Services and Timer Subsystem
Table B-24 lists the object files in the core time services and timer subsystem.

Table B-24 Core Time Services and Timer Subsystem Object Files 

interface.o
interface_api.o

Functions for manipulating software and hardware IDB structures

linkdown_event.o Ethernet, Token Ring, and HDLC link-down handling for SN
network management

loopback.o Support for a virtual interface that acts like a loopback interface

msg_clear.o Message file for clear commands

msg_lineproto.o Message file for line protocol commands

network.o
network_debug.o

Generic network support, including keepalives, hold queue 
management, interface commands and IDB commands

pak_api.o Packet interface API

priority.o
priority_chain.o

Priority queueing

trace.o Support for trace command

compress_lzw.o
config_compress.o

Compression support

Object File Description

buffers.o
chunk.o

Buffer management support

element.o
free.o

Memory management support

logger.o
logger_chain.o

System logging support

print.o
printf.o

System print services

region.o Region management services

Object File Description

clock.o
clock_guts.o
clock_util.o

Basic system clock and tim support routines

Object File Description
B-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
B.3.9   Core Modular Subsystem
Table B-25 lists the object files in the core modular subsystem.

Table B-25 Core Modular Subsystem Object Files 

B.3.10   Miscellaneous Subsystems
Table B-26 lists the object files in miscellaneous core subsystems.

Table B-26 Miscellaneous Core Subsystem Object Files 

mgd_timers.o
time_utils.o
timer.o
timer_chain.o

Timer support

Object File Description

msg_subsys.o
registry.o
registry_debug.o
subsys.o

Registry and subsystem support

Object File Description

address.o Functions for manipulating addrtype and hwaddrtype address 
objects

asm.o Generic assembler support

boot.o
coverage_analyze.o

Network configuration and loading support

delay_table.o Definitions for the calibration delay loops

init.o CPU-independent system initialization functions

list.o List management support

msg_system.o System error messages

name.o Protocol-independent host name and address lookup

nv_common.o System-independent support for nonvolatile configuration memory 
(NVRAM)

os_debug.o General Cisco IOS debugging routines

parse_util.o Useful parse tables such and those for protocol addresses and source 
files

platform.o Platform-specific interrupt variables

process.o Scheduler primitives for process manipulation

profile.o CPU profiling support

queue.o Singly linked list support

reload.o Scheduled reload and message-printing support

Object File Description
Cisco IOS Software Organization B-19



 CISCO CONFIDENTIAL
service.o Support for various services such as finger, line number, PAD, and 
Telnet

signal.o Per-thread signal support

sr_core.o SNMPv1 and SNMPv2 bilingual agent code

stacks.o
stacks_68.o

Per-process stack creation, manipulation, and monitoring routines

sum.o Checksum support

util.o Miscellaneous utility routines, including time-related services and 
case conversion

Object File Description
B-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A P P E N D I X

CPU Profiling C

 CISCO CONFIDENTIAL
C

CPU Profiling 
C.1   Overview: CPU Profiling

This chapter describes a low-overhead method of CPU profiling, which allows you to determine 
what the CPU spends its time doing. CPU profiling is quite useful during code development to help 
focus attention on the areas that require optimization. It is also useful in the field and the lab to help 
track down performance problems. 

The method of CPU profiling described in this appendix consists of two parts: sampling the CPU 
and creating a graph of CPU usage. First, this method samples the location of the processor every 
4 milliseconds (2 50times per second). Each one of these time increments is referred to as a tick. The 
sampling result is a histogram of code coverage. Because the sampling is done from the 
nonmaskable interrupt (NMI), the profiler tracks the execution of interrupt routines and tracks within 
sections of code where interrupts have been excluded.

Second, a postprocessing program takes the profile data and a symbol table and produces a graph of 
CPU usage along with a ranking of the most processor-intensive modules and procedures.

C.2   How CPU Profiling Works

C.2.1   Define Profile Blocks
To profile a section of code, you define one or more profile blocks. A profile block is a block that 
specifies an address range and a granularity. The address range specifies the range of code to be 
profiled. You determine the range manually, usually by looking it up in the symbol table. The 
granularity specifies the fineness of the profile, down to single instructions. The finer the granularity, 
the more memory the profiler needs in order to run. 

C.2.2   Profile Block Bins
Each profile block is represented by a set of bins. The number of bins depends on the size of the 
block and its granularity. When a CPU location is sampled, if it lies within a profile block, the 
corresponding bin is incremented. 

Profile blocks can overlap. If the CPU is running in a location that lies within multiple profile blocks, 
the appropriate bin for each block is incremented.
-1



 CISCO CONFIDENTIAL
C.2.3   Tracking Tic
The profiler keeps track of the total number of ticks, regardless of whether the CPU is caught in a 
profile block. This allows the postprocessor to calculate absolute CPU percentages, regardless of 
how much of the code is being profiled.

C.2.4   Overhead
The overhead for CPU profiling is generally minimal. If CPU profiling is disabled, the cost of the 
profiling system is the cost of a single compare instruction in the NMI thread. If CPU profiling is 
enabled, it requires a single procedure call and roughly 20 instructions (on a 680x0 processor) in the 
NMI thread per profile block. The overhead increases significantly if you run CPU profiling in 
CPUHOG mode, which is described in the section “Special Modes.” 

Each profile bin requires 4 bytes of memory. To determine the number of bins required to support a 
profile block, divide the block size (end size minus start size) by the granularity.

C.2.5   Special Modes
 Normally, CPU profiling runs continuously. However, it can also run in the following special modes:

• Task mode. In this mode, the profiler counts a CPU tick only if one of a particular set of processes 
is running. One use of this mode is to determine which process is spending excessive time in a 
particular portion of common code. If you do not use task mode in this case, the profiler reports 
only that a procedure is called a lot, but does not report who the caller is. 

• Interrupt mode. This mode is similar to task mode, but it counts ticks only if interrupts are being 
excluded to some degree, either because an interrupt routine is running or because interrupts are 
being temporarily excluded by a process. You can run task and interrupt modes simultaneously. 

• CPUHOG mode. This mode is useful for tracking down processes that use excessive amounts of 
CPU. When the process scheduler detects that a process has held the CPU for an unreasonable 
length of time (currently the default is 2 seconds), the scheduler declares a CPUHOG event. 
CPUHOG mode zeros all profile bins each time a process is given control and stops profiling 
when a CPUHOG condition is detected. CPUHOG mode provides a snapshot of where the CPU 
was spending its time when the hogging process was running. 

Note CPUHOG mode incurs significant overhead because the blocks are zeroed before each 
process is invoked. Keep the number and size of the profile blocks to a minimum, or you will 
bring the system to its knees.

You can run CPUHOG and task modes simultaneously.

C.3   Caveats about Using CPU Profiling

Nothing is perfect in this universe, and the CPU profiler is definitely less than perfect. Do not blindly 
accept what it tells you. You need to understand how it determines what it tells you.

The profiler is stochastic in nature. Although 250 samples per second might seem like a lot, the 
system can do a lot in 4 milliseconds. In general, the longer you collect data, the more accurate the 
profiling will be.
C-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
The profiler’s sample is biased, which might cause problems. In particular, the profiler is 
synchronized with the timer system. For instance, if a process is waiting on a sleeping timer, the 
profiler is guaranteed never to catch the CPU in that process unless the system is so loaded that the 
process latency is at least 4 milliseconds. However, if you are running the profiler to determine why 
a system is extremely loaded, the CPU profiler will generally catch the perpetrator.

If you use a granularity larger than one instruction, the postprocessor cannot accurately resolve 
module and procedure boundaries because a single bin can span a boundary. To avoid this problem, 
sample at a fine granularity over a small range. It might take several profiling runs to do this—first 
profile at coarse granularity over a wide range, then zoom into a finer granularity.   

C.4   Use the CPU Profiler

To use the CPU profiler, follow these steps: 

Step Configure the profiler to capture the data that you want. Specify a mode appropriate to 
the problem you are trying to solve. 

Step After you have captured the data, use Telnet to connect to the system and direct the output 
of show profile terse to a file on a UNIX system. Do not attempt to do this via the console 
port. The console port is slow and does not obey flow control, so data will be lost. Be 
aware that show profile terse disables automore() processing, so once the profile data 
starts to flow it will not stop until it has all been dumped.

Step Pass the captured file, along with a symbol table matching the image running in the 
system, to the postprocessing program. 

Step Scratch your head and mutter. 

Step Repeat Ste p1 through Step 4.

C.5   Configure the Profiler

Most commands for running the CPU profiler are EXEC commands. However, you can issue the 
command that defines profile blocks by EXEC or you can include it in your configuration file. 
Including it in a file is handy for tracking problems that are hard to reproduce. 

All the CPU profiler commands are hidden.

C.5.1   Create a Profile Block and Enable Profiling
To create a profile block and enable profiling, use the profile EXEC command. To delete a profile 
block, use the no form of this command.

profile start end increment
no profile start end increment 

start is the starting address and end is the ending address of an address range that specifies the range 
of code to be profiled. You determine the range manually, usually by looking it up in the symbol 
table. Specify the address as hexadecimal numbers without the leading 0x.
CPU Profiling C-3



 CISCO CONFIDENTIAL
increment specifies the granularity of the profiling. The granularity specifies the fineness of the 
profile, down to single instructions. The finer the granularity, the more memory the profiler needs in 
order to run. An increment of two on a 680x0-based machine or four on an R4000-based machine 
provides per-instruction granularity. Specify the granularity as hexadecimal numbers without the 
leading 0x.

Creating a profile block enables profiling, and the bins start to increment immediately.

By default, the CPU profiler is disabled.

C.5.2   Delete a Profile Bloc
To delete a profile block, use one of the following EXEC commands: 

no profile start end increment 

unprofile {start end increment | all}

C.5.3   Stop Profiling
To stop CPU profiling, use the profile stop EXEC command: 

profile stop 

When profiling stops, all data in the profile bins is preserved.

C.5.4   Restart Profiling
To restart CPU profiling after you have stopped it with the profile stop command, use the profile 
start EXEC command: 

profile start 

When profiling restarts, all new data is appended to that in the existing profile bins.

C.5.5   Zero Profile Blocks
To zero all profile blocks, use the clear profile EXEC command: 

clear profile 

C.5.6   Enable Task and Interrupt Modes
To enable task and interrupt modes, use the profile task EXEC command: 

profile task [interrupt] [pid1] [pid2] ... [pid10] 

The parameters pid1 through pid10 are the process IDs shown in the show process command.

Executing the profile task command does not affect the status of the profiler, that is, whether it is 
running or stopped.

C.5.7   Disable Task and Interrupt Modes
To disable task and interrupt modes, use the unprofile task EXEC command: 

unprofile task 
C-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Executing the unprofile task command does not affect the status of the profiler, that is, whether it 
is running or stopped.

C.5.8   Enable CPUHOG Profiling
To enable CPUHOG mode, use the profile hogs EXEC command: 

profile hogs 

This command enables profiling, clearing all bins before executing each process. Profiling is halted 
when the first CPUHOG event occurs, effectively executes a profile stop command immediately 
after the CPUHOG condition is detected.

To restart the profile in CPUHOG mode, issue another profile hogs command. 

C.5.9   Display Profiling Information
To display CPU profiling information, use the show profile EXEC command:

   show profile [detail | terse] 

Specify the detail argument to format the contents of the profile bins nicely. This formatting is of 
dubious value. Specify the terse argument to format the contents of the bins in a form suitable for 
postprocessing. The show profile terse does not obey automore processing, so use this command 
only when you really mean it.

C.6   Process the Profiler Output

The postprocessing program, profile, reads CPU profiling statistics and formats them in a 
reasonably useful, albeit crude, fashion. It is currently located in the /csc/tools/profile 
directory. This directory will change when we find a good home for the program. 

To invoke the postprocessing program, use the profile command:

    profile symbol-file data-file [magnification [width]] 

symbol-file is the symbol table file that corresponds to the image running in the system. 

data-file contains the captured output of the show profile terse command. The file may contain the 
extraneous noise that is unavoidable when capturing a terminal session. The postprocessor 
automatically finds the data it needs.

magnification is the magnification factor for the histogram. The default is 1, which means that the 
histogram is scaled such that a histogram line that fills the width of the screen is equal to 100% CPU 
load. A magnification of 2 means that the screen width corresponds to 50% CPU load, and so on. A 
magnification value of about 10 is usually a good value to start with when examining histogram data.

width is the screen width. The default is 80 columns.

The profile program first produces an annotated histogram of CPU utilization, scaled according 
to the selected magnification and screen width. Long lines are truncated, and --> is added to the end 
of truncated lines. Lines of zero length line are not displayed. This means that as you turn up the 
magnification, more and more lines appear in the histogram.

The histogram is annotated with module and procedure names. If the granularity is so coarse that a 
profile block crosses procedure boundaries, the first procedure is displayed before the histogram 
line, and each of the others follows the histogram line. If the block crosses module boundaries, the 
CPU Profiling C-5



 CISCO CONFIDENTIAL
same effect occurs. However, if a block completely subsumes a module, none of the component 
procedures are listed. Procedure names include their offset into their parent module, making it easy 
to correlate the histogram with an object listing.

After the histogram, the profile program lists the top 25 modules and 100 procedures, in terms of 
CPU utilization, along with their utilization percentage. If a block crosses procedure or module 
boundaries, all CPU use in the block is charged to the first procedure or module.

The profiling support allows multiple blocks—and even overlapping blocks—to be profiled 
simultaneously. The output is produced for each block separately. CPU percentages are absolute. 
Even if only a small section of the system is profiled, the percentages reflect total CPU utilization.

The profile program is most useful when analyzing a narrow range of code at very fine granularity
A block resolution of 2 bytes allows you to have instruction-by-instruction analysis capabilities, but 
this obviously requires lots of memory on the router

A reasonable alternative is to run one block at fairly coarse granularity (say, 256 bytes) covering the 
whole system, then focus in on the trouble spots. 
C-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A P P E N D I X

Older Version of the Scheduler D

 CISCO CONFIDENTIAL
D

Older Version of the Scheduler
With Cisco IOS Release 11.0, the scheduler was significantly redesigned. However, elements of the 
previous scheduler design—especially, how the scheduler processes queues—are still supported in 
releases prior to Release 11.0. These elements of the older scheduler design have been eliminated 
from Releas e11.3 of the Cisco IOS code. 

This chapter describes the features and API functions that were peculiar to the scheduler prior to 
Release 11.0. You should use these features and functions only when maintaining existing Cisc oIOS 
code in releases prior to Release 11.0. When writing code for Cisco IOS Releases 11.0 and later, you 
should use the features and functions described in the “Scheduler” chapter in this manual. 

When it is necessary to compare the two versions of the scheduler, the redesigned code is referred 
to as the new scheduler and the previous scheduler design is referred to as the old scheduler

This chapter describes only those portions of the old scheduler that differ from the new scheduler; it 
does not provide a complete description of the old scheduler. For this, you must use this chapter in 
conjunction with the “Scheduler” chapter in this manual.

D.1   How a Process Stops

In the new scheduler, a process stops executing by killing itself. The main routine of a process must 
explicitly call the process_kill() function; it cannot just execute a return statement. The latter 
is considered an error condition and is protected against. When processes are no longer needed—for 
example, when a protocol is unconfigured—they should clean up after themselves and exit.

Many processes written with older versions of the scheduler code do not exit when they are no longer 
needed and thus waste system resources. These older processes are the exception, not the norm.

D.2   Queues and Process Priorities

D.2.1   Scheduler Queues
In addition to the ready, idle and dead queues, Releases 11.0, 11.1, and 11.2 of the Cisco IOS 
software supports a fourth type of queue, the compatibility queue, for compatibility with the old 
scheduler. Compatibility queues are similar to the new scheduler’s ready queues. 
-1



 CISCO CONFIDENTIAL
D.2.1.1   Comparison of New and Old Scheduler Queues
Figur eD-1 compares the new scheduler queues to the old scheduler queues. The dotted line above 
the idle queue shows that some of the items on the idle queue are also threaded onto a list. This is 
the list of items whose wakeup reasons include or consist solely of a timer expiration.

Figure D-1 New and Old Scheduler Queues

D.2.1.2   Compatibility Queues
Compatibility queues were used by the old scheduler. These queues are available in Releases 11.0, 
11.1, and 11.2 for backward compatibility only.

A compatibility queue is for processes that may be ready to run, but that may also be waiting for an 
arbitrary event to occur. This arbitrary event is detected by a code fragment that is executed within 
the scheduler context once for every pass of the queue. 

Compatibility queues can handle processes of high, medium, and low priority. They do not provide 
a critical-priority queue.

D.2.1.3   Idle Queue
The idle queue is for processes that are waiting for an event to occur before they can execute. In the 
old scheduler model, the scheduler performed background polling to determine whether processes 
needed to be awakened. As an example, the VINES process polls the queue at every pass of the 
scheduler

D.2.2   Operation of Scheduler Queues 
For Release 11.0, 11.1, and 11.2, which have both the old and new schedulers, the old and new 
scheduler queues are processed in parallel. The new scheduler is similar to the old model. In both 
models, the high-priority queues (and, for the new scheduler, the critical-priority queues) are 
processed multiple times for each pass at the medium- and low-priority queues.

S
37

02

Compatibility
queues

Ready
queues

Old scheduler Current scheduler

High

Medium

Low

High

Medium

Low

Critical

Idle queue

Dead queue
D-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
D.2.2.1   Overall Scheduler Queue Operation
The overall scheduler queue operation is as follows. Fi gureD-2 illustrates this operation. 

1 Run each process in the critical-priority list.

2 Run each process in the high-priority list.

3 Run each process in the medium-priority list.

4 Possibly run each process in the low-priority list.

5 Wake sleeping processes. All processes are threaded via managed timers. The scheduler checks 
the parent timer for expiration time and moves expired processes to the appropriate run queues.

6 Perform housekeeping operations. These include computing CPU loads and busy times, 
performing postmortem analysis on processes, performing “scheduler-interval” processing, and 
spinning a random-number generator. 

Figure D-2 Overall Scheduler Queue Operation 

No

S
37

84

Any 
medium

processes
to execute?

Run medium queue

No

Yes

Run high queue

Run critical queue

Is
it time

anyway?

Perform
housekeeping

Wake sleepers

Run low queue

Yes
Older Version of the Scheduler D-3



 CISCO CONFIDENTIAL
D.2.2.2   Critical-Priority Scheduler Queue Operation
Processes on critical-priority queue are handled by the scheduler immediately, as illustrated in 
Figur eD-3. 

Figure D-3 Critical-Priority Scheduler Queue Operation 

D.2.2.3   High-Priority Scheduler Queue Operation
The operation of the high-priority queue is as follows. Figur eD-4 illustrates this operation. 

Check the Ready Queues
1 For each process in the list:

— Run the process.

— Run each process in the critical-priority list.

2 Wake sleeping processes.

Check the Compatibility Queues
3 Test the “activatehigh” flag. 

4 For each process in the list:

— Test if the process is waiting for an event.

— Run the process.

— Run each process in the critical-priority list.

5 Wake sleeping processes.

No

S
37

83

Is
ready
queue
empty?

End 
of 

list?

Yes

Run process

Done

No

Yes
D-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Figure D-4 High-Priority Scheduler Queue Operation 

No

S
37

85

Is
ready
queue
empty?

End 
of 

list?

Run process

End 
of 

list?

"Activatehigh"
signaled?

Yes

Yes

Run process

Run critical queue

Run critical queue

Is
compatibility

queue
empty?

Done

Wake sleepers

Yes

No

Is
process
 ready?

Yes

Any
compatibility
processes

run?

Wake sleepers

No

No

No

No

No

Yes

Yes

Yes
Older Version of the Scheduler D-5



 CISCO CONFIDENTIAL
D.2.2.4   Medium- and Low-Priority Scheduler Queue Operation
The operation of the medium-priority queue is as follows. Figur eD-5 illustrates this operation. 

Check the Ready Queues
1 For each process in the list:

— Run the process.

— Run each process in the critical-priority list.

— Run each process in the high-priority list.

2 Wake sleeping processes.

Check the Compatibility Queues
3 For each process in the list:

— Test if the process is waiting for an event.

— Run the process.

— Run each process in the critical-priority list.

— Run each process in the high-priority list.

4 Wake sleeping processes.

The operation of the low-priority queue is identical to that of the medium-priority queues and is 
shown in Figure D -5. Processes in the low-priority queue are executed under the following 
conditions:

• When no medium-priority processes are executed on this pass of the scheduler 

• Whenever there have been 20 passes through the medium-priority list since the last pass through 
the low-priority list
D-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Figure D-5 Medium- and Low-Priority Scheduler Queue Operation 

Run  high queue

No

S
37

82

Is
ready
queue
empty?

End 
of 

list?

Run process

End 
of 

list?

Is 
compatibility

queue
empty?

Yes

Yes

Run process

Run critical queue

Run critical queue

Run high queue

Is
process
 ready?

Any
compatibility
processes 

to run?

Wake sleepers

Done

Wake sleepers

No

Yes

Yes

Yes

No

No

No

No

Yes
Older Version of the Scheduler D-7



 CISCO CONFIDENTIAL
D.3   Functions in the Old Scheduler

While support for some functions in the old scheduler was maintained in Releases 11.0, 11.1, and 
11.2 code, you should avoid using them in these versions of the code. As of Releas e11.3, support 
for these functions has been removed.

Table D-1 list some obsolete old scheduler functions and their equivalent functions in the new 
scheduler. The following sections discuss some of the functions in the old scheduler.

Table D-1 Comparison between Old and New Scheduler Functions 

D.4   cfork( )  (obsolete)

To create a new process, call the cfork() function. 

#include “sched.h”
pid_t cfork(forkproc (*padd), long pp, int stack, char *name, int ttynum); 

Classification
Function

Old Scheduler Function Equivalent New Scheduler Function

adisms() process_sleep_until()

cfork() process_create()

check_suspect() process_may_suspend()

edisms() process_wait_for_event()

pdisms() process_sleep_periodic()

process_is_high_priority() —

process_set_priority() process_create()

s_kill() process_kill()

s_suspect() process_suspend()

s_tohigh() process_create()

s_tolow() process_create()

tdisms() process_sleep_for()
D-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Input Parameters

Output Parameters
None

Return Type
pid_t

Return Values

Usage Guidelines
The cfork() function was available in Cisco IOS releases prior to Release 11.0. It is no longer 
supported. Call the process_create() function instead. 

Note You specify the stack size in words, not in bytes.

Side Effects
cfork() creates a new process and places it into the normal priority run queue. Priority is set with 
process_set_priority() [another obsolete function]. The process will not begin executing 
until the current process is dismissed.

Related Functions
process_kill()
process_set_arg_num()
process_set_arg_ptr()
process_set_ttynum()
process_set_ttysoc()

padd Starting address of the process to execute.

pp Parameter to the process.

stack Size of the process stack in words. A value of 0 uses the default stack 
size.

name Textual name of the process as it should appear in all output.

ttynum Controlling terminal number for this process. Processes that do not use a 
controlling terminal should set this parameter to 0.

pid Process identifier of the newly created process.

NO_PROCESS A new process could not be created.
Older Version of the Scheduler D-9



 CISCO CONFIDENTIAL
D.5   edisms( )  (obsolete)

To suspend a process by putting it to sleep until some arbitrary event occurs, call the edisms() 
function.

#include “sched.h”
void edisms(uchar *test_routine, ulong pp); 

Classification
Function

Input Parameters

Output Parameters
None

Return Type
void

Return Values
None

Usage Guidelines
The edisms() function was available in Cisco IOS releases prior to Release 11.0. It is no longer 
supported. Call the process_wait_for_event() function instead. 

This function introduces a large amount of overhead into the scheduler, because the test_routine 
must be executed at each pass of the scheduler queues.

Related Functions
process_sleep_for()
process_sleep_on_timer()
process_sleep_periodic()
process_sleep_until()
process_wait_for_event()

test_routine Arbitrary code fragment that is executed by the scheduler to determine 
whether the process should continue sleeping. This routine should return 
TRUE is the process should continue sleeping, and FALSE if the process 
should wake up.

pp Parameter to the test function.
D-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
D.6   process_is_high_priority( )  (obsolete)

To retrieve the argument to the main routine of a process, call the 
process_is_high_priority() function.

#include “sched.h”
static inline boolean process_is_high_priority(void); 

Classification
Function of class process_get_info

Input Parameters
None

Output Parameters
None

Return Type
boolean

Return Values

Usage Guidelines
The process_is_high_priority() function is provided for backward compatibility only. Do 
not use it in any new code. Instead, write all new code to be priority independent.

D.7   process_set_priority( )  (obsolete)

To set the priority of the process that is currently running, call the process_set_priority() 
function. 

#include “sched.h”
static inline boolean process_set_priority(int priority);

Classification
Function of class process_set_info

TRUE The executing process is a high-priority process.

FALSE The executing process is not a high-priority process.
Older Version of the Scheduler D-11



 CISCO CONFIDENTIAL
Input Parameter

Output Parameters
None

Return Type
boolean

Return Values

Usage Guidelines
The process_set_priority() function is provided for backward compatibility only. All newly 
written code should supply the process priority when the process is created by calling 
process_create(). 

Related Functions
process_create()
process_get_priority()
process_set_arg_num()
process_set_arg_ptr()

D.8   s_tohigh( )  (obsolete)

To change the currently executing process to run in the high priority queue, call the s_tohigh() 
function.

void s_tohigh(void); 

Classification
Function

Input Parameters
None

priority New priority for this process. This value can be one of the following:

• PRIO_CRITICAL

• PRIO_HIGH 

• PRIO_NORMAL

• PRIO_LOW

TRUE The set call succeeded.

FALSE The set call failed.
D-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
Output Parameters
None

Return Type
void

Return Values
None

Usage Guidelines
The s_tohigh() function was available in Cisco IOS releases prior to Release 11.0. It is no longer 
supported. Call the process_create() function instead. 

Related Function
process_create()

D.9   s_tolow( )  (obsolete)

To change the currently executing process to run in the low priority queue, call the s_tolow() 
function.

void s_tolow(void); 

Classification
Function

Input Parameters
None

Output Parameters
None

Return Type
void

Return Values
None
Older Version of the Scheduler D-13



 CISCO CONFIDENTIAL
Usage Guidelines
Do not use this function. Instead, set the process priority during the call to the process_create() 
function.

The s_tolow() function was available in Cisco IOS releases prior to Release 11.0. It is no longer 
supported. Instead, set the process priority during a call to the process_create() function. 

Related Function
process_create()
D-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



A P P E N D I X

Glossary

 CISCO CONFIDENTIAL
E

Glossar
A

Abstract Syntax Notation 1
See ASN.1.

agent
In SNMP, a process on a managed system that answers request from a manager

ASN.1
Formal language used by SNMP.

asynchronous notification
Proactive message from an agent to manager providing information to the manager.

AVL tree
Balanced search trees named for Adel’son-Vel’skii and Landis, who introduced this class of 
balanced search trees. Balance is maintained in an AVL tree by use of rotations.

B

base class
See class.

binary tree
Data structure suitable for storage and keyed retrieval of information.

bit field
32-bit quantity in which each of the individual bits has significance.

boolean
Memory location that holds one of two values, TRUE or FALSE (that is, the value 1 or 0, 
respectively). See also managed boolean.

buffer pools
Grouping of buffers that allows them to be managed. Buffer pools hold buffers that are the same 
size and have the same properties. Buffer pools are based on the generic pool manager.
E-1



 CISCO CONFIDENTIAL
C

CANA
Cisco Assigned Numbers Authority. Group that assigns MIB branch numbers within the Cisco 
branch to Cisco developers.

child timer
See leaf timer.

chunk
Large block of memory that is allocated by the Cisco IOS code and then subdivided into smaller 
chunks. Use chunks to reduce the memory overhead when allocating a large number of small data 
structures. Chunks are managed by the chunk manager.

chunk manager
Code that manages chunks.

class
[object-oriented programming] a template definition of the methods and variables in a particular 
kind of object. Thus, an object is a specific instance of a class; it contains real values instead of 
variables. The class is one of the defining ideas of object-oriented programming. These are some 
of the important ideas about it: 

• A class can have subclasses (also called derived or child classes) that can inherit all or 
some of the characteristics of the class. In relation to each subclass, the class becomes 
the superclass (also called base or parent class).

• Subclasses can also define their own methods and variables that are not part of their 
superclass.

• The structure of a class and its subclasses is called the class hierarchy.

cookie PROM
PROM that holds all the information that is unique to a particular physical platform, such as the 
chassis serial number, the MAC addresses reserved for the chassis to use, the vendor (for OEM 
hardware), and the type of interfaces present (for nonmodular platforms).

CPU exception
Error that occurs when the executing thread of control attempts to perform an undefined 
operation, such as accessing an invalid address in memory or dividing by zero.

cruft
Worthless rubbish, usually used in terms of something being superfluous but attached to a valued 
object.

CSB
Console status block.

CSB objects
In the parser, a generic way to reference parser variables.

CxBus
Cisco Extended Bus. Data bus for interface processors on Cisco 7000 series routers that operates 
at 533 Mbps. See also SP (switch processor).
E-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
D

dead queue
Scheduler queue for processes that have exited, but on which the schedule has not yet performed 
a postmortem analysis.

demand paging
A kind of virtual memory where a page of memory will be paged in if an attempt has been made 
to access it and it is not already present in main memory.

direct queue
Singly linked list in which the first longword of the data structure is reserved for linking together 
the items in the list.

doubly linked list
A linked list with an embedded pointer block containing forward and backward pointers. 
Multiple pointer blocks can be embedded in the same data structure, allowing it to be on multiple 
doubly linked lists at the same time.

E

entity
In IPCs, a procedure or routine, such as a process, executing code, or a module, that makes use 
of IPC services.

epoch
Instantaneous location in time.

exception
Error that occurs in the execution of the Cisco IOS code. The error is converted into a signal 
before being offered to the software for exception handling.

G

GAS
GNU Assembler, supported by Cygnus.

GCC
GNU compiler, supported by Cygnus.

GDB
GNU debugger, supported by Cygnus.

H

heap
Memory that remains in a region after an imaged has been loaded.
Glossary E-3



 CISCO CONFIDENTIAL
I

IANA
Internet Assigned Numbers Authority. Group that assigns MIB branch numbers to private 
enterprises.

IDB
Interface descriptor block. There are several types of IDBs, including hardware IDBs and 
software IDBs. They are structures that describe the hardware and software view of an interface.

IDB subblock
Area of memory that is private to an application and that is used to store private information and 
state variables that the application wants to associate with an IDB or interface.

idle queue
Schedule queue for processes that are waiting for an event to occur before they can execute. The 
event must be one of a set of events explicitly listed by the process.

in-band signaling
Transmission within a frequency range normally used for information transmission. Contrast 
with OOB (out-of-band signaling).

indirect queue
Singly linked list with queuing blocks. These functions have no requirements regarding the 
format of the data structure.

inform
Type of asynchronous notification in which are acknowledged datagrams that are set from one 
manager process to another.

inheritance
[object-oriented programming] the concept that when a class of objects is defined, any subclass 
that is defined can inherit the definitions of one or more general classes. This means for the 
programmer that an object in a subclass need not carry its own definition of data and methods 
that are generic to the class (or classes) of which it is a part. This not only speeds up program 
development; it also ensures an inherent validity to the defined subclass object (what works and 
is consistent about the class will also work for the subclass). 

instance identifier
Designation of a specific occurrence of an object in the MIB tree. Also called an object identifier.

Internet Network Management Framework
Framework on which SNMP is based. It defines a model in which a managing system called a 
manager communicates with a managed system, which runs an agent.

interval tree
Variation of an RB tree in which the key is a range instead of a single number.

IPC
Interprocess Communications.
E-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
J

jitter
Method of randomizing an expiration time within set limits.

L

leaf timer
In managed timers, a timer that has no dependency on any other timer. Leaf timers are grouped 
together under a parent timer, and the parent timer expires at the earliest leaf expiration time. Also 
called a child timer.

link point
Locations in the parse tree where new commands can be dynamically added. They are used to 
allow the partial loading of commands.

list manager
Set of functions for manipulating doubly linked lists.

M

managed boolean
Boolean that can wake up a process or processes whenever the value of the boolean is set to TRUE 
(that is, the value 1). Also referred to as a watched boolean.

managed queue
Queue that can be managed by the scheduler. The process associated with the queue is awakened 
any time a new element is added to the queue. Also referred to as a watched queue.

managed semaphore
Data structure that contains a simple semaphore and all the other information necessary for the 
semaphore to be used as a scheduler wakeup condition. Also referred to as a watched semaphore. 
See also semaphore, simple semaphore.

managed timers
Timers that augment passive timers by allowing you to group timers together, thus allowing you 
to conveniently and efficiently manipulate a large number of timers. A parent timer is used to 
represent a group of leaf (child) timers.

Management Information Base
See MIB.

manager
In SNMP, an application running on a managing system that requests information from an agent.

memory management unit
See MMU.

memory pools
Pools used to manage heaps.
Glossary E-5



 CISCO CONFIDENTIAL
message
In the scheduler, a simple interprocess communication (IPC) mechanism that works on a single 
processor. It allows two processes to communicate.

In IPCs, the basic unit of communication exchanged between entities.

method
[object-oriented programming] programmed procedure that is defined as part of a class (see) and 
included in any object [see] of that class. A class (and thus an object) can have more than one 
method. A method in an object can only have access to the data known to that object, which 
ensures data integrity among the set of objects in an application. A method can be re-used in 
multiple objects.

MIB
Management Information Base. Abstract database description that defines all the information 
about a managed system that a manager can view or modify.

MMU
hardware device used to support virtual memory and paging by translating virtual addresses into 
physical addresses. 

MTU
Maximum Transmission Unit. Maximum size of any frame that can be transmitted on a particular 
media.

multicast ports
In IPCs, an aggregation of ports referenced as a single port so that messages can be transmitted 
from one source to multiple destinations.

N

Network Time Protocol (NTP
See NTP.

NTP
Network Time Protocol. 1. Cisco IOS time protocol that maintains the system clock to a very 
high degree of accuracy, adjusting the clock frequency to correct for the otherwise 
unavoidable drift caused by systematic errors in the clock hardware. 2. Protocol designed to 
synchronize timekeeping among a set of distributed timer servers and clients. NTP runs over 
the User Datagram Protocol (UDP) and the Internet Protocol (IP).

O

object
1. leaf in the MIB tree. Sometimes also called a variable. 2. [object-oriented programming] 
Objects are the things you think about first in designing a program and they are also the units of 
code that are eventually derived from the process. In between, each object is made into a generic 
class of object and even more generic classes are defined so that objects can share models and 
reuse the class definitions in their code. Each object is an instance of a particular class or subclass 
with the class's own methods or procedures and data variables. An object is what actually runs in 
the computer.
E-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
object identifier
Unique name of a data object or other registration point in a MIB tree.

OID
Object identifier.

oneshot notification
Awakening a process only the first time a scheduler object, such as a boolean, changes.

OOB
(out-of-band signaling) Transmission using frequencies or channels outside the frequencies or 
channels normally used for information transfer. Out-of-band signaling is often used for error 
reporting in situations in which in-band signaling can be affected by whatever problems the 
network might be experiencing. Contrast with in-band signaling.

out-of-band signaling
See OOB.

P

page fault
[virtual memory] an access to a page (block) of memory that is not currently mapped to physical 
memory.

paging
technique for increasing the memory space available by moving infrequently-used parts of a 
program's working memory from RAM to a secondary storage medium, usually disk. The unit of 
transfer is called a page. See also page fault, MMU, virtual memory.

parent timer
In manager timers, a timer that represents a group of leaf (child) timers. This timer always expires 
at the earliest expiration time of any of its child timers.

passive timers
Timers that note the current value of the system clock and record the value either as it is or after 
adding a delay value.

PID
Process identifier.

PIM
Protocol Independent Multicast. Multicast routing architecture that allows the addition of IP 
multicast routing on existing IP networks. PIM is unicast routing protocol independent and can 
be operated in two modes: dense mode and sparse mode. See also PIM dense mode and PIM 
sparse mode.

PIM dense mode
One of the two PIM operational modes. PIM dense mode is data-driven and resembles typical 
multicast routing protocols. Packets are forwarded on all outgoing interfaces until pruning and 
truncation occurs. In dense mode, receivers are densely populated, and it is assumed that the 
downstream networks want to receive and will probably use the datagrams that are forwarded to 
them. The cost of using dense mode is its default flooding behavior. Sometimes called dense 
mode PIM or PIM DM. Contrast with PIM sparse mode. See also PIM.
Glossary E-7



 CISCO CONFIDENTIAL
PIM sparse mode
One of the two PIM operational modes. PIM sparse mode tries to constrain data distribution so 
that a minimal number of routers in the network receive it. Packets are sent only if they are 
explicitly requested at the RP (rendezvous point). In sparse mode, receivers are widely 
distributed, and the assumption is that downstream networks will not necessarily use the 
datagrams that are sent to them. The cost of using sparse mode is its reliance on the periodic 
refreshing of explicit join messages and its need for RPs. Sometimes called sparse mode PIM or 
PIM SM. Contrast with PIM dense mode. See also PIM and RP (rendezvous point).

pool cache
Lookaside list of free items that can be accessed quickly.

port
In IPCs, a communications end point.

port identifier
In IPCs, a 32-bit integer that uniquely references a communications end point.

port name
In IPCs, a textual name of a port that is registered with the local seat manager and is associated 
with the port’s identifier.

port table
In IPCs, a table that contains information about local ports available to users.

prepaging
technique whereby the operating system in a paging virtual memory multitasking environment 
loads all pages of a process's working set into memory before the process is restarted.

priority
Order in which the scheduler executes processes. Processes can run at one of the following 
priority levels: critical, high, medium, or low.

process
Roughly the equivalent of a thread in computer science terminology. A Cisco IOS process 
consists of a set of processor registers and a stack area.

process state
Current activity of a process. It can be one of the following: running, suspended, ready to run, 
waiting for event, sleeping, hung, or dead.

Q

queue
Singly linked list that is a simple data structure for maintaining a linked list of objects. It is an 
ordered collection of items that keeps track of the first and last objects, the current number of 
objects, and the maximum number of objects.
E-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
R

radix tree

RB tree
Red-Black tree. The Cisco IOS implementation is a threaded tree.

ready queue
Scheduler queue used for processes that are ready and waiting to run.

realm
In IPCs, a collection of one or more seats (that is, processors) that form a distributed system. It 
is within this collection that port identifiers are unique and communicating entities can be moved.

realm manager
In IPCs, global entity responsible for the set of seats making up a realm.

region
Contiguous area of the Cisco IOS address space. In its simplest form, a region is an area of 
memory that is described by a starting address and a size, in bytes. The Cisco IOS software uses 
regions to organize memory into a hierarchical and manageable scheme. Region attributes are 
controlled by the region manager

region class
Identifies the function for which a region os memory is used. Classes provide a method for 
organizing regions of memory. Examples are processor-based memory, high-speed I/O memory, 
and Flash memory

region manager
Code that organizes memory hierarchically so that platform-specific and driver-specific code can 
declare areas of memory to the kernel and the kernel can determine how much memory is 
installed or available in a platform.

registry
Collection of related services. In conjunction with services, registries permit subsystems to 
install or register callback functions, discrete values, or process IDs for a service provided by the 
kernel or other modules.

Remote Procedure Call
See RPC.

RP
1. Route Processor. Processor module on the Cisco 7000 series routers that contains the CPU, 
system software, and most of the memory components that are used in the router. Sometimes 
called a supervisory processor. 2. Rendezvous Point. Router specified in PIM sparse mode 
implementations to track membership in multicast groups and to forward messages to known 
multicast group addresses. See also PIM sparse mode.

Route Processor
See RP.
Glossary E-9



 CISCO CONFIDENTIAL
RPC
Remote Procedure Call. Procedure call to an application in which the actual work happens on 
another processor.

RSP
Route/Switch Processor. Processor module that integrates the functions of the RP and SP. (See.)

S 

seat
In IPCs, a computational element, such as a processor, that can be communicated with using IPC 
services. A seat is where entities and ports reside.

seat manager
In IPCs, the entity responsible for the local seat.

seat table
In IPCs, a table that contains information about all seats in the IPC system.

semaphore
Memory location that is used by multiple processes to serialize their access to a set of resources. 
The resource can be anything, for example, Flash memory or the table of IP routes. See also 
managed semaphore, simple semaphore, watched semaphore.

service
Data structure that describes how a collection of one or more C functions, discrete values, or 
process IDs should be handled when the service is invoked by a service client. In conjunction 
with registries, services permit subsystems to install or register callback functions, discrete 
values, or process IDs for a service provided by the kernel or other modules.

service point
Actual instance of a service.

signal
See exception.

Simple Network Management Protocol
See SNMP.

simple semaphore
Single memory location that can be set or cleared by routines that function atomically. See also 
managed semaphore, semaphore, watched semaphore.

singly linked list
See queue.

SMI
Structure of Management Information. Defines the components of a MIB and the formal 
language for describing them.

SNMP
Simple Network Management Protocol. Language for communication between a managing 
system running a network management application and a managed system running an agent.
E-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
SNMP conceptual tables
Mechanism for defining a set of objects that appear repeatedly, indexed by some entry name.

SP
Switch Processor. Cisco 7000-series processor module that acts as the administrator for all 
CxBus activities. Sometimes called ciscoBus controlle . See also CxBus.

Structure of Management Information
See SMI.

subblock
See IDB subblock.

subsystem
Independent entry point into the Cisco IOS system code.It can be independent of the linker, or it 
can be freestanding code or part of code that always links and runs together. Subsystems allow 
images to be compiled that have the minimum of link requirements.

subsystem classes
Organized groups of subsystems that provide a sorting order that is primarily used when 
initializing the system software.

summer time
Daylight savings time.

Switch Processor
See SP.

system clock
Basic Cisco IOS clock. It is updated by hardware clock interrupts, advancing by an amount equal 
to the period of the hardware clock for each tick.

T

timers
See managed timers, passive timers.

token
Sequence of characters having a collective meaning. Characters can include an identifier, a 
keyword, a punctuation character, or a multicharacter operator

trap
Type of asynchronous notification in which unacknowledged datagrams that are sent by the agent 
to the manager.

U

UTC
Coordinated Universal Time, also known as zulu time, formerly Greenwich Mean Time (GMT). 
Time zone at zero degrees longitude.
Glossary E-11



 CISCO CONFIDENTIAL
V

vector
memory location containing the address of some code, often some kind of exception handler or 
other operating system service. By changing the vector to point to a different piece of code, it is 
possible to modify the behaviour of the operating system. 

virtual address
memory location that is accessed by an application program that is running in a system with 
virtual memory. Intervening hardware and/or software maps the virtual address to real (physical) 
memory. During the course of execution of an application, the same virtual address may be 
mapped to many different physical addresses as data and programs are paged out and paged in to 
other locations.

virtual memory
[memory management] address space available to a process running in a system with a memory 
management unit (MMU).

W

watched boolean
Boolean that can wake up a process or processes whenever the value of the boolean is set to TRUE 
(that is, the value 1). Also referred to as a managed boolean.

watched queue
Queue that can be managed by the scheduler. The process associated with the queue is awakened 
any time a new element is added to the queue. Also referred to as a managed queue.

watched semaphore
Semaphore that contains a simple semaphore and all the other information necessary for the 
semaphore to be used as a scheduler wakeup condition. Also referred to as a managed semaphore. 
See also semaphore, simple semaphore.

Z

zone
In IPCs, a collection of seats between which communications is directly possible.

zone manager
In IPCs, the entity responsible for a group of seats that can directly communicate with each other.
E-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
     Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



Index





 CISCO CONFIDENTIAL

Index
Symbols

! symbol xlvi
^ characte xlv

A

Abstract Syntax Notation 1
See ASN.1

activatehigh fla D-4
add_default_alias function 23-18
address interval (virtual memory) 4-28
algorithms, designing A-14
aligned_malloc function 4-14
alignment, data

checking A-13
portability issue 22-4

ANSI C, using A-5
arithmetic overflow, checking  f oA-13
arithmetic, pointer, performing A-12
ASN.1, definitio 24-2
assembler, inli n 22-7
asynchronous notifications, SNMP

controllin 24-32
defining 24-32
descriptio 24-3
generatin 24-35
informs, definitio 24-3
location 24-32
snmp-server enable comma n 24-33
traps, definition 24-3

auto storage class, usin A-11
AVL trees

overview 19-2, 19-5
raw

avl_node_type structure 19-5
freeing resource 19-6
initializi n 19-5
nodes, deleting 19-6
nodes, inserting 19-5

nodes, searching for first 19-6
nodes, searching for next 19-6
searching 19-6
walking 19-6

wrapped
freeing resource 19-8
initializ i n19-6
nodes, deleting from all threads 19-7
nodes, deleting from one thread 19-7
nodes, inserting 19-7
nodes, searching for first 19-7
nodes, searching for next 19-7
normalizing 19-8
resetting pointers to start of tr e 19-8
searching 19-7
walking 19-7

avl_delete function 19-6
avl_get_first function 19-6
avl_get_next function 19-6
avl_insert function 19-5
avl_search functio 19-6
avl_walk function 19-6
AWAKE macro

example 15-6
guidelines for using 15-4
prototype 15-4

B

Basic Encoding Rules
See BER

bcmp function A-15
bcopy functio 5-11
BER, definitio 24-2
BIGENDIAN constant 22-8
binary trees

overview 19-1
See also AVL trees, radix trees, RB trees

bit fields
changing minor identifier 3-22
clearing specified bi t 3-22
Index-1



 CISCO CONFIDENTIAL
creati n 3-21
definition 3-21
deleting 3-22
registering a process o 3-22
retrieving value of 3-22
setting specified b i t3-22
using A-17

booleans
changing minor identifier 3-19
changing value of 3-19
creati n 3-19
definition 3-19
deleting 3-20
registering a process o 3-19
retrieving value of 3-19

bootstrapping Cisco IOS image
from Flash memor 2-3
from RO 2-2
over the network 2-2

buffer caches
adding to pool 5-5
creati n 5-13
creating (example 5-13
descriptio 5-4
fillin 5-6
filling (example) 5-13
removing buffers fro 5-14
removing from pool 5-6
structure 5-4
structure (figure) 5-5
vectors (table) 5-5
vectors, prototypes 5-5

buffer data, memory pools for 4-13
buffer pools

caches
adding to pool 5-5
creati n 5-13
creating (example 5-13
descriptio 5-4
fillin 5-6
removing 5-6
removing buffers fro 5-14
structure 5-4
structure (figure) 5-5
vectors (table) 5-5
vectors, prototypes 5-5

creati n 5-3
descriptio 5-1, 5-8
dynamic, definition 5-2
fillin 5-4
finding best siz 5-13
group numbers 5-2
guidelines for returning buffer 5-10
inserting into a lis 5-2
permanent items 5-3

pooltype structure 5-2
private

allocating buffer 5-9
creating 5-3, 5-8
creating (example) 5-9
descriptio 5-8
group number 5-8

public
allocating buffer 5-9
allocating buffers (example 5-9
creating 5-3, 5-8
creating (example) 5-8
descriptio 5-8
fillin 5-4, 5-8
finding best size 5-13
group number 5-8

returning buffers t 5-10
size of item in p o o5-2
static, definiti o 5-2
structure 5-2
structure (figure) 5-2
temporary items 5-3
vectors (table) 5-3
vectors, prototypes 5-3

buffers
allocatin 5-9
allocating (example) 5-9
associating with an input interf a c5-14
cloning 5-11
cloning (example) 5-11
copying

buffer and context 5-11
buffer and context (example) 5-12
buffer onl 5-11
buffer only (example 5-11
comparing methods 5-12
recenterin 5-12

data blocks
definition 5-6
memory organizat i o5-7
memory organization (figur e 5-7
packet structure (figur e 5-6
paktype structure 5-7

datagramsize 5-7
datagramstart 5-7
duplicating

buffer and context 5-11
buffer and context (example) 5-12
buffer onl 5-11
buffer only (example 5-11
comparing methods 5-12
descriptio 5-10
recenterin 5-12

duplication
memory corruption 5-11
Index-2 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
guidelines for returnin 5-10
headers, definitio 5-6
leaks, traci n 18-6
locking 5-10
moving to another input interface 5-14
network_start 5-7
paktype structure 5-6
reference count field

descriptio 5-10
incrementin 5-10

removing from an input interface 5-15
returning to buffer pool 5-10
size, increasin 5-13
structure 5-6
unlocking 5-10
See also particles

buginf function 16-1, 18-5
byte order, portability issu e 22-2
byte reordering 22-8

C

CAN 24-14
case services

adding (example) 13-13
adding default (example) 13-14
defining 13-12
defining (example 13-13
descriptio 13-8, 13-12
invoking (example) 13-14
wrapper functions 13-12

case statements, using fall through A-12
caution, description xlvi
cfork function

See process_create function
chain.c file 23-12
change_if_input function 5-14
checkqueue function 20-3
chunk manager

allocating memory chunks 4-22
creating memory chunk 4-21
destroying memory chunks 4-23
guidelines for using 4-21
locking memory chunks 4-22
overview 4-2, 4-21
show chunk command 4-21
using A-15

chunk_create function
example 4-22
prototype 4-21

chunk_destroy function 4-23
CHUNK_FLAGS_DYNA M I C  f l a4-21
CHUNK_FLAGS_LOCKAB L E  f l a4-21
chunk_free function

example 4-22
prototype 4-22

chunk_lock function 4-22
chunk_malloc function

example 4-22
prototype 4-22

chunks
See memory chunks, chunk manager

Cisco Assigned Numbers Authority 24-14
classes, memory pool

See memory pools, classes
classes, region

See regions, classes
clear profile comm a nC-4
clear_if_input function 5-15
clock, system

descriptio 14-2
setti n 14-4

clock/calendar, in hardwar 14-3
CLOCK_DIFF_SIGNED macro 15-8
CLOCK_DIFF_SIGNED64 macro 15-8
CLOCK_DIFF_UNSIGNED ma c r15-8
CLOCK_DIFF_UNSIGNED64 mac r 15-8
clock_epoch structure 14-1
clock_epoch_to_timeval function 14-4
clock_epoch_to_unix_time function 14-4
clock_get_microsecs function 14-3
clock_get_time function 14-3
clock_get_time_exact function 14-3
clock_icmp_time function 14-3
CLOCK_IN_INTERVAL macr 15-8
CLOCK_IN_STARTUP_INTERVAL macr 15-8
clock_is_now_valid function 14-6
clock_is_probably_valid function 14-5
CLOCK_OUTSIDE_INTERVAL macro

example 15-8
prototype 15-8

clock_set function 14-4
clock_set_unix function 14-4
clock_time_is_in_summer function 14-4
clock_timeval_to_epoch function 14-4
clock_timeval_to_unix_time function 14-4
clock_timezone_name function 14-3
clock_timezone_offset function 14-3
code formatting

comment A-10
function definiti o nA-9
function prototypes A-9
headers A-9
if...else statement A-10
#include directive A-9
indention A-9
parentheses and spaces A-10
stubbing out code A-10

code organization, descriptio B-1
Index-3



 CISCO CONFIDENTIAL
code performance issues
algorithms, designing A-14
Cisco IOS infrastructure, using A-15
data structures, designing A-14
GCC optimizatio A-15
instruction-level performance A-15

code reliability issues
arithmetic overflow, checking  f oA-13
data alignment, checking A-13
getbuffer function, checking retu r A-12
malloc function, checking return A-12
NULL pointers, checkin A-12
pointer arithmetic A-12
pointers within structures A-12
switch statements, using fall through A-12

coding conventions A-1 to A-17
bit field instructio n A-17
bit fields in C structure A-17
C conventions A-5
comparing to Kernighan & Ritchie A-5
const type qualifiers A-7
converting signed to unsigned types A-7
CPU acces A-17
data structure format A-7
data structures, passing A-8
#define macros A-8
design issues A-2
enumerated types A-7
floating-point operations A-8
function prototypes A-6
functions, ordering in a fil A-6
header fil e A-8
in VM code 4-31
inline functions A-16
mathematical notations in VM code 4-31
memcpy function A-17
memory, accessi n A-17
mixing C and assembly language A-8
multiple dereferenci n A-16
peformance issu e A-13
presentation of code A-9
pretty print i nA-9
register declaratio n A-16
register storage clas A-7
reliability i s s u eA-12
repeated code A-16
static storage cla s A-7
storage A-11
struct copy A-17
typecast i nA-6
variables A-11
volatile keyword A-16

commands
duplicat 23-5
hidden 23-5

internal 23-5
subinterface 23-5
unsupported 23-5

comments in code
formatting A-10
writin A-11

compatibility queue D-2
compilation, conditional A-3, A-8
console status block

See parser, CSB
const type qualifiers, using A-7
controlling terminal, setting 3-13
conventions, codin A-1 to A-17
COPY_TIMESTAMP macr 15-7
core files

analyzing 18-3
debugging CPU exceptio n 18-1
generatin 18-2

CPU
maximizing access spee A-17
sharing A-4

CPU exceptions
debugging

overview 18-1
using core files 18-1
using GDB 18-4
using ROM monito 18-3

descriptio 18-1
See also exceptions

CPU profiling
configuring C-3
CPUHOG mode

descriptio C-2
enablin C-5

enablin C-3
interrupt mode

descriptio C-2
disablin C-4
enablin C-4

overhead C-2
overview C-1
postprocessin C-5
profile blocks

creating C-3
definition C-1
deleting C-4
zeroin C-4

restartin C-4
stopping C-4
task mode

descriptio C-2
disablin C-4
enablin C-4

using C-3
create_watched_bitfield function 3-21
Index-4 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
create_watched_boolean function 3-19
create_watched_queue function

example 3-24
prototype 3-17

create_watched_semaphore function 3-20
critical-priority proces s e3-9
CSB

See parser, CSB
csb->nv_command 23-12
csb->sense 23-11
current_time_source functi o 14-3
current_time_string functio 14-6

D

data alignment
checking A-13
portability issue 22-4

data blocks
definition 5-6
memory organizati o 5-7
memory organization (figure 5-7

data size, portability issu e 22-5
data structures

designing A-14
formattin A-7
passing A-8

data_area element, in paktype structur 5-7
data_bytes element, in particletype structur 5-15
data_dequeue function 20-6
data_enqueue function 20-6
data_insertlist function 20-6
data_start element, in particletype structur 5-15
data_walklist function 20-6
datagram_done function 5-10
datagramsize element, in paktype structur 5-7
datagramstart element, in paktype structure 5-7
dates, format for printin 16-2
daylight savings time, testing f o 14-4
dead proce s 3-8
dead queue 3-9
debug command 18-5
debugging messages, formatting 16-1
DECIMAL macro 23-6
#define macros, using A-8
delete_watched_bitfield function 3-22
delete_watched_boolean function 3-20, 3-21
delete_watched_queue function

example 3-25
prototype 3-18

demand paging, definition 4-34
dequeue function

example 20-4
prototype 20-4

dereferencing, multiple, in code A-16
DestroyRBTree functio 19-4
direct queues

adding items 20-3, 20-5
descriptio 20-1
figure 20-1
initializi n 20-2
protecte 20-5
protected (example 20-5
removing items 20-4, 20-5
unprotected 20-3
unprotected (examples) 20-4

doubly linked lists
adding items 20-8, 20-9
contents, displaying 20-11
creating 20-9
descriptio 20-2
destroying 20-11
examples 20-8, 20-11
list action functions

changing behaviors 20-11
default behavior 20-10
retrieving behaviors 20-11

list_element data structur 20-9
LIST_FLAG_AUTOMATIC flag 20-9
LIST_FLAG_INTERRUPT_SAFE f l a20-9
moving items 20-10
removing items 20-8, 20-10
See also list manager

E

edisms function
See process_wait_for_event function

ELAPSED_TIME macr 15-7
ELAPSED_TIME64 macr 15-7
enqueue function 20-3

example 20-4
prototype 20-3

entities, IPC, definiti o 8-3
enumerated types, using A-7
epoch

clock_epoch structure 14-1
definition 14-1

error messages, subsys t e12-3
exception handler

causing exceptions 17-3
overview 17-1
registering 17-2, 17-3
signals (table) 17-1

exceptions
overview 17-1
See also exception handler

extern storage class, usin A-11
Index-5



 CISCO CONFIDENTIAL
F

fast memory, memory pools for 4-13
fast_malloc functio 4-14
fenced timers

See managed timers
floating-point operations, in code A-8
FOR_ALL_HWIDBS_IN_LIST macr 6-20
FOR_ALL_SWIDBS mac r 6-16
FOR_ALL_SWIDBS_IN_LIST mac r 6-20
format_time functio 14-6
formatting strings

AppleTalk addresses 16-4
Banyan VINES addresses 16-7
debugging mesages 16-1
time 16-2
timestamps 16-3
user command output 16-1

free functi o 4-14, 4-17
example 4-18
prototype 4-17

free lists
overview 4-11
sizes

adding 4-11
default 4-11, 4-18
setti n 4-18

free ( 4-16
functions

definitions, spaces with A-9
ordering in a file A-6
prototypes

spaces wit A-9
using A-6

G

GCC
optimizing A-16
using A-5

GDB
analyzing core files 18-3
kernel mode 18-4
process mo d 18-4
using to debug CPU exceptions 18-4

GENERAL_KEYWORD macro 23-4
GENERAL_NUMBER macr 23-6
GET_NONZERO_TIMESTAMP m a c r15-7
GET_TIMESTAMP macro

example 15-8
prototype 15-7

GET_TIMESTAMP32 macr 15-7
getbuffer function

example 5-9
prototype 5-9

GETLONG functi o 22-9
GETOBJ 23-13
GETSHORT mac r 22-9
Gnu CC compiler

See GCC
grovel

checking out 18-3
using to analyze core file 18-3

H

.c file, registries
definition 13-2

.h file, registries
definition 13-2

header files, bracketing with conditional compilation 
statements A-8

headers, standard A-9
heaps

managing with memory pools 4-11
memory pools for 4-13

HEXADECIMAL macr 23-7
HEXDIGIT mac r 23-6
hierarchy, memory

See regions, hierarchy
high-priority processe 3-9
hung process 3-8

I

idb_add_hwidb_to_list function 6-20
idb_add_hwsb function 6-17
idb_add_swidb_to_list function 6-20
idb_add_swsb function 6-17
idb_board_encap function 6-21
idb_create function 6-14
idb_create_list functio 6-19
idb_create_subif function 6-14
idb_delete_hwsb function 6-19
idb_dequeue_from_output function 6-21
idb_destroy_list function 6-20
idb_enqueue function 6-16
idb_for_all_on_hwlist function 6-20
idb_for_all_on_swlist function 6-20
idb_free functio 6-16
idb_get_hwsb functio 6-17
idb_get_swsb function 6-18
idb_is_* functions 6-21
idb_pak_vencap function 6-21
idb_queue_for_output function 6-21
Index-6 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
idb_release_hwsb function 6-18
idb_release_hwsb_inline function 6-19
idb_release_swsb functio 6-18
idb_release_swsb_inline function 6-19
idb_remove_from_list functio 6-20
idb_start_output function 6-21
idb_unlink function 6-16
idb_use_hwsb function 6-18
idb_use_hwsb_inline function 6-18
idb_use_swsb function 6-18
idb_use_swsb_inline functio 6-18
IDBs

creati n 6-14
deleting 6-16
freei n 6-16
hardware

creati n 6-14
definition 6-7
deleting 6-16
unlinking 6-16

index numbe 6-15
iterating over private lis 6-20
linking to router interfaces 6-16
oqueue vector 6-21
oqueue_dequeue vector 6-21
overview 6-1
packets

dequeuing 6-21
encapsulatin 6-21
queuing 6-21
transmitti n 6-21

private lists
adding IDBs 6-20
applying function vector and argument to IDB 6-20
creati n 6-19
deleting 6-20
descriptio 6-19
removing IDB 6-20

software
creati n 6-14
definition 6-7
deleting 6-16
unlinking 6-16

soutput vector 6-21
subblocks

adding to IDB 6-17
deleting from IDB 6-19
dynamic, description 6-17
obtaining pointer to hardware IDB 6-17, 6-18
obtaining pointer to software IDB 6-18
releasin 6-18

subinterfaces
creati n 6-14
freei n 6-16
unlinking 6-16

testing interface properti e 6-21
unit number 6-15
unlinking 6-16

IDECIMAL macro 23-6
idle queue 3-9
if...else statement A-10
IF-MIB

tables 25-1
ifRcvAddressTable, IF-MIB table 25-1
ifStackTable, IF-MIB table 25-1
ifTable, IF-MIB table 25-1
ifXTable, IF-MIB table 25-1
#include directives, using A-9
indention, in code A-9
indirect queues

adding items 20-6
descriptio 20-1
examples 20-7
figure 20-2
initializi n 20-2
iterating o v e20-6
removing items 20-6
size, changing 20-6
walking 20-6

informs, definitio 24-3
initialization

platform-specific
exceptio 7-4
exception, example 7-4
fundamental 7-2
fundamental, example 7-2
interfac 7-5
interface, exampl 7-5
lin 7-5
line, exampl 7-7
memory 7-2
memory, example 7-3
overview 7-1
string 7-7
strings (table 7-8
strings, exampl 7-8
values 7-9
values (table) 7-9
values, example 7-11

system
basic 2-1
by ROM monitor 2-1
descriptio 2-1 to 2-7
fundamental (figure) 2-5
of Cisco IOS image 2-6

inline assembl e 22-7
inline functions, using A-16
input_getbuffer function 5-14
insqueue function 20-3
interface descriptor blocks
Index-7



 CISCO CONFIDENTIAL
See IDBs
INTERFACE_KEYWORD macr 23-4
Internet Network Management Framework, 

descriptio 24-2
Internet Network Management Framework, description 

(figure) 24-2
interprocess communications

See IPCs
See IPCs; messages, scheduler

interrupt stacks, memory pools for 4-13
IntRBTreeInsert functi o 19-3
IntRBTreeNearBestNode function 19-3
IntRBTreeSearch funct i o19-3
INUMBER macr 23-6
io_aligned_malloc functi o 4-14
io_malloc functi o 4-14
IOCTAL macro 23-6
IPADDR macr 23-15
ipc_add_named_seat function 8-8
ipc_close_port function 8-10
ipc_create_named_port function

example 8-13
prototype 8-9

ipc_get_message function 8-11
ipc_get_pak_message function 8-11
ipc_get_seat function 8-8
ipc_locate_port function 8-10
ipc_message_header structur 8-6
ipc_open_port function 8-9
ipc_open_port_by_name function

example 8-13
prototype 8-10

ipc_process_raw_pak function 8-11
ipc_register_port function 8-9
ipc_remove_port function 8-10
ipc_reset_seat functio 8-8
ipc_resync_seat function 8-8
ipc_return_message function 8-12
ipc_send_message function

example 8-14
prototype 8-11

ipc_send_message_blocked function
example 8-14
prototype 8-11

ipc_send_rpc function 8-12
ipc_send_rpc_blocked function 8-12
ipc_send_rpc_reply function 8-12
ipc_send_rpc_reply_blocked function 8-12
ipc_set_rpc_timeout function 8-12
IPCs

applications, creati n 8-12
entities, definit i o8-3
ipc_message_header structur 8-6
message retransmission table

descriptio 8-11

entries 8-11
messages

definition 8-3
dispatching received packe t 8-11
format 8-6
format (figure) 8-6
retrieving header 8-11
returning 8-12
sending 8-11, 8-13, 8-14

multicast ports, definitio 8-3
on RSP platform 8-14 to 8-19
operational environment

loosely coupled 8-2
networked 8-2
tightly coupl e 8-2
unispace 8-2

overview 8-2
port table

descriptio 8-8
entries 8-8

port_info structure 8-13
ports

closing 8-10
creating by name 8-9
creating by name, example 8-13
definition 8-3
finding by name 8-10
identifiers, definitio 8-3
names, definition 8-3
names, reserved 8-5
naming conventions 8-4
naming syntax 8-5
opening by identifier 8-9
opening by name 8-9
registering by name 8-9
removing 8-10

processing (figure 8-7
RPCs

setting timeout per i o8-12
simulating asynchronous response 8-12
simulating send 8-12
simulating synchronous response 8-12

seat manager, definitio 8-4
seat table

descriptio 8-7
entries 8-7

seats
creating 8-8
definition 8-4
resetti n 8-8
retrieving from seat tabl 8-8

sequence numbers, resettin 8-8
services, overview 8-1
services, overview (figure) 8-1
with scheduler messages 3-8
Index-8 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
zone manager, definition 8-4
zones, definition 8-4

J

jitter, descriptio 15-2

K

KEYWORD macr 23-4
KEYWORD_MM macro 23-4
KEYWORD_NOWS macr 23-4
KEYWORD_OPTWS macr 23-4

L

leaf timers
See managed timers

least recently used, defi n i t i o4-36
link points

creati n 23-15
descriptio 23-15
displaying 23-16
exit link points, creati n 23-17
linking command to 23-16
registering with parser 23-16

LINK_TRANS mac r 23-15
linked lists

See doubly linked lists, list manager, queues, singly linked 
lists

list manager
descriptio 20-2, 20-9
See also doubly linked lists

list services
adding (example) 13-10
defining 13-9
defining (example 13-9
descriptio 13-8, 13-9
invoking (example) 13-10
wrapper functions 13-9

list_create function
example 20-11, 20-12
prototype 20-9

list_dequeue function
example 20-13
prototype 20-10

list_destroy function
example 20-14
prototype 20-11

list_element data structure 20-9
list_enqueue function

example 20-12

prototype 20-9
LIST_FLAG_AUTOMATIC flag 20-9
LIST_FLAG_INTERRUPT_SAFE f l a20-9
list_get_action functi o 20-11
list_get_info function 20-11
list_insert functio 20-10
list_move function

example 20-12
prototype 20-10

list_remove function
example 20-12, 20-13
prototype 20-10

list_requeue function 20-10
list_set_action functi o 20-11
list_set_automatic functio 20-9
list_set_info function

example 20-12
prototype 20-11

list_set_interrupt_safe functio 20-9
LITTLEENDIAN constan 22-8
lock_semaphore function 3-21
loop services

adding (example) 13-15
defining 13-14
defining (example 13-15
descriptio 13-8, 13-14
invoking (example) 13-16
wrapper functions 13-15

low-priority processe 3-10
lw_insert function

example 20-8
prototype 20-8

lw_remove function
example 20-8
prototype 20-8

M

malloc function
example 4-17
prototype 4-14

malloc( 4-16
managed boolean

See booleans
managed timer

stopping 15-12
managed timers

context value
descriptio 15-9
extended, retrieving 15-14
extended, settin 15-13
initializ i n15-11
modifying 15-11
returning 15-11

definition 15-9
Index-9



 CISCO CONFIDENTIAL
example 15-15
fenced timers

creati n 15-14
definition 15-14
returning 15-14

initializi n 15-10
jitter, descriptio 15-2
leaf timers

changing to parent timers 15-14
definition 15-9
delay, increasin 15-12
expiration, sett i n15-12
initializi n 15-11
startin 15-12
stopping 15-12

linking to other timer trees 15-13
mgd_timer structure 15-10
operation 15-9
parent timers

changing to leaf timers 15-14
definition 15-9
determining address of first chil 15-14
determining address of next sibling 15-14
initializi n 15-10
stopping 15-12

processes, registering on tim e 15-11
state, determining 15-11, 15-13
stopping 15-12
type value

descriptio 15-9
returning 15-11
setti n 15-11

unlinking from other timer trees 15-13
walking timer tree 15-14

Management Information Base
See MIBs

MAX_INTERFACE 6-3
medium-priority processe 3-9
mem_lock function

example 4-18
prototype 4-17

mem_unlock functio 4-18
memcmp function A-15
memory

allocating
aligned 4-14
buffer data 4-15
example 4-17
failure 4-16
fast 4-15
fre 4-16
heap 4-15
return valu 4-15
table 4-15
typecasti n 4-15
unaligne 4-14

fast, memory pools for 4-13
hierarchy

See regions, hierarchy
locking 4-17
locking (example) 4-17
MMU 4-26
returning 4-17
virtual, overview of Cisco IOS 4-25

memory chunks
allocatin 4-22

example 4-22
return valu 4-22
typecasti n 4-22

chunk manager 4-21, A-15
creating 4-21
creating (example) 4-22
description (figure) 4-2
destroying 4-23
locking 4-22
returning 4-22
returning (example 4-22

memory management unit (MMU), definition 4-32
memory pool manager 4-1
memory pools

adding regions to 4-12
aliases

declaring 4-13
declaring (example) 4-13
overview 4-13

allocating memory
aligned 4-14
buffer data 4-15
example 4-17
failure 4-16
fast 4-15
heap 4-15
return value 4-15
table 4-15
typecasti n 4-15
unaligned 4-14

alternate
creating 4-14
creating (example) 4-14
descriptio 4-14

buffer data 4-13
bytes free 4-20
bytes used 4-20
classes

aliasabl 4-13
mandatory 4-12
MEMPOOL_CLASS_FAST flag 4-13
MEMPOOL_CLASS_IOMEM flag 4-13
MEMPOOL_CLASS_ISTACK flag 4-13
MEMPOOL_CLASS_LOCAL flag 4-13
MEMPOOL_CLASS_MULTIBUS fla 4-13
MEMPOOL_CLASS_PCIMEM flag 4-13
Index-10 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
MEMPOOL_CLASS_PSTACK fla 4-13
setti n 4-12
table 4-13

creati n 4-12
creating (example 4-12
definition 4-1
description (figure) 4-2
fast memory 4-13
free lists

sizes, adding 4-11
sizes, adding (example) 4-19
sizes, default 4-11, 4-18
sizes, sett i n4-18

freeing memor 4-17
heaps 4-11, 4-13
interrupt stacks 4-13
low memory

setting threshold 4-19
specifying action to take 4-19

low memory, setting threshold 4-19
low-water mark

determining 4-19
setti n 4-19

memory pool manager 4-11
Multibus 4-13
overview 4-11
process sta c k4-13
returning memory 4-17
searching for 4-20
searching for (example 4-20
statistics, retrievin 4-20
threshold, low

dropping below 4-19
setti n 4-19

total bytes 4-20
mempool_add_alias_pool function

example 4-13
prototype 4-13

mempool_add_alternate_pool function
example 4-14
prototype 4-14

mempool_add_free_list function
example 4-19
prototype 4-18

mempool_add_region function 4-12
mempool_aligned_malloc function 4-14
MEMPOOL_CLASS_FAST flag 4-13
MEMPOOL_CLASS_IOMEM flag 4-13
MEMPOOL_CLASS_ISTACK flag 4-13
MEMPOOL_CLASS_LOCAL flag 4-13
MEMPOOL_CLASS_MULTIBUS flag 4-13
MEMPOOL_CLASS_PCIMEM flag 4-13
MEMPOOL_CLASS_PSTACK fla 4-13
mempool_create function

example 4-12

prototype 4-12
mempool_find_by_addr function

example 4-20
prototype 4-20

mempool_find_by_class function
example 4-20
prototype 4-20

mempool_get_free_bytes function 4-20
mempool_get_total_bytes function 4-20
mempool_get_used_bytes function 4-20
mempool_is_empty function 4-19
mempool_is_low function 4-19
mempool_malloc function 4-14
mempool_set_fragment_threshold function 4-19
mempool_set_low_threshold function 4-19
mempools

See memory pools
message retransmission table, IPC

descriptio 8-11
entries 8-11

messages
error, for subsystems 12-3
IPC

definition 8-3
dispatching received packe t 8-11
retrieving header 8-11
returning 8-12
sending 8-11, 8-13, 8-14

scheduler 3-8
See also IPCs

mgd_timer structur 15-10
mgd_timer_additional_context function 15-14
mgd_timer_change_to_leaf function 15-14
mgd_timer_change_to_parent function 15-14
mgd_timer_context function

example 15-16
prototype 15-11

mgd_timer_delink functio 15-13
mgd_timer_exp_time function 15-13
mgd_timer_expired function

example 15-16
prototype 15-13

MGD_TIMER_EXTENDED ma c r15-14
mgd_timer_first_child function 15-14
mgd_timer_first_expired function

example 15-16
prototype 15-13

mgd_timer_first_fenced functio 15-14
mgd_timer_first_running function 15-13
mgd_timer_init_leaf function

example 15-15
prototype 15-11

mgd_timer_init_parent function
example 15-15
prototype 15-10
Index-11



 CISCO CONFIDENTIAL
mgd_timer_initialized func t i o15-11
mgd_timer_left_sleeping function 15-13
mgd_timer_left_sleeping64 function 15-13
mgd_timer_link functi o 15-13
mgd_timer_next_running function 15-14
mgd_timer_running function 15-13
mgd_timer_running_and_sleeping function 15-13
mgd_timer_set_additional_context function 15-14
mgd_timer_set_context function 15-11
mgd_timer_set_exptime function 15-12
mgd_timer_set_fenced function 15-14
mgd_timer_set_soonest function 15-12
mgd_timer_set_type function 15-11
mgd_timer_start function

example 15-15
prototype 15-12

mgd_timer_start_jittered function
example 15-15, 15-16
prototype 15-12

mgd_timer_stop function
example 15-16
prototype 15-12

mgd_timer_type function
example 15-16
prototype 15-11

mgd_timer_update function
example 15-16
prototype 15-12

mgd_timer_update_jittered functi o 15-12
mgd-timer_stop function 4-16
MIB compiler

examples 24-28
functon 24-27
invoking 24-20, 24-26
location 24-20
mibcomp.perl script

invoking 24-26
options (table) 24-26

mosy 24-20
output files 24-27
overview 24-20
SMICng 24-20
update-mibs.pl script, invoking 24-20

mibcomp.perl script, invoking 24-26
MIBs

agent implementati o 24-4
branch numbers, assigning 24-14
branch points, description 24-4
Cisco Assigned Numbers Authority (CANA 24-14
compilers

See MIB compiler
compiling

examples 24-28
location of generated files 24-25
makefile rule 24-25

overview 24-24
which groups to compile 24-25
which MIBs to compile 24-25

definition 24-2
design considerations

alerts 24-13
assigned number 24-14
checking existing MIBs 24-13
Cisco MIB nomenclature 24-15
information flow contro 24-13
informs 24-12
MIB compliance 24-14
MIB content 24-12
MIB conventions 24-14
MIB organization 24-13
MIB police 24-21
MIB template 24-16
notifications 24-12
overview 24-10
phases 24-11
polling 24-13
reliable delive r 24-13
support 24-21
traps 24-12
writing conventions for MIBs 24-15

IF-MIB API
adding support to service points 25-2
deregistering a sublayer 25-4
external files 25-2
IANAifType Textual Conventi o 25-2
internal file 25-2
link up/down trap support 25-5
registering a sublayer 25-4
sample implementatio 25-5
subiabtype data structure 1-9, 25-2
tables 25-1

informs, definitio 24-12
instance identifie r 24-5
k_get routines 24-31
k_set routines 24-31
leaf objects, description 24-4
life cyc l 24-10
maintaining 24-40
maintaining (example) 24-41
modifying 24-40
modifying (example) 24-41
modularity, observing 24-29
new, creating 24-21
nomenclature, Cisco 24-15
objects

adding to MIB 24-41
definition 24-4
deleting from MIB 24-42
identifiers 24-5
identifiers (figure) 24-6
Index-12 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
implementin 24-30
k_get routines 24-31
k_set routine 24-31
operations 24-39
testin 24-37

overview 24-3
phases in life cycl 24-10
police, MIB 24-21
proprietary, description 24-4
releasin 24-39
standard, description 24-4
subinteraface

IANAifType Textual Convention 25-2
template, Cisco 24-16
testing

notifications 24-37
notifications, tools to use 24-38
objects 24-37
overview 24-36
tools to use, command-line 24-37
tools to use, X Windows 24-38

top-level identifier, determinin 24-22
traps, definition 24-12
version control 24-40

MMU
definition 4-32
virtual memory requirement 4-26

msclock variable 15-2
Multibus, memory pools for 4-13
multicast ports, IPC, definti o 8-3
multiple dereferencing, in code A-16

N

named_aligned_malloc function 4-14
named_malloc function 4-14
Network Time Protocol

See NTP
network_start element, in paktype structure 5-7
no profile comm a nC-4
NTP 14-3
NUMBER macr 23-6, 23-15

O

OBJ 23-13
objects

See MIBs, objects
OCTAL macro 23-6
OID

See MIBs, objects
oneshot, definition 3-17, 3-21, 3-22

oqueue vector 6-21
oqueue_dequeue vector 6-21
ORDER_BYTE_LONG ma c r22-8
ORDER_BYTE_SHORT ma c r22-8

P

p_dequeue function
example 20-5
prototype 20-5

p_enqueue function
example 20-5
prototype 20-5

p_requeue function 20-5
p_unqueue function 20-5
p_unqueuenext function 20-5
packet structure (figur e 5-6
packets

dequeuin 6-21
encapsulati n 6-21
queuing 6-21
transmittin 6-21

page fault, definition 4-35
paging, definition 4-34
pak_copy function

example 5-12
prototype 5-11

pak_copy_and_recenter function 5-12
pak_dequeue function

example 20-7
prototype 20-6

pak_duplicate function 5-17
example 5-11
prototype 5-11

pak_enqueue function
example 20-7
prototype 20-6

pak_grow function 5-13
pak_insqueue function

example 20-7
prototype 20-6

pak_lock macr 5-10
pak_pool_create function

example 5-8, 5-9
prototype 5-8

pak_pool_create_cache function
example 5-13
prototype 5-13

pak_pool_find_by_size function 5-13
pak_requeue function

example 20-7
prototype 20-6

pak_unqueue function
example 20-7
Index-13



 CISCO CONFIDENTIAL
prototype 20-7
pakqueue_resize function 20-6
paktype structure 5-6, 5-7

data_area 5-7
datagramsize 5-7
datagramstart 5-7
network_start 5-7

PARAMS macr 23-8
PARAMS_KEYONLY mac r 23-8
parent timers

See managed timers
parentheses, spaces around A-10
parser

chain.c file 23-12
commands

duplicat 23-5
hidden 23-5
internal 23-5
subinterface 23-5
unsupported 23-5

CSB objects 23-13
csb->sense 23-11
descriptio 23-1
GETOBJ 23-13
keyword tokens

parsing 23-4
parsing (example) 23-5
privilege level 23-5
transition diagram (figur e 23-6

keyword-number tokens, parsing 23-8
keyword-number tokens, parsing (example) 23-8
link points

creati n 23-15
descriptio 23-15
displaying 23-16
exit, creat i n23-17
linking commands to 23-16
registering 23-16

macros, overview 23-1
modes

adding 23-18
adding (example) 23-18
aliases, adding 23-18

no commands, processing 23-11
no commands, processing (example) 23-11
nonvolatile output, generating

csb->nv_command 23-12
descriptio 23-1, 23-12

number tokens, parsing 23-6
number tokens, parsing (example) 23-7
OBJ 23-13
optional keywords, parsing 23-8
parse trees

building 23-3
linking 23-12

linking (example 23-12
traversing 23-1
traversing (example) 23-2

PRIV_DUPLICATE fla 23-5
PRIV_HIDDEN fla 23-5
PRIV_INTERNAL flag 23-5
PRIV_MAX fla 23-5
PRIV_MIN flag 23-5
PRIV_NOHELP f l a23-5
PRIV_NONVGEN  f l a23-5
PRIV_ROOT fla 23-5
PRIV_SUBIF flag 23-5
PRIV_UNSUPPORTED fl a 23-5
PRIV_USER flag 23-5
PRIV_USER_HIDDEN fla 23-5
transition structure, definitio 23-2

parser_add_command_list function 23-16
parser_add_link_exit functio 23-17
parser_add_link_point functio 23-16
parser_add_mode function 23-18
particle pools

See particles, pools
particle_dequeue function 5-17
particle_enqueue function 5-17
particle_pool_create function 5-16
particle_pool_create_cache function 5-16
particles

appending to queue 5-17
chains 5-16
coalescing buffers 5-17
descriptio 5-15
paktype structure 5-16
particletype structure 5-15
pools

caches, creatin 5-16
creating 5-16
descriptio 5-16
obtaining particle from 5-17
returning particle t 5-17

removing head particle from queue 5-17
structure 5-15
structure (figure) 5-15

particletype structure
data_bytes 5-15
data_start 5-15
descriptio 5-15

passive timers in the future
definition 15-3
delay

adding to timestamp 15-6
increasing 15-4, 15-6
subtracting from timestam 15-6

expiration, settin 15-3
operation 15-3
startin 15-3
Index-14 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
states
awake 15-2
determining (table) 15-4
expired 15-2
figur 15-2
running 15-2
sleepin 15-2
stopped 15-2
unexpired 15-2

stopping 15-4
passive timers in the past

definition 15-7
determining current timesta m 15-7
elapsed time, determining 15-7
testing whether time is within range 15-8
timestamps

copying 15-7
copying atomically 15-7
current, obtaining 15-7
testing whether time is within bounds 15-8

pci_malloc functio 4-14
performance, designing code for A-13
physical address

definition 4-34
discussio 4-28

PI 25-1
PID

definition 3-1
determining whether PID exists 3-14
how assigned 3-7
retrieving 3-13
values assigned 3-7

pid_list services
adding (example) 13-11
defining 13-10
defining (example 13-11
descriptio 13-8, 13-10
invoking (example) 13-12
wrapper functions 13-11

platform_exception_init function 7-1
example 7-4
prototype 7-4

platform_get_string function 7-7
example 7-8
prototype 7-7

platform_get_value function 7-9
example 7-11
prototype 7-9

platform_interface_init functi o 7-1
example 7-5
prototype 7-5

platform_line_init funct i o7-1
example 7-7
prototype 7-5

platform_main function 7-1

example 7-2
prototype 7-2

platform_memory_init function 7-1
example 7-3
prototype 7-2

PLATFORM_STRING_DEFAULT_HOSTNAME 
flag 7-8

PLATFORM_STRING_HARDWARE_REVISION 
flag 7-8

PLATFORM_STRING_HARDWARE_REWORK 
flag 7-8

PLATFORM_STRING_HARDWARE_SERIAL 
flag 7-8

PLATFORM_STRING_LAST_RESET flag 7-8
PLATFORM_STRING_NOM_DU_JOUR f l a7-8
PLATFORM_STRING_PROCESSOR flag 7-8
PLATFORM_STRING_PROCESSOR_REVISION 

flag 7-8
PLATFORM_STRING_VENDOR fl a 7-8
PLATFORM_VALUE_CPU_TYPE fla 7-10
PLATFORM_VALUE_FAMILY_TYPE fla 7-10
PLATFORM_VALUE_FEATURE_SET fl a 7-9
PLATFORM_VALUE_HARDWARE_REVISION 

flag 7-10
PLATFORM_VALUE_HARDWARE_SERIAL 

flag 7-10
PLATFORM_VALUE_LOG_BUFFER_SIZE  f l a7-10
PLATFORM_VALUE_REFRESH_TIME fla 7-10
PLATFORM_VALUE_SERVICE_CONFIG fla 7-9
PLATFORM_VALUE_VENDOR f l a7-10
pointer arithmetic, performing A-12
pool_adjust function 5-4
pool_adjust_cache function

example 5-13
prototype 5-6

pool_cache_vector structure 5-5
pool_create function 5-3
pool_create_cache functi o 5-5
pool_create_group function

example 5-9
prototype 5-8

pool_dequeue_cache function 5-14
pool_destroy function 5-6
pool_getbuffer function 5-9
pool_getparticle function 5-17
POOL_GROUP_PUBLIC fl a 5-8
pool_item_vectors structur 5-3
pools

See buffers pools, particles
pooltype structure 5-2
port names, IPC, definition 8-3
port table, IPC

descriptio 8-8
entries 8-8

port_info structure 8-13
Index-15



 CISCO CONFIDENTIAL
ports, IPC
closing 8-10
creating by na m 8-9
creating by name, examp l 8-13
definition 8-3
finding by name 8-10
identifier, definition 8-3
multicast, definiti o 8-3
names, reserved 8-5
naming

conventions 8-4
syntax 8-5

opening
by identifier 8-9
by name 8-9

registering by name 8-9
removing 8-10

prepaging, definition 4-35
printf functio 14-6, 16-1
printing strings

See strings, formatting
PRIV_DUPLICATE flag 23-5
PRIV_HIDDEN flag 23-5
PRIV_INTERNAL flag 23-5
PRIV_MAX flag 23-5
PRIV_MIN flag 23-5
PRIV_NOHELP fl a 23-5
PRIV_NONVGEN f l a23-5
PRIV_ROOT flag 23-5
PRIV_SUBIF flag 23-5
PRIV_UNSUPPORTED fla 23-5
PRIV_USER flag 23-5
PRIV_USER_HIDDEN flag 23-5
private lists

See IDBs, private
process ID

See PID
process numbe 3-1
process stacks, memory pools  f o4-13
process_caller_has_events funct i o3-23
process_clear_bitfield funct i o3-22
process_create functi o 3-13

example 3-12
prototype 3-12, 3-13

process_dequeue functi o 3-13, 3-18
process_enqueue functi o 3-12, 3-17
process_enqueue_pak function 3-17
process_exists functi o 3-14
process_get_analyze functio 3-14
process_get_arg_num function 3-14
process_get_arg_ptr functio 3-14
process_get_bitfield functio 3-22
process_get_boolean function 3-19
process_get_crashblock function 3-14
process_get_message functio 3-14

process_get_name function 3-13
process_get_pid function 3-13
process_get_priority function 3-13
process_get_profile function 3-13
process_get_runtime functio 3-13
process_get_stacksize funct i o3-13
process_get_starttime funct i o3-13
process_get_ttynum functi o 3-13
process_get_ttysoc funct i o3-13
process_get_wakeup functio 3-15

example 3-24
prototype 3-13

process_get_wakeup_reasons function 3-13, 3-15
process_is_high_priority functio D-11
process_is_ok functio 3-14
process_is_queue_empty functi o 3-18
process_is_queue_full functi o 3-18
process_keep_bitfield functio 3-22
process_kill func t i o3-16
process_lock_semaphore function 3-21
process_may_suspend function 3-14
process_peek_queue function 3-18
process_pop_event_list function 3-23
process_push_event_list function 3-23
process_queue_resize functi o 3-18
process_queue_size function 3-18
process_requeue function 3-12
process_requeue_pak function 3-13
process_send_message functi o 3-14
process_set_all_profiles function 3-13
process_set_analyze funct i o3-14
process_set_arg_num functio 3-14

example 3-12
prototype 3-12

process_set_arg_ptr funct i o3-14
example 3-12
prototype 3-12

process_set_bitfield functio 3-22
process_set_bitfield_minor fu n c t i o3-22
process_set_boolean functio 3-19
process_set_boolean_minor functio 3-19
process_set_crashblock functio 3-14
process_set_name function 3-13
process_set_priority function

See process_create function
process_set_profile functi o 3-13
process_set_queue_minor function 3-17
process_set_semaphore_minor func t i o3-20
process_set_ttynum functi o 3-13

example 3-12
prototype 3-12

process_set_ttysoc functi o 3-12, 3-13
process_set_wakeup_reasons funct i o3-13
process_sleep_for funct i o3-15
process_sleep_on_timer functio 3-15
Index-16 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
process_sleep_periodic functio 3-15
process_sleep_until funct i o3-15
process_suspend functio 3-14
process_suspends_allowed funct i o3-15
process_time_exceeded functi o 3-14
process_unlock_semaphore function 3-21
process_wait_for_event function

example 3-24
prototype 3-15

process_wait_for_event_timed funct i o3-15
process_wait_on_system_config function 3-16
process_wait_on_system_init functi o 3-16
process_wakeup function 3-15
process_wakeup_w_reason functio 3-15
process_watch_bitfield functio 3-22
process_watch_boolean functio 3-19
process_watch_mgd_timer functi o 15-11

example 3-24, 3-25
prototype 3-13

process_watch_queue function
example 3-24, 3-25
prototype 3-17

process_watch_semaphore functio 3-21
process_watch_timer funct i o3-13
process_would_suspend function 3-15
processes

adding to a queue 3-12
analyzing post-mortem 3-14
arguments

passing 3-14
retrieving 3-14

controlling terminal, setting 3-13
creati n 3-7, 3-12, D-8
creating (example 3-12
delaying

example 3-16
until interfaces configured 3-16
until system initializes 3-16

descriptio 3-6
destroying 3-16
determining whether PID exists 3-14
determining whether queue is empty 3-18
determining whether queue is full 3-18
event lists, changing 3-23
event lists, testi n 3-23
execution by scheduler 3-7
first item on queue 3-18
kill i n3-16
maximum size of watched queue 3-18
messages

descriptio 3-8
retrieving for 3-14
sending to 3-14

moving between queues 3-9
name

retrieving 3-13
setti n 3-13

PID
how assigned 3-7
retrieving 3-13
values assigned 3-7

priorit 3-9
criti c a3-9
definition 3-8
high 3-9
low 3-10
medium 3-9
retrieving 3-13
setti n 3-13

profiles, settin 3-13
registering on a timer 3-13
relinquishing the CPU 3-14
removing from a queue 3-13
resizing a queue 3-18
running time, retrieving 3-13
size of watched queu 3-18
stack size, retrievin 3-13
starting time, retrievin 3-13
state

dead 3-8
hung 3-8
ready to run 3-7
running 3-7
sleeping (absolute time) 3-7
sleeping (interval) 3-7
sleeping (managed timer 3-8
sleeping (periodic) 3-8
suspended 3-7
table 3-7
waiting for even 3-7

stopping
descriptio 3-7
when system crashes 3-14

suspending
conditional l 3-14
determining context 3-15
determining whether ready to run 3-15
determining whether to 3-14
for specified amount of tim 3-15
for specified time interv a 3-15
unconditionally 3-14
until absolute time 3-15
until asynchronous event occurs 3-15
until managed timer expires 3-15

suspending (table) 3-14
THIS_PROCESS flag 3-16
waking up 3-15
waking up, reasons for 3-13, 3-15

retrieving 3-15
profile blocks
Index-17



 CISCO CONFIDENTIAL
creati n C-3
definition C-1
deleting C-4
zeroin C-4

profile comma n C-3, C-5
profile hogs commands C-5
profile start comman C-4
profile stop commad C-4
profile task command C-4
profiling, CPU

See CPU profiling
PUTLONG ma c r22-9
PUTSHORT mac r 22-9

Q

queue, dead
See dead queue

queue_init function
example 20-4, 20-5
prototype 20-2

QUEUEEMPTY macr 20-3
QUEUEFULL ma c r20-3
QUEUEFULL_RESERVE mac r 20-3
queues

adding processes to 3-12
available space, determining 20-3
changing minor identifier 3-17
creati n 3-17
critical, operation D-4
critical-priority, operation (figure D-4
definition 3-17
deleting 3-18
descriptio 20-1
determining whether empty 3-18
determining whether full 3-18
determining whether item is on queue 20-3
direct

See direct queues
empty, determining whether 20-3
enqueuing items on 3-13, 3-17
full, determining whether 20-3
high-priority, operation D-4
high-priority, operation (figure) D-5
indirect

See indirect queues
initializi n 20-2
low-priority operation (figure) D-7
low-priority, operation D-6
medium-priority operation (figure) D-7
medium-priority, operation D-6
moving processes between 3-9
number of items on queue, determining 20-3
operation, description 3-10, D-3

operation, description (figure) 3-11, D-3
priority (figure D-2
registering a process on 3-17
removing items from 3-18
removing processes fro 3-13
resizing 3-18
types of 3-8
See also doubly linked lists, list manager, singly linked 

lists
queues, compatibility

See compatibility queues
queues, idle

See idle queue
queues, ready

See ready queues
QUEUESIZE ma c r20-3

R

radix trees
initializi n 19-8
nodes

deleting 19-9
insertin 19-8
searching for 19-9

overview 19-2
parent nodes, marking 19-9
walking 19-8

raise_interrupt_level function A-15
RB trees

allocatin 19-2
creating 19-2
deleting 19-4
initializing tree header data stru c t u r19-2
nodes

adding to free list 19-4
applying function to 19-3
busy, marking as 19-4
collecting free node 19-4
deleting 19-4
determining number not busy 19-3
determining whether deleted 19-3
inserting into tree 19-3
number of, determining 19-3
placing on free list 19-4
printing 19-4
protection stat 19-4
searching for 19-3

overview 19-2
RBFreeNodeCount function 19-3
RBPrintTreeNode functio 19-4
RBReleasedNodeCount functio 19-3
RBTreeAddToFreeList function 19-4
RBTreeBestNode function 19-3
Index-18 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
RBTreeCreate functio 19-2
RBTreeDelete functio 19-4
RBTreeFirstNode function 19-3
RBTreeForEachNodeTilFalse function 19-3
RBTreeGetFreeNode functio 19-3
RBTreeInsert functio 19-3
RBTreeLexiNode function 19-3
RBTreeNearBestNode function 19-3
RBTreeNextNode function 19-3
RBTreeNodeDeleted function 19-3
RBTreeNodeProtect function 19-4
RBTreeNodeProtected function 19-4
RBTreePrint function 19-4
RBTreeSearch function 19-3
RBTreeTrimFreeList functio 19-4
ready queues 3-8
ready-to-run proce s 3-7
Red-Black trees

See RB trees
refcount field 5-10
.reg file

definition 13-2
example 13-5
format 13-3

.regc fil 13-2

.regh file 13-2
region manager

definition 4-1
memory hierarchy, defining 4-3
region hierarchy, defining 4-6
registering a region with 4-4
registering region with (example) 4-4

region_add_alias function
example 4-7
prototype 4-7

REGION_CLASS_FAST fla 4-5
REGION_CLASS_FLASH fla 4-5
REGION_CLASS_IMAGEBSS fl a 4-5
REGION_CLASS_IMAGEDATA f l a4-5
REGION_CLASS_IMAGETEXT  f l a4-5
REGION_CLASS_IOMEM fla 4-5
REGION_CLASS_LOCAL fla 4-5
REGION_CLASS_PCIMEMflag 4-5
region_create function

example 4-4
prototype 4-4

region_exists function 4-9
region_find_by_addr function

example 4-9
prototype 4-8

region_find_by_attributes function 4-8
region_find_by_class function

example 4-9
prototype 4-8

region_find_next_by_attributes function 4-8

region_find_next_by_class function
example 4-9
prototype 4-8

REGION_FLAGS_DEFAULT  f l a4-8
REGION_FLAGS_INHERIT_CLASS fl a 4-8
REGION_FLAGS_INHERIT_MEDIA fl a 4-8
region_get_class function 4-10
region_get_media function 4-10
region_get_size_by_attributes function 4-9
region_get_size_by_class function

example 4-10
prototype 4-9

region_get_status function 4-10
REGION_MEDIA_ANY f l a4-6
REGION_MEDIA_READONLY  f l a4-6
REGION_MEDIA_READWRITE fla 4-6
REGION_MEDIA_UNKNOW N  f l a4-6
REGION_MEDIA_WRITEONLY fla 4-6
region_set_class function 4-4
region_set_media function

example 4-6
prototype 4-5

REGION_STATUS_ALIAS fla 4-6
REGION_STATUS_ANY f l a4-6
REGION_STATUS_CHILD fla 4-6
REGION_STATUS_PARENT fla 4-6
regions

aliases
declaring 4-7
declaring (example) 4-7
definition 4-6
overview 4-7

attributes
overview 4-2
retrieving (table) 4-10
setting (table 4-10

child, definition 4-6
classes

definition 4-3
hierarchy 4-3
REGION_CLASS_FAST fla 4-5
REGION_CLASS_FLASH fla 4-5
REGION_CLASS_IMAGEBSS fl a 4-5
REGION_CLASS_IMAGEDATA f l a4-5
REGION_CLASS_IMAGETEXT  f l a4-5
REGION_CLASS_IOMEM fla 4-5
REGION_CLASS_LOCAL fla 4-5
REGION_CLASS_PCIMEM flag 4-5
retrieving 4-10
setti n 4-4
table 4-5

creating 4-4
creating (example) 4-4
declaring 4-3
definition 4-1
Index-19



 CISCO CONFIDENTIAL
description (figure) 4-2
determining if region exists 4-9
hierarchy

aliase 4-6, 4-7
chil 4-6
establishing 4-3, 4-6
figur 4-7
parent 4-6
REGION_STATUS_ALIAS fla 4-6
REGION_STATUS_ANY f l a4-6
REGION_STATUS_CHILD fla 4-6
REGION_STATUS_PARENT fla 4-6
types (table) 4-6

inheritance attributes
REGION_FLAGS_DEFAULT  f l a4-8
REGION_FLAGS_INHERIT_CLASS fl a 4-8
REGION_FLAGS_INHERIT_MEDIA fl a 4-8
setti n 4-8
table 4-8

media access attributes
example 4-6
REGION_MEDIA_ANY f l a4-6
REGION_MEDIA_READONLY  f l a4-6
REGION_MEDIA_READWRITE f l a4-6
REGION_MEDIA_UNKNOW N  f l a4-6
REGION_MEDIA_WRITEONLY fla 4-6
retrieving 4-10
setti n 4-5
table 4-6

overview 4-2
parent, definitio 4-6
parent-child hierarchy, determining 4-6
region manager 4-1
searching through 4-8
size

determining 4-9
example 4-10

status, determining 4-10
register declarations, using A-16
register storage class, using A-7
registries 13-2

.c file
definition 13-2

.h file
definition 13-2

.reg file
definition 13-2
example 13-5
format 13-3

.regc fil 13-2

.regh file 13-2
compilation proce s 13-2
definition 13-1
designing A-4
files created by registry compil e 13-2

metalanguage 13-3
registry compiler, definition 13-1
service initialization routines 13-2
services, defining 13-2
wrapper functions 13-2

registry compiler, definition 13-1
remqueue function 20-4
req: property 12-2, 12-3
reset_interrupt_level function A-15
retbuffer functi o 5-10
retparticle function 5-17
return statement, spaces w i tA-10
retval services, descriptio 13-8, 13-14
RFC 1-9, 25-1
RFCs

854 24-9
1212 24-7
1213 24-28
1516 24-8
1573 24-6, 24-19
1902 24-7, 24-15, 24-19, 24-40
1903 24-9, 24-15
1904 24-4, 24-14, 24-15
1905 24-12

rn_addroute function 19-8
rn_delete function 19-9
rn_inithead function 19-8
rn_mark_parents function 19-9
rn_match function 19-9
rn_walktree function 19-8
rn_walktree_blocking function 19-8
rn_walktree_blocking_list function 19-8
rn_walktree_timed function 19-8
rn_walktree_version function 19-9
ROM monitor

bootstrapping Cisco IOS image 2-2
calling an entry point to Cisco IOS i m a g2-3
initializing a platf o r2-1

RPCs, IPC
setting timeout per i o8-12
simulating asynchronous response 8-12
simulating send 8-12
simulating synchronous response 8-12

running process 3-7

S

s_tohigh function D-12
See process_create function

s_tolow function D-13
See process_create function

scatter-gather DMA
See particles

scheduler
Index-20 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
bit fields
changing minor identifier 3-22
clearing specified bi t 3-22
creati n 3-21
definition 3-21
deleting 3-22
registering a process o 3-22
retrieving value of 3-22
setting specified b i t3-22

booleans
changing minor identifier 3-19
changing value of 3-19
creati n 3-19
definition 3-19
deleting 3-20
registering a process o 3-19
retrieving value of 3-19

compatibility que u eD-2
dead queue 3-9
example 3-23
housekeeping operations 3-10, D-3
idle queue 3-9
messages 3-8, 3-14
new, definitio D-1
nonpreemptive 3-1
objects, description 3-16
old, definition D-1
overview 3-1
process states

dead 3-8
hung 3-8
ready to run 3-7
running 3-7
sleeping (absolute ti m e3-7
sleeping (interva l 3-7
sleeping (managed tim e r3-8
sleeping (period i c3-8
suspended 3-7
table 3-7
waiting for ev e n3-7

processes
descriptio 3-6
event lists, changing 3-23
event lists, testi n 3-23
executin 3-7
moving between queues 3-9
PID 3-7
priorit 3-8, 3-9
stopping 3-7

queues
adding processes to 3-12
changing minor identifier 3-17
creati n 3-17
critical, operation D-4
critical-priority, operation (figure D-4

definition 3-17
deleting 3-18
enqueuing items on 3-13, 3-17
first item  o3-18
high-priority, operation D-4
high-priority, operation (figure) D-5
low-priority, operation D-6
low-priority, operation (figure) D-7
maximum size of watched queue 3-18
medium-priority, operation D-6
medium-priority, operation (figure) D-7
operation, description 3-10, D-3
operation, description (figure) 3-11, D-3
priority (figure D-2
registering a process on 3-17
removing items from 3-18
resizing 3-18
size of watched queu 3-18
types of 3-8

ready queues 3-8
semaphores

changing minor identifier 3-20
creating 3-20
definition 3-20
deleting 3-21
locking 3-20, 3-21
locking atomicall 3-21
managed 3-20
registering a process on 3-21
simple 3-20
unlocking 3-20, 3-21
unlocking atomical l 3-21
watched 3-20

threads
See scheduler, processes

seat manager, IPC, definitio 8-4
seat table, IPC

descriptio 8-7
entries 8-7

seats, IPC
adding 8-8
definition 8-4
resetti n 8-8
retrieving from seat tabl 8-8

secs_and_nsecs_since_jan_1_1970 function 14-3
semaphore data structure 3-20
semaphores

changing minor identifier 3-20
creating 3-20
definition 3-20
deleting 3-21
locking 3-20
locking atomicall 3-21
managed

definition 3-20
Index-21



 CISCO CONFIDENTIAL
locking 3-21
unlocking 3-21

registering a process o 3-21
simple

definition 3-20
locking 3-21
unlocking 3-21

unlocking 3-20
unlocking atomically 3-21
watched, definition 3-20

seq: propert 12-2
service config command 7-9
service point, definition 13-8
services

case services
adding (example) 13-13
adding default (example) 13-14
defining 13-12
defining (example 13-13
descriptio 13-8, 13-12
invoking (example) 13-14
wrapper functions 13-12

definition 13-1, 13-8
list services

adding (example) 13-10
defining 13-9
defining (example 13-9
descriptio 13-8, 13-9
invoking (example) 13-10
wrapper functions 13-9

loop services
adding (example) 13-15
defining 13-14
defining (example 13-15
descriptio 13-8, 13-14
invoking (example) 13-16
wrapper functions 13-15

pid_list services
adding (example) 13-11
defining 13-10
defining (example 13-11
descriptio 13-8, 13-10
invoking (example) 13-12
wrapper functions 13-11

retval services, descriptio 13-8, 13-14
service point, definition 13-8
stub services

adding (example) 13-17
defining 13-16
defining (example 13-17
descriptio 13-8, 13-16
invoking (example) 13-17
wrapper functions 13-16

types o 13-8
value services

adding (example) 13-19

adding default (example) 13-19
defining 13-18
defining (example) 13-18
descriptio 13-8, 13-17
invoking (example) 13-19
wrapper functions 13-18

set_if_input function 5-14
show chunk command 4-21
show memory failures allocation comman 4-16
show parser links command 23-16
show profile comma n C-5
signal_oneshot function

example 17-3
prototype 17-2

signal_permanent function
example 17-3
prototype 17-3

signal_send function
example 17-4
prototype 17-3

signals
exceptio 17-1
sending 17-3

signed types, in code A-7
Simple Network Management Protocol

See SNMP
singly linked lists

types of 20-1
with queuing blocks, See indirect queues
See also queues, direct; queues, indirect

SLEEPING macro
guidelines for using 15-4
prototype 15-4

sleeping proce s 3-7, 3-8
SMI

ASN.1 application types 24-8
ASN.1 primitive data type 24-8
components 24-2
definition 24-2
overview 24-8
textual conventions 24-9

SNMP
agent, definitio 24-2
applications, design considerations 24-11
asynchronous notifications

controllin 24-32
defining 24-32
descriptio 24-3
generatin 24-35
implementin 24-31
informs, definitio 24-3
location 24-32
snmp-server enable comma n 24-33
snmp-server host command 24-32
traps, definition 24-3

conceptual tables
Index-22 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
complex 24-7
definition 24-6
index objects, coding 24-7
simple 24-6
tables inside tables 24-7

manager, definition 24-2
modularity, observing 24-29
operations 24-39
overview 24-1 t o24-3
RFCs 24-15
security facili t i e24-3
textual conventions 24-9
transport protocols 24-3

snmp-server host command 24-32
snmp-servier enable comman 24-33
snmp-servier host comma n 24-32
sockets 10-1
soutput vector 6-21
sprintf functio 16-1, A-15
stacks, interrupt, memory pools  f o4-13
static storage class, usi n A-7, A-11
storage classes, usin A-11
strings, formatting

AppleTalk addresses 16-4
Banyan VINES addresses 16-7
debugging messages 16-1
placing into buffer 16-1
time 16-2
timestamps 16-3
user command output 16-1

Structure of Management Information
See SMI

stub functions, not using A-4
stub services

adding (example) 13-17
defining 13-16
defining (example 13-17
descriptio 13-8, 13-16
invoking (example) 13-17
wrapper functions 13-16

stubbing out code A-10
style

VM coding and mathematical notations 4-31
subblocks

adding to IDB 6-17
deleting from IDB 6-19
dynamic, description 6-17
obtaining pointer

to hardware ID 6-17, 6-18
to software IDB 6-18

releasing IDB 6-18
subiabtype data structure 1-9, 25-2
subinterfaces

creati n 6-14
freei n 6-16

unlinking 6-16
SUBSYS_CLASS_KERNEL flag 12-3
SUBSYS_CLASS_LIBRARY flag 12-3
SUBSYS_CLASS_MANAGEMENT fl a 12-3
SUBSYS_CLASS_PROTOCOL flag 12-3
SUBSYS_CLASS_REGISTRY flag 12-2
SUBSYS_HEADER macr 12-3, 12-4, 12-5
subsystems

classes
choosing 12-1
list o 12-1

creating 12-5
defining 12-3
defining (example 12-4
descriptio B-1
designin A-3
error messag e 12-3
header, defining 12-3
header, defining (example) 12-4
properties 12-2
req: property 12-2, 12-3
requirements property 12-2, 12-3
seq: property 12-2
sequencing property 12-2
structure, fill i n12-5
subsystype structure 12-5
tips for usin 12-5

subsystype structure 12-5
summer time

descriptio 14-2
testing for 14-4

suspended process 3-7
switch statements, using fall through A-12
switching

autonomous 21-2
fast 21-2, 21-2 t o21-11
proces 21-1
silico 21-2
slow 21-1

sys_timestamp structur 15-2
system clock

descriptio 14-2
setti n 14-4

system initialization
basic 2-1
by ROM monitor 2-1
descriptio 2-1 to 2-7
fundamental (figure) 2-5
of Cisco IOS image 2-6

system_uptime_seconds function 15-17

T

TEST_MULTIPLE_FUNCS mac r 23-9
Index-23



 CISCO CONFIDENTIAL
THIS_PROCESS flag 3-16
threads

See processes
time formats

clock_epoch structure 14-1
convert between 14-4
timeval structure 14-2
UNIX forma 14-2

time of day
clock/calendar, in hardwar 14-3
current time, gettin 14-3
daylight savings time

descriptio 14-2
testing for 14-4

epoch
clock_epoch structure 14-1
definition 14-1

NTP 14-3
summer time

descriptio 14-2
testing for 14-4

system clock
descriptio 14-2
setti n 14-4

time formats
clock_epoch structure 14-1
convert between 14-4
timeval structure 14-2
UNIX forma 14-2

time source, determining 14-3
time strings, formatting 14-6, 16-2
time validity, determini n 14-4
time zone name 14-3
time zone offset, determining 14-3
time zones 14-2

time, format for printing 16-2
TIME_LEFT_SLEEPING m a c r15-4
TIME_LEFT_SLEEPING64 ma c r15-4
TIMER_ADD_DELTA ma c r15-6
TIMER_ADD_DELTA64 mac r 15-6
TIMER_EARLIER macro 15-8
TIMER_LATER mac r 15-8
TIMER_RUNNING ma c r15-4
TIMER_RUNNING_AND_AWAKE m a c r15-4
TIMER_RUNNING_AND_SLEEPI N G  m a c r15-4
TIMER_SOONEST mac r 15-5
TIMER_START macro

example 15-6
prototype 15-3

TIMER_START_ABSOLUTE macr 15-3
TIMER_START_ABSOLUTE64 macr 15-3
TIMER_START_GRANULAR ma c r15-3
TIMER_START_GRANULAR64 mac r 15-3
TIMER_START_JITTERED macro 15-3
TIMER_START64 macro 15-3

TIMER_STOP macro 15-4
TIMER_SUB_DELTA mac r 15-6
TIMER_SUB_DELTA64 macr 15-6
TIMER_UPDATE ma c r15-6
TIMER_UPDATE_GRANULAR m a c r15-4
TIMER_UPDATE_GRANULAR64 ma c r15-4
TIMER_UPDATE_JITTERED m a c r15-6
TIMER_UPDATE64 mac r 15-6
timers

See managed timers, passive timers in the future, passive 
timers in the past

TIMERS_EQUAL ma c r15-5
TIMERS_NOT_EQUAL ma c r15-5
timestamps

comparing 15-5, 15-8
copying 15-7
copying atomicall 15-7
current, obtaining 15-7
descriptio 15-1
earlier, determinin 15-5
elapsed time, determining 15-7
equality

determining whether equal 15-5
determining whether unequal 15-5

formatting 16-3
sys_timestamp structur 15-2
system clock 15-1
testing whether time is within bounds 15-8
See also passive timers in the past

timeval structur 14-2
tokens, parsing

keyword-number combinations 23-8
keyword-number combinations (example) 23-8
keywords 23-4
keywords (example) 23-5
numbers 23-6
numbers (example) 23-7
optional keywords 23-8

transition structure, parser 23-2
traps, definition 24-3
trees, binary

See AVL trees, radix trees, RB trees
typecasting, in code A-6

U

unix_time functio 14-3
unix_time_is_in_summer functi o 14-4
unix_time_string function 14-6
unix_time_to_epoch function 14-4
unix_time_to_timeval function 14-4
unlock_semaphore function 3-21
unprofile comman C-4
unprofile task command C-4
Index-24 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.



 CISCO CONFIDENTIAL
unqueue function
example 20-4
prototype 20-4

unsigned types, in code A-7
update-mibs.pl script, invoking 24-20

V

value services
adding (example) 13-19
adding default (example) 13-19
defining 13-18
defining (example 13-18
descriptio 13-8, 13-17
invoking (example) 13-19
wrapper functions 13-18

virtual address
definition 4-34
discussio 4-28

virtual addresses vs. physical addresses 4-28
virtual memory

addressing basics 4-28
advice on using 4-29
basic terms and concepts 4-32
benefits and costs 4-26
coding and mathematical notation style 4-31
definition 4-33
engineering effort to port 4-26
overview of Cisco IOS implementation 4-25
Paging Game, a humorous introduction 4-24
requirements 4-26
rules of Cisco IOS 4-27
steps in porting to a platform 4-29

VM
see virtual memor 4-24

volatile keyword, using A-16

W

waiting-for-event pr o c e s3-7
watched boolean

See booleans
watched_semaphore data structure 3-20
WAVL trees

See AVL trees
wavl_delete function 19-7, 19-9
wavl_delete_thread function 19-7
wavl_finish function 19-8
wavl_get_first function 19-7
wavl_get_next function 19-7
wavl_init function 19-6
wavl_insert function 19-7

wavl_insert_thread function 19-7
wavl_search function 19-7, 19-8
wavl_walk function 19-7
words

extracting from byte stream 22-9
inserting into byte strea 22-9

working se 4-36
wrapped AVL trees

See AVL trees, wrapped

X

XAWAKE macro
guidelines for using 15-5
prototype 15-4

XSLEEPING macro
guidelines for using 15-5
prototype 15-4

Z

zone manager, IPC, definition 8-4
zones, IPC, definition 8-4
Index-25



 CISCO CONFIDENTIAL
Index-26 Cisco IOS Programmer’s Guide/Architecture Reference  A printed version of this document is an
Software Release 12.0 uncontrolled copy. The latest version is

http://wwwin-enged.cisco.com/ios/doc/pg/12_0/index.pg.html.


	Cisco IOS Programmer’s Guide/ Architecture Reference
	Change History
	Changes in the Fifth Edition (February 1999)
	Changes in the Fourth Edition (December 1997)
	Changes in the Third Edition (September 1996)
	Changes in the Second Edition (February 1996)

	Figures
	Tables
	About This Manual
	Document Objectives
	Audience
	Document Organization
	Document Conventions

	PART 1
	Overview
	Overview
	1.1 Cisco IOS Software Components
	1.2 Scalability Changes
	1.2.1 Subblock and Lists
	1.2.2 Extensible Plugin Driver API
	1.2.3 Event-Driven Scheduling
	1.2.4 Other Scalability Changes

	1.3 Kernel Services
	1.3.1 Scheduler
	1.3.2 Memory Management
	1.3.3 Pools, Buffers, and Particles
	1.3.4 Interfaces and Drivers
	1.3.5 Platform-Specific Support
	1.3.6 Socket Interface
	1.3.7 Interprocess Communications (IPC) Services
	1.3.8 ANSI C Library

	1.4 Kernel Support Services
	1.4.1 Subsystems
	1.4.2 Registries and Services
	1.4.3 Timer Services and Time-of-Day Services
	1.4.4 Strings and Character Output
	1.4.5 Exception Handling
	1.4.6 Debugging and Error Logging

	1.5 Network Services
	1.5.1 Binary Trees
	1.5.2 Queues and Lists
	1.5.3 Switching

	1.6 Hardware-Specific Design
	1.6.1 Porting Cisco IOS Software to a New�Platform

	1.7 Network Service and Protocols
	1.8 Management Services
	1.8.1 Command-Line Parser
	1.8.2 Writing, Testing, and Publishing MIBs
	1.8.3 IF-MIB


	System Initialization
	2.1 Overview: System Initialization
	2.2 Basic Initialization
	2.2.1 Initialization by the ROM Monitor
	2.2.2 Bootstrap a Cisco IOS Image
	2.2.2.1 Bootstrap a Cisco IOS Image from ROM
	2.2.2.2 Bootstrap a Cisco IOS Image from a Network
	2.2.2.3 Bootstrap a Cisco IOS Image from Flash Memory

	2.2.3 Allow the Cisco IOS Image to Take Control of the Platform
	2.2.4 Fundamental Initialization

	2.3 Cisco IOS Initialization Process
	2.4 Enhanced High System Availability (EHSA)
	2.5 Overview
	2.5.1 Master-Slave Communications
	2.5.2 Health Monitoring
	2.5.3 Slave Access and Information Requirements
	2.5.3.1 File System
	2.5.3.2 Boot Parameters
	2.5.3.3 Time
	2.5.3.4 Future Projects
	2.5.3.5 Version Compatibility
	2.5.3.6 Auto Sync
	2.5.3.7 Slave Console
	2.5.3.8 Slave Message Logging on Master
	2.5.3.9 Seamless Software Upgrades
	2.5.3.10 Mac Addresses

	2.5.4 Basic Flow and Operation
	2.5.4.1 Basic Slave Operation
	2.5.4.2 Initialization
	2.5.4.3 Interaction with the Boot Loader Image


	2.6 Implementation Guide
	2.6.1 Initializing EHSA
	2.6.1.1 SUBSYS_CLASS_EHSA

	2.6.2 EHSA APIs
	2.0.0.1 Actions on Status -State Transitions
	2.0.0.2 Using ehsa_event() to Trigger State Transitions

	2.0.1 Examples
	2.0.1.1 IPC Setup
	2.0.1.2 Determining Primary/Secondary Status
	2.0.1.3 Platform Initialization of EHSA Information and Vectors

	2.0.2 The Secondary Background Process
	2.0.3 The Primary Background Process
	2.0.4 Changes in the Initialization Sequence

	2.1 Common EHSA CLI
	2.1.1 Platforms Currently Represented
	2.1.2 General Redundancy (EHSA) CLI Syntax
	2.1.2.1 Redundancy Configuration
	2.1.2.2 Redundancy Display
	2.1.2.3 Redundancy Operations

	2.1.3 Santa (6400) Redundancy CLI

	2.2 EHSA Crash Handling
	2.2.1 Background
	2.2.2 What happens when a Primary crashes?
	2.2.3 What happens when a Secondary crashes?
	2.2.4 Summary of Routines and Code Additions



	PART 2
	Kernel Services
	Scheduler
	3.1 Scalability Changes
	3.1.1 Important Coding Guidelines
	3.1.2 if_onesec Registry Removed
	3.1.3 Event Driven Route Adjustment Message
	3.1.4 API for Keepalive and Other Periodic Intervals
	3.1.4.1 New Implementation
	3.1.4.2 Setting the Periodic Interval
	3.1.4.3 Setting Keepalive Frames
	3.1.4.4 Hardware IDB Field Name Changes

	3.1.5 FYI: Backup System Changes

	3.2 Processes: Overview
	3.2.1 How a Process Is Created
	3.2.2 How a Process Stops
	3.2.3 How the Scheduler Executes a Process
	3.2.4 Process States
	3.2.5 Scheduler Messages

	3.3 Queues and Process Priorities
	3.3.1 Scheduler Queues
	3.3.1.1 Ready Queues
	3.3.1.2 Idle Queue
	3.3.1.3 Dead Queue
	3.3.1.4 Moving Processes between Queues

	3.3.2 Process Priorities
	3.3.3 Operation of Scheduler Queues

	3.4 Manage Processes
	3.4.1 Create a Process
	3.4.1.1 Create a Process: Example

	3.4.2 Enqueue Data for a Process
	3.4.3 Dequeue Data from a Process
	3.4.4 Register a Process for Notification on a Timer
	3.4.5 Set and Retrieve Information about a Process
	3.4.6 Send a Message to a Process
	3.4.7 Retrieve Messages for a Process
	3.4.8 Determine Whether a Process Exists
	3.4.9 Suspend a Process
	3.4.10 Wake Up a Process
	3.4.11 Delay a Process
	3.4.11.1 Delay a Process: Example

	3.4.12 Destroy a Process

	3.5 Scheduler Objects: Overview
	3.6 Manage Queues
	3.6.1 Queue: Definition
	3.6.2 Create a Watched Queue
	3.6.3 Modify the Queue Minor Type
	3.6.4 Register a Process for Notification on a Watched Queue
	3.6.5 Enqueue an Item onto a Watched Queue
	3.6.6 Dequeue an Item from a Watched Queue
	3.6.7 Locate an Item on the Queue
	3.6.8 Determine the Size of a Watched Queue
	3.6.9 Resize a Watched Queue
	3.6.10 Determine Whether a Queue is Full or Empty
	3.6.11 Delete a Watched Queue

	3.7 Manage Booleans
	3.7.1 Boolean: Definition
	3.7.2 Create a Watched Boolean
	3.7.3 Modify the Boolean Minor Type
	3.7.4 Set the Value of a Watched Boolean
	3.7.5 Retrieve the Value of a Watched Boolean
	3.7.6 Register a Process for Notification on a Watched Boolean
	3.7.7 Delete a Watched Boolean

	3.8 Manage Semaphores
	3.8.1 Semaphore: Definition
	3.8.2 Create a Watched Semaphore
	3.8.3 Modify the Semaphore Minor Type
	3.8.4 Lock and Unlock a Semaphore
	3.8.5 Register a Process for Notification on a Watched Semaphore
	3.8.6 Delete a Watched Semaphore

	3.9 Manage Bit Fields
	3.9.1 Bit Fields: Definition
	3.9.2 Create a Watched Bit Field
	3.9.3 Modify the Bit Field Minor Type
	3.9.4 Register a Process for Notification on a Watched Bit Field
	3.9.5 Retrieve the Value of a Watched Bit Field
	3.9.6 Set Bits in a Watched Bit Field
	3.9.7 Clear Bits in a Watched Bit Field
	3.9.8 Delete a Watched Bit Field

	3.10 Manage Sets of Scheduler Objects
	3.11 Scheduler: Example Code
	Process Setup
	Main Loop
	Exit Handler


	Memory Management
	4.1 Overview: Memory Management
	4.1.1 Regions and the Region Manager
	4.1.2 Memory Pools, Memory Pool Manager, and Free Lists
	4.1.3 Chunk Manager
	4.1.4 Relationship between Regions, Memory Pools, and Chunks

	4.2 Regions
	4.2.1 Regions: Definition
	4.2.2 Region Classes: Definition
	4.2.3 Region Hierarchies: Definition
	4.2.4 Create a Region
	4.2.4.1 Create a Region: Example

	4.2.5 Set a Region’s Class
	4.2.5.1 List of Region Classes

	4.2.6 Set Media Access Attributes
	4.2.6.1 List of Media Access Attributes
	4.2.6.2 Example: Media Access Attributes

	4.2.7 Establish Region Hierarchy
	4.2.7.1 Region Hierarchy Types
	4.2.7.2 Region Hierarchy Example

	4.2.8 Establish an Alias Region
	4.2.8.1 Example: Establish an Alias Region

	4.2.9 Set Inheritance Attributes
	4.2.9.1 List of Region Inheritance Flags

	4.2.10 Search through Memory Regions
	4.2.10.1 Example: Search through Memory Regions by Address
	4.2.10.2 Example: Search through Memory Regions by All Attributes

	4.2.11 Determine Whether a Region Class Exists
	4.2.12 Determine a Region’s Size
	4.2.12.1 Example: Determine a Region’s Size

	4.2.13 Retrieve a Region’s Attributes

	4.3 Memory Pools
	4.3.1 Overview: Memory Pools
	4.3.2 Free Lists: Overview
	4.3.3 Create a Memory Pool
	4.3.3.1 Example: Create a Memory Pool

	4.3.4 Add Regions to a Memory Pool
	4.3.5 Set a Memory Pool’s Class
	4.3.5.1 Mandatory Memory Pool Classes
	4.3.5.2 Aliasable Memory Pool Classes
	4.3.5.3 List of Memory Pool Classes

	4.3.6 Alias Memory Pools
	4.3.6.1 Example: Alias Memory Pools

	4.3.7 Create Alternate Memory Pools
	4.3.7.1 Example: Create Alternate Memory Pools

	4.3.8 Allocate Memory
	4.3.8.1 Allocate Unaligned Memory
	4.3.8.2 Allocate Aligned Memory
	4.3.8.3 Comparison of Memory Allocation Functions
	4.3.8.4 Guidelines for Allocating Memory
	4.3.8.5 Example: Allocate Memory

	4.3.9 Return Memory
	4.3.10 Lock and Return Memory
	4.3.10.1 Example: Lock Memory

	4.3.11 Add Free List Sizes
	4.3.11.1 Example: Add Free List Sizes

	4.3.12 Specify Low-Memory Actions
	4.3.12.1 Set the Low-Memory Threshold
	4.3.12.2 Set the Fragment Threshold
	4.3.12.3 Determine Whether Memory Is Low

	4.3.13 Search through Memory Pools
	4.3.13.1 Example: Search through Memory Pools by Memory Pool Address
	4.3.13.2 Example: Search through Memory Pools by Memory Pool Class

	4.3.14 Retrieve Statistics about a Memory Pool

	4.4 Chunk Manager
	4.4.1 Overview: Chunk Manager
	4.4.2 Guidelines for Using the Chunk Manager
	4.4.3 Create a Memory Chunk
	4.4.3.1 Example: Create a Memory Chunk

	4.4.4 Allocate and Return a Memory Chunk Element
	4.4.4.1 Example: Allocate a Memory Chunk

	4.4.5 Lock a Memory Chunk
	4.4.6 Destroy a Memory Chunk

	4.5 Memory Management Examples
	4.5.1 Determine Amount of Memory Available

	4.6 Virtual Memory
	4.6.1 Introduction to VM
	4.6.1.1 The Paging Game: Rules
	4.6.1.2 The Paging Game: Notes

	4.6.2 Overview of Cisco IOS VM
	4.6.2.1 Requirements
	4.6.2.2 Benefits and Costs

	4.6.3 Engineering Effort
	4.6.4 VM Rules
	4.6.5 VM Primer
	4.6.5.1 Virtual Addresses vs. Physical Addresses
	4.6.5.2 What is an “address interval”?
	4.6.5.3 Advice on Using VM

	4.6.6 Porting VM to a Platform
	4.6.7 Wish List
	4.6.8 Style Considerations
	4.6.9 Basic VM Terms and Concepts


	Pools, Buffers, and Particles
	5.1 Buffer Management: Overview
	5.2 Generic Pool Management
	5.2.1 Pool Structure
	5.2.2 Pool Groups and Size
	5.2.3 Static and Dynamic Pools: Definition
	5.2.4 Permanent and Temporary Items: Definition
	5.2.5 Create a Pool
	5.2.6 Adjust a Pool

	5.3 Pool Caches
	5.3.1 Overview: Pool Caches
	5.3.2 Structure of a Pool with a Cache
	5.3.3 Add a Pool Cache
	5.3.4 Fill a Pool Cache
	5.3.5 Destroy a Cache

	5.4 Buffer Structure
	5.4.1 Buffer Headers
	5.4.2 Buffer Data Blocks
	5.4.2.1 Memory Organization within a Data Block


	5.5 Buffer Pools
	5.5.1 Overview: Buffer Pools
	5.5.2 Public and Private Buffer Pools: Definition
	5.5.3 Create a Public Buffer Pool
	5.5.3.1 Example: Create a Public Buffer Pool

	5.5.4 Create a Private Buffer Pool
	5.5.4.1 Example: Create a Private Buffer Pool

	5.5.5 Obtain a Buffer from a Public Buffer Pool
	5.5.5.1 Example: Obtain a Buffer from a Public Buffer Pool

	5.5.6 Obtain a Buffer from a Private Buffer Pool
	5.5.7 Lock a Buffer
	5.5.8 Return a Buffer to a Pool
	5.5.8.1 Guidelines for Returning a Buffer

	5.5.9 Duplicate a Buffer
	5.5.9.1 Overview: Duplicate a Buffer
	5.5.9.2 Duplicate a Buffer Only
	Example: Duplicate a Buffer Only

	5.5.9.3 Duplicate a Buffer and Its Context
	Example: Duplicate a Buffer and Its Context

	5.5.9.4 Duplicate and Recenter a Buffer and Its Context
	5.5.9.5 Comparison of Buffer Duplication with and without Recentering

	5.5.10 Find a Buffer Pool
	5.5.11 Increase the Size of a Buffer

	5.6 Buffer Caches
	5.6.1 Create a Buffer Cache
	5.6.1.1 Example: Create and Fill a Buffer Cache

	5.6.2 Remove Buffers from a Buffer Cache

	5.7 Manipulate Buffers on the Input Queue of an Interface
	5.7.1 Add a Buffer to the Input Queue of an Interface
	5.7.2 Move a Buffer to the Input Queue of Another Interface
	5.7.3 Remove a Buffer from the Input Queue of an Interface

	5.8 Particles
	5.8.1 Overview: Particles
	5.8.2 Particle Structure

	5.9 Particle Pools
	5.9.1 Create a Particle Pool
	5.9.2 Create a Particle Cache
	5.9.3 Obtain a Particle from a Particle Pool
	5.9.4 Return a Particle to a Pool
	5.9.5 Add a Particle to the Buffer Header
	5.9.6 Remove a Particle from the Buffer Header
	5.9.7 Coalesce Buffers Containing Particles


	Interfaces and Drivers
	6.1 Interfaces: Overview
	6.2 Interfaces: Historical Background
	6.2.1 Growth of the IDB
	6.2.2 Proliferation of Application Variables
	6.2.3 Proliferation of Interfaces

	6.3 Scalability Changes
	6.3.1 Subblocks and Private Lists
	6.3.2 Maximum Interfaces Constant No Longer a Global Value
	6.3.3 Modular Interface Naming and Numbering
	6.3.3.1 Design
	6.3.3.2 Creating Interface Names
	6.3.3.3 Parsing the IDB Naming and Numbering System
	6.3.3.4 How to Add This for a Platform
	6.3.3.5 Generic Support
	6.3.3.6 Platform-Specific Support
	6.3.3.7 Other Information
	6.3.3.8 Testing
	6.3.3.9 Still To Be Done

	6.3.4 Extensible Plugin Driver API
	6.3.5 Other Scalability Changes

	6.4 IDB Terminology
	6.4.1 Hardware and Software IDBs
	6.4.2 IDB Subblock

	6.5 Subblock Identifier
	6.6 Types of Subblocks
	6.7 Which Type of Subblock to Use
	6.7.1 Example: Creating a Subblock
	6.7.2 Example: Retrieving a Subblock
	6.7.3 Common Subblock Header
	6.7.3.1 Private IDB List


	6.8 Subblock and VFT Support in Release 12.0
	6.8.1 Implementation Details
	6.8.2 Migration Path
	6.8.2.1 Migration Example
	6.8.2.2 Migrating Data from IDB to Subblock
	6.8.2.3 Comparison of Subblocks and Private IDB Lists


	6.9 Manipulate IDBs
	6.9.1 Create an IDB
	6.9.2 Link an IDB
	6.9.3 Iterate over a List of IDBs
	6.9.4 Delete an IDB

	6.10 Manipulate IDB Subblocks
	6.10.1 Subblocks Types
	6.10.2 Subblock Function Table
	6.10.3 Add an IDB Subblock
	6.10.4 Return a Pointer to an IDB Subblock
	6.10.5 Traverse a List of Subblocks
	6.10.6 Traverse Subblocks on an IDB
	6.10.7 Release an IDB Subblock
	6.10.8 Delete an IDB Subblock

	6.11 Manipulate a Private List of IDBs
	6.11.1 Create a Private List of IDBs
	6.11.2 Add an IDB to a Private List
	6.11.3 Iterate a List of Private IDBs
	6.11.4 Remove an IDB from a Private List
	6.11.5 Delete a Private List of IDBs

	6.12 Use IDB Helper Functions
	6.12.1 Apply a Function over a Private IDB List
	6.12.2 Test an Interface for a Property

	6.13 Encapsulate a Packet
	6.14 Enqueue, Dequeue, and Transmit a Packet

	Platform-Specific Support
	7.1 Platform-Specific Initialization: Overview
	7.2 Fundamental Initialization
	7.2.1 Example: Fundamental Initialization

	7.3 Memory Initialization
	7.3.1 Example: Memory Initialization

	7.4 Exception Initialization
	7.4.1 Example: Exception Initialization

	7.5 Interface and Line Initialization
	7.5.1 Example: Interface Initialization
	7.5.2 Example: Line Initialization

	7.6 Platform-Specific Strings
	7.6.1 Examples: Platform-Specific Strings

	7.7 Platform-Specific Values
	7.7.1 Examples: Platform-Specific Values


	Interprocess Communications (IPC) Services
	8.1 Overview: IPC Services
	8.2 Operational Environment
	8.3 IPC Communication: Overview
	8.4 IPC Terminology
	8.4.1 Entity: Definition
	8.4.2 Message: Definition
	8.4.3 Port Terminology
	8.4.3.1 Port
	8.4.3.2 Port Name
	8.4.3.3 Multicast Ports

	8.4.4 Port Identifier: Definition
	8.4.5 Seat Terminology
	8.4.5.1 Seat
	8.4.5.2 Seat Manager

	8.4.6 Zone Terminology
	8.4.6.1 Zone
	8.4.6.2 Zone Manager


	8.5 Port Naming Services
	8.5.1 Port Name Resolution
	8.5.2 Port Name Syntax
	8.5.2.1 Example: Port Name Syntax
	8.5.2.2 Reserved Port Names


	8.6 IPC Message Format
	8.7 IPC Processing: Overview
	8.8 Manipulate the Seat Table
	8.8.1 Seat Table: Description
	8.8.2 Create a Seat
	8.8.3 Get Information about a Seat
	8.8.4 Reset a Seat

	8.9 Manipulate the Port Table
	8.9.1 Port Table: Description
	8.9.2 Create a Port
	8.9.3 Register a Port
	8.9.4 Open a Port
	8.9.5 Find a Port
	8.9.6 Close a Port
	8.9.7 Remove a Port

	8.10 Manipulate the Message Retransmission Table
	8.10.1 Message Retransmission Table: Description

	8.11 Send IPC Messages
	8.11.1 Allocate a Message
	8.11.2 Send a Message
	8.11.3 Return a Message to the IPC System

	8.12 Simulate RPCs
	8.13 Write an IPC Application
	8.13.1 Create a Port
	8.13.2 Open a Connection to the Port
	8.13.3 Send a Message
	8.13.3.1 Send a Message in Blocking Mode
	8.13.3.2 Send a Message in Nonblocking Mode


	8.14 Implementing IPCs on the RSP Platform
	8.14.1 IPC CiscoBus Driver: Overview
	8.14.2 IPC Setup Procedure
	8.14.2.1 Discovery Phase
	8.14.2.2 Initialization Phase
	8.14.2.3 Registration Phase

	8.14.3 Invoke the IPC Setup Procedure
	8.14.4 Microcode Reload Handling
	8.14.5 Implementation of the IPC CiscoBus Interface
	8.14.5.1 Transmit Path
	8.14.5.2 Receive Path

	8.14.6 IPC Name Service


	File System
	9.1 Overview
	9.1.1 Application Level API
	9.1.2 Classes of File Systems
	9.1.3 File System Types
	9.1.4 File System Features
	9.1.5 File System Flags

	9.2 Accessing File Systems
	9.3 Implementing Simple File Systems
	9.3.1 A Trivial IFS/File System
	9.3.1.1 Defining a File System
	9.3.1.2 Defining a File
	9.3.1.3 Example 1 - Reading a File
	9.3.1.4 Example 2 - A More Complex Read
	9.3.1.5 Example 3 - Writing a File

	9.3.2 Other Features
	9.3.2.1 Directories
	Example 4 - Adding a directory

	9.3.2.2 Timestamps


	9.4 Implementing Complete File Systems
	9.4.1 IFS/File System API
	9.4.2 Common Data Structures
	9.4.3 Implementation

	9.5 Additional File System Hooks
	9.5.1 Copy Prompt Hook
	9.5.2 Copy Behavior Hook
	9.5.3 “Show Flash” Hook

	9.6 References

	Socket Interface
	ANSI C Library

	PART 3
	Kernel Support Services
	Subsystems
	12.1 Overview: Subsystems
	12.1.1 Subsystem Classes
	12.1.2 How to Choose a Subsystem Class

	12.2 Subsystem Properties
	12.2.1 Subsystem Property Definitions
	12.2.1.1 Subsystem Property Definitions: Examples

	12.2.2 Sequencing Property
	12.2.3 Requirements Property
	12.2.4 Error Messages

	12.3 Define a Subsystem
	12.3.1 Examples: Define a Subsystem

	12.4 Fill In the Subsystem Structure
	12.5 Tips for Creating a Subsystem
	12.5.1 Create a New Subsystem
	12.5.2 Rework System Processes
	12.5.3 Reexamine Header File Dependencies
	12.5.4 Use New IDB Subblocks to Store Private Variables


	Registries and Services
	13.1 Overview: Registries and Services
	13.2 Registry Compiler: Description
	13.3 Registry Files
	13.4 Registry Compilation Process
	13.4.1 11.3 Changes
	13.4.1.1 registry.c
	13.4.1.2 registry.h
	13.4.1.3 Static and dynamic registries:
	13.4.1.4 Generated Code


	13.5 .reg File Metalanguage
	13.5.1 Example: .reg File Format

	13.6 .h File Contents
	13.7 .c File Contents
	13.8 Placement of xxx_registry.o in makefiles
	13.9 Services: Overview
	13.10 Types of Services
	13.11 'show registry' Support
	13.12 Manipulate List Services
	13.12.1 Define a List Service
	13.12.1.1 Example: Define a List Service
	13.12.1.2 Example: Add To a List Service
	13.12.1.3 Example: Invoke a List Service


	13.13 Manipulate Pid_list Services
	13.13.1 Define a Pid_list Service
	13.13.1.1 Example: Define a Pid_list Service
	13.13.1.2 Example: Add To a Pid_list Service
	13.13.1.3 Example: Invoke a Pid_list Service


	13.14 Manipulate Case Services
	13.14.1 Define a Case Service
	13.14.1.1 Example: Define a Case Service
	13.14.1.2 Example: Add a Case Service
	13.14.1.3 Example: Add a Default Case Function
	13.14.1.4 Example: Invoke a Case Service


	13.15 Manipulate Retval Services
	13.16 Manipulate Loop Services
	13.16.1 Define a Loop Service
	13.16.1.1 Example: Define a Loop Service
	13.16.1.2 Example: Add To a Loop Service
	13.16.1.3 Example: Invoke a Loop Service


	13.17 Manipulate Stub Services
	13.17.1 Define a Stub Service
	13.17.1.1 Example: Define a Stub Service
	13.17.1.2 Example: Add To a Stub Service
	13.17.1.3 Example: Invoke a Stub Service


	13.18 Manipulate Value Services
	13.18.1 Define a Value Service
	13.18.1.1 Example: Define a Value Service
	13.18.1.2 Example: Add To a Value Service
	13.18.1.3 Example: Add a Default Value
	13.18.1.4 Example: Invoke a Value Service



	Time-of-Day Services
	14.1 Overview: Time-of-Day Services
	14.1.1 Epoch: Definition
	14.1.2 Time Formats
	14.1.2.1 clock_epoch Structure
	14.1.2.2 UNIX Format
	14.1.2.3 timeval Structure

	14.1.3 System Clock: Description
	14.1.4 Time Zones
	14.1.5 Network Time Protocol
	14.1.6 Hardware Calendar

	14.2 Get the Current Time
	14.3 Test for Summer Time
	14.4 Convert between Time Formats
	14.5 Set the System Clock
	14.6 Determine Validity of System Clock Time
	14.7 Format Time Strings

	Timer Services
	15.1 Overview: Timer Services
	15.1.1 System Clock
	15.1.2 Implementing Application-Level Functions
	15.1.3 Timer Jitter

	15.2 Timer States
	15.3 Passive Timers
	15.3.1 Passive Timers in the Future
	15.3.1.1 Operation of Passive Timers in the Future
	15.3.1.2 Start a Passive Timer in the Future
	15.3.1.3 Set the Expiration for a Passive Timer
	15.3.1.4 Stop a Passive Timer in the Future
	15.3.1.5 Determine the State of Passive Timers in the Future
	15.3.1.6 Guidelines for Using the SLEEPING and AWAKE Macros in Releases Prior to Release�11.1
	15.3.1.7 Guidelines for Using the XSLEEPING and XAWAKE Macros in Releases Prior to Release�11.1
	15.3.1.8 Guidelines for Avoiding Timer Ambiguity
	15.3.1.9 Determine the Earlier of Two Timers
	15.3.1.10 Compare Passive Timers in the Future
	15.3.1.11 Update Passive Timers in the Future
	15.3.1.12 Use One Timer Value to Compute Another
	15.3.1.13 Example: Passive Timers in the Future
	Initialization Routine
	snark_update
	snark_block


	15.3.2 Passive Timers in the Past
	15.3.2.1 Determine the Current Time
	15.3.2.2 Copy a Timestamp
	15.3.2.3 Determine the Elapsed Time
	15.3.2.4 Determine Whether a Time Is within a Range
	15.3.2.5 Example: Passive Timers in the Past

	15.3.3 Compare Timestamps

	15.4 Managed Timers
	15.4.1 Overview: Managed Timers
	15.4.2 Type and Context Values
	15.4.3 Recursive Managed Timers
	15.4.4 Operation of Managed Timers
	15.4.5 mgd_timer Data Structure
	15.4.6 Guidelines for Using Managed Timers
	15.4.7 Initialize Managed Timers
	15.4.8 Determine Initialization Status of a Managed Timer
	15.4.9 Modify the Timer Type
	15.4.10 Modify the Timer Context
	15.4.11 Start a Leaf Timer
	15.4.12 Increase the Delay of a Leaf Timer
	15.4.13 Set a Leaf Timer’s Expiration
	15.4.14 Stop a Managed Timer
	15.4.15 Determine the State of a Managed Timer
	15.4.16 Esoteric Managed Timer Functions
	15.4.16.1 Link and Delink Timer Trees
	15.4.16.2 Set Extended Context
	15.4.16.3 Create Fenced Timers
	15.4.16.4 Convert Timers
	15.4.16.5 Traverse a Tree of Managed Timers

	15.4.17 Example: Managed Timers

	15.5 Choose Which Type of Timer to Use
	15.6 Determine System Uptime

	Strings and Character Output
	16.1 Print Strings
	16.1.1 Print a String to the Connected Terminal
	16.1.2 Print a Debugging String
	16.1.3 Print a String into a Buffer
	16.1.4 Format Time Strings
	16.1.4.1 Examples: Format Time Strings

	16.1.5 Format Timestamps
	16.1.5.1 Examples: Format Timestamps

	16.1.6 Format AppleTalk Addresses
	16.1.6.1 %a Format Code
	16.1.6.2 %A Format Code

	16.1.7 Format Banyan VINES Addresses
	16.1.7.1 %z Format Code
	16.1.7.2 %Z Format Code



	Exception Handling
	17.1 Overview: Exception Handling
	17.2 List of Exceptions
	17.3 Register an Exception Handler
	17.3.1 Register a One-Time Handler
	17.3.1.1 Example: Register a One-Time Handler

	17.3.2 Register a Permanent Handler
	17.3.2.1 Example: Register a Permanent Handler


	17.4 Cause Exceptions
	17.4.1 Example: Cause Exceptions


	Debugging and Error Logging
	18.1 Debug CPU Exceptions
	18.1.1 Use Core Files to Debug CPU Exceptions
	18.1.1.1 Configure the Cisco IOS Software to Generate a Core File
	18.1.1.2 Analyze a Core File
	Analyze a Core File with GDB
	Analyze a Core File with Grovel
	Analyze a Core File with UNIX Tools


	18.1.2 Debug with the ROM Monitor
	18.1.3 Debug with GDB
	18.1.3.1 Debug in GDB Kernel Mode
	18.1.3.2 Debug in GDB Process Mode


	18.2 Debug with buginf() and the debug Command
	18.2.1 Debug Critical Code Sections

	18.3 Debug Using Compile-Time Conditionals
	18.3.1 Trace Buffer Leaks
	18.3.1.1 Example: Trace Buffer Leaks




	PART 4
	Network Services
	Binary Trees
	19.1 Overview: Binary Trees
	19.1.1 Red-Black (RB) Trees
	19.1.2 AVL Trees
	19.1.3 Radix Trees

	19.2 Manipulate RB Trees
	19.2.1 Initialize an RB Tree
	19.2.2 Insert a Node into an RB Tree
	19.2.3 Search an RB Tree
	19.2.4 Apply a Function to an RB Tree Node
	19.2.5 Retrieve Information about an RB Tree
	19.2.6 Print the Nodes in an RB Tree
	19.2.7 Protect a Node in an RB Tree
	19.2.8 Place a Node on the Tree’s Internal Free List
	19.2.9 Remove an RB Tree

	19.3 AVL Trees
	19.3.1 Manipulate Raw AVL Trees
	19.3.1.1 Initialize an AVL Tree
	19.3.1.2 Insert a Node into an AVL Tree
	19.3.1.3 Traverse an AVL Tree
	19.3.1.4 Search an AVL Tree
	19.3.1.5 Remove a Node from an AVL Tree
	19.3.1.6 Free AVL Tree Resources

	19.3.2 Manipulate Wrapped AVL Trees
	19.3.2.1 Initialize a Wrapped AVL Tree
	19.3.2.2 Insert a Node into a Wrapped VL Tree
	19.3.2.3 Traverse a Wrapped AVL Tree
	19.3.2.4 Search a Wrapped AVL Tree
	19.3.2.5 Remove a Node from a WAVL Tree
	19.3.2.6 Reset Pointers
	19.3.2.7 Free WAVL Tree Resources


	19.4 Manipulate Radix Trees
	19.4.1 Initialize a Radix Tree
	19.4.2 Insert a Node into a Radix Tree
	19.4.3 Traverse a Radix Tree
	19.4.4 Search for a Node in a Radix Tree
	19.4.5 Mark Parent Nodes in a Radix Tree
	19.4.6 Delete a Node from a Radix Tree


	Queues and Lists
	20.1 Overview: Queues and Lists
	20.1.1 Singly Linked Lists (Queues)
	20.1.2 Doubly Linked Lists

	20.2 Manipulate Queues
	20.2.1 Initialize a Queue
	20.2.2 Determine the State of a Queue
	20.2.3 Determine Whether an Item Is on a Queue

	20.3 Manipulate Direct Queues
	20.3.1 Manipulate Unprotected Direct Queues
	20.3.1.1 Add an Item to a Queue
	20.3.1.2 Remove an Item from a Queue
	20.3.1.3 Examples: Manipulate Unprotected Direct Queues
	Example 1
	Example 2


	20.3.2 Manipulate Protected Direct Queues
	20.3.2.1 Add an Item to a Queue
	20.3.2.2 Remove an Item from a Queue
	20.3.2.3 Example: Manipulate Protected Direct Queues


	20.4 Manipulate Indirect Queues
	20.4.1 Add an Item to a Queue
	20.4.2 Change the Size of a Queue
	20.4.3 Iterate over Each Item in a Queue
	20.4.4 Remove an Item from a Queue
	20.4.5 Examples: Manipulate Indirect Queues
	Example 1
	Example 2


	20.5 Manipulate Simple Doubly Linked Lists
	20.5.1 Add an Item to a Doubly Linked List
	20.5.2 Remove an Item from a Doubly Linked List
	20.5.3 Example: Manipulate Doubly Linked Lists

	20.6 Manipulate Doubly Linked Lists with the List Manager
	20.6.1 Overview: List Manager
	20.6.2 Create a List
	20.6.3 Modify an Existing List
	20.6.4 Add an Item to a List
	20.6.5 Move an Item to Another List
	20.6.6 Remove an Item from a List
	20.6.7 Change the Behavior of List Action Vectors
	20.6.8 Retrieve the Behavior of List Action Vectors
	20.6.9 Display the Contents of a List
	20.6.10 Destroy a List
	20.6.11 Examples: Manipulate Doubly Linked Lists with the List Manager
	Example 1
	Example 2
	Example 3



	Switching
	21.1 Overview: Switching
	21.1.1 Slow Switching
	21.1.2 Fast Switching
	21.1.3 Autonomous Switching
	21.1.4 Silicon Switching

	21.2 Fast Switching
	21.2.1 Hardware Architecture
	21.2.1.1 MCI/CiscoBus Architecture
	Receive a Packet
	Make the Forwarding Decision
	Transmit a Packet
	Transmit a Packet: Intracard
	Transmit a Packet: Intercard

	21.2.1.2 Shared-Memory Architecture
	Receive a Packet
	Make the Forwarding Decision
	Transmit a Packet


	21.2.2 Software Architecture
	21.2.2.1 Full Matrix
	21.2.2.2 Unique Routines




	PART 5
	Hardware-Specific Design
	Porting Cisco IOS Software to a New�Platform
	22.1 Portability Issues
	22.1.1 Byte Order
	22.1.1.1 Unions
	22.1.1.2 Bit Fields
	22.1.1.3 Bit Operations
	22.1.1.4 Typecasting
	22.1.1.5 Character Constants

	22.1.2 Data Alignment
	22.1.3 Data Size
	22.1.4 C Pitfalls
	22.1.4.1 Enum Types

	22.1.5 Other Portability Issues
	22.1.5.1 Performance
	22.1.5.2 Stack Usage and Stack Growth
	22.1.5.3 Compliance with Encapsulations


	22.2 Cisco’s Implementation of Portability
	22.2.1 Inline Assembler
	22.2.2 Header Files
	22.2.3 Byte-Order Functions
	22.2.4 Endian #defines
	22.2.5 GET and PUT Macros
	22.2.6 Canonical Functions



	PART 6
	Management Services
	Command-Line Parser
	23.1 Overview: Parser
	23.1.1 Traversing the Parse Tree
	23.1.2 Transition Structure

	23.2 Build Parse Trees
	23.2.1 Construction of Parse Trees
	23.2.1.1 Example: Construction of Parse Trees

	23.2.2 Parse a Keyword Token
	23.2.2.1 Example: Parse a Keyword Token

	23.2.3 Parse a Number Token
	23.2.3.1 Example: Parse a Number Token

	23.2.4 Parse a Keyword-Number Combination
	23.2.4.1 Examples: Parse a Keyword-Number Combination

	23.2.5 Parse Optional Keywords
	23.2.6 Parse Mixed String and Nonstring Tokens
	23.2.6.1 Example: Parse Mixed String and Nonstring Tokens

	23.2.7 Process “No” Commands
	23.2.7.1 csb->sense
	23.2.7.2 Example: Process “No” Commands

	23.2.8 Nonvolatile Output Generation

	23.3 Link Parse Trees
	23.3.1 Example: Link Parse Trees
	exec_disconnect.h
	exec_disable.h


	23.4 Manipulate CSB Objects
	23.4.1 Overview: CSB Objects
	23.4.2 Examples of CSB Objects

	23.5 Add Commands Dynamically
	23.5.1 Create a Link Point
	23.5.1.1 Example: Create a Link Point

	23.5.2 Register a Link Point with the Parser
	23.5.2.1 Example: Register a Link Point with the Parser

	23.5.3 Display Registered Link Points
	23.5.4 Link Commands to a Link Point
	23.5.4.1 Example: Link Commands to a Link Point

	23.5.5 Create Link Exit Points
	23.5.5.1 Example: Create Link Exit Points


	23.6 Manipulate Parser Modes
	23.6.1 Add a Parser Mode
	23.6.1.1 Example: Add a Parser Mode

	23.6.2 Add an Alias to a Mode
	23.6.2.1 Example: Add an Alias to a Mode



	Writing, Testing, and Publishing MIBs
	24.1 SNMP Overview
	24.1.1 Internet Network Management Framework: Definition
	24.1.2 MIB: Definition
	24.1.3 ASN.1: Definition
	24.1.4 SMI: Definition
	24.1.5 Transport Protocols
	24.1.6 SNMP Facilities
	24.1.7 Asynchronous Notifications

	24.2 MIB Concepts
	24.2.1 MIB: Overview
	24.2.2 Standard and Enterprise MIBs
	24.2.3 MIB-I and MIB-II
	24.2.4 Agent Implementations
	24.2.5 MIB Objects
	24.2.5.1 Object: Definition
	24.2.5.2 Lexicographic Ordering of Objects
	24.2.5.3 Object Identifier: Definition

	24.2.6 SNMP Conceptual Tables
	24.2.6.1 SNMP Conceptual Tables: Definition
	24.2.6.2 Simple SNMP Conceptual Tables
	24.2.6.3 Complex SNMP Conceptual Tables
	24.2.6.4 Coding Index Objects
	24.2.6.5 Tables Inside of Tables


	24.3 SMI Overview
	24.3.1 Primitive Data and Application Types
	24.3.2 Textual Conventions

	24.4 MIB Life Cycle
	24.5 Design a MIB
	24.5.1 MIB Design: Overview
	24.5.2 SNMP Application Considerations
	24.5.3 MIB Design Phases
	24.5.3.1 Design the MIB Content
	24.5.3.2 Design the Notifications
	Polling Versus Alerts
	Reliable Delivery
	Information Flow Control

	24.5.3.3 Design the MIB Organization

	24.5.4 Check for Existing MIB Implementations
	24.5.5 Ensure MIB Compliance
	24.5.6 Follow MIB Conventions
	24.5.6.1 Assigned Numbers
	24.5.6.2 Conventions for Writing MIBs
	Cisco MIB Nomenclature
	Cisco MIB Template
	Example: MIB in Cisco Template
	AGENT-CAPABILITIES Object Identifier
	64-bit Counters
	Objects in NVRAM
	Indexing History Tables


	24.5.7 MIB Compilers
	24.5.7.1 Function of MIB Compilers
	24.5.7.2 Available Compilers
	24.5.7.3 Invoke the MIB Compiler

	24.5.8 Agent Development
	24.5.9 Cisco Internal MIB Design Support

	24.6 MIB Development Process: Overview
	24.7 Establish a New MIB
	24.8 Compile a MIB
	24.8.1 Which MIB or MIBs to Compile
	24.8.2 Which Groups to Compile
	24.8.3 Where to Place Files Generated by the MIB Compiler
	24.8.4 Makefile Rules for Compiling MIBs
	24.8.5 Invoke the MIB Compiler
	24.8.6 What the MIB Compiler Does
	24.8.7 Output from the MIB Compiler
	24.8.8 Compile a MIB: Examples
	Compile the DS1 MIB
	Compile MIB-II
	Compile the SNMPv2 MIB and SNMPv2 Party MIBs


	24.9 Observe Modularity
	24.9.1 Subsystem
	24.9.2 Instrumentation

	24.10 Implement MIB Objects
	24.10.1 GCC Warnings
	24.10.2 Validation
	24.10.3 k_get Routines
	24.10.4 k_set Routines

	24.11 Implement SNMP Asynchronous Notifications
	24.11.1 Decide Where to Place SNMP Notification Code
	24.11.2 Define the Notification
	24.11.3 Control the Notification
	24.11.4 Generate the Notification

	24.12 Test a MIB
	24.12.1 Test an Object
	24.12.2 Test a Notification
	24.12.3 Tools for Testing a MIB
	24.12.3.1 Command-Line Tools
	24.12.3.2 X Windows Tools
	24.12.3.3 Notification Tools

	24.12.4 SNMP Operations
	24.12.5 Object Functions

	24.13 Release a MIB
	24.13.1 Release MIB Code
	24.13.2 Release MIB Files

	24.14 Maintain a MIB
	24.14.1 Use MIB Versions

	24.15 Testing and Publishing a MIB
	24.16 Create or Update a MIB Workspace
	24.17 Test a MIB
	24.18 Analyze Test Results
	24.19 Determine Whether You Have an SNMPv1 or SNMPv2 MIB
	24.20 Generate an SNMPv1 Version of an SNMPv2 MIB
	24.21 Use Make Directly to Generate a MIB
	24.21.1 Use Make Directly to Generate an SNMPv2 MIB
	24.21.2 Use Make Directly to Generate an SNMPv1 MIB
	24.21.2.1 Example: Use Make to Generate an SNMPv1 MIB


	24.22 Publish a MIB
	24.22.1 Prerequisites for Publishing a MIB

	24.23 MIB-Related Files
	24.23.1 File Locations
	24.23.2 MIB Repository and Workspace
	24.23.3 Files in the MIB Repository and Workspace
	24.23.4 Directory Layout for MIB Repository and Workspace


	IF-MIB
	25.1 Supporting Subinterfaces in IF-MIB
	25.1.1 Tables
	25.1.2 API
	25.1.2.1 snmp/ifmib_registry.reg
	25.1.2.2 snmp/ifmibapi.[ch]
	25.1.2.3 h/snmp_interface.h
	25.1.2.4 ifType


	25.2 Adding Support to Register or Deregister Sublayers
	25.2.1 Adding to Service Points
	25.2.2 Registering a Sublayer
	25.2.3 Deregistering a Sublayer
	25.2.4 Modifying the ifRcvAddressTable
	25.2.5 Modifying the ifStackTable
	25.2.6 Sparse Table Support

	25.3 Sample Implementation: Frame Relay Sublayers
	25.3.1 Adding Service Points: Frame Relay
	25.3.2 Registering a Sublayer: Frame Relay
	25.3.3 Deregistering a Sublayer: Frame Relay

	25.4 Link Up/Down Trap Support


	PART 7
	Other Useful Information
	Scalable Process Implementation
	26.1 Introduction
	26.2 The Typical Scenario
	26.2.1 Specific Problems
	26.2.1.1 CPU Utilization
	26.2.1.2 Excessive Protocol Traffic
	26.2.1.3 Adjacency Failures
	26.2.1.4 Brittle Networks
	26.2.1.5 Random Squirrely Failures
	26.2.1.6 Pathological Process Interaction


	26.3 Addressing the Problems
	26.3.1 Process Structure
	26.3.2 Stability through Rate Control
	26.3.3 Avoiding Receive Buffer Starvation
	26.3.4 Avoiding Infinite Transmit Queues and Stale Information
	26.3.5 Complexity versus Efficiency

	26.4 Conclusion

	Backup System
	27.1 Overview
	27.1.1 Operation
	27.1.2 Configuring Interfaces
	27.1.3 Specifying the Standby Interface
	27.1.4 Specifying Backup Delays
	27.1.5 Specifying Backup Loads, Main Interfaces Only
	27.1.6 Notes On Operation

	27.2 Description of Changes
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution


	Verifying Cisco IOS Modular Images
	28.1 What is a Modular Image?
	What a Modular Image Is Not

	28.2 Why Create Modular Images?
	28.3 Types of Modularity Checks
	28.4 Modularity Targets
	28.5 Build Modular Images for a Single Platform
	28.5.1 Build All Modular Images for a Single Platform
	28.5.2 Build a Specific Modular Image for a Single Platform

	28.6 Build Modular Images for All Platforms
	28.7 Check Modularity with the sys/scripts/connect Script
	28.8 Modularity Checking Done by the Nightly Builds

	Writing DDTS Release-Note Enclosures
	29.1 What Is a Release-Note Enclosure
	29.2 How Customers See Release-Note Enclosures
	29.3 Who Writes Release-Note Enclosures
	29.4 When Do Release-Note Enclosures Get Written
	29.5 Writing Release-Note Enclosures
	29.5.1 Naming a Release-Note Enclosure
	29.5.2 Writing Guidelines
	29.5.2.1 Conditions Under Which the Problem Occurs
	Example

	29.5.2.2 Symptoms
	Example

	29.5.2.3 Workaround
	Example


	29.5.3 Writing Style
	29.5.4 Text Formatting Guidelines
	29.5.4.1 Character Formatting Guidelines
	Examples: Character Formatting Guidelines

	29.5.4.2 Other Formatting Guidelines

	29.5.5 Guidelines for Using $$IGNORE in Release-Note Enclosures
	29.5.6 Sample Release-Note Enclosures

	29.6 Writing DDTS Headlines
	29.7 Getting Help

	Writing Cisco IOS Code: Style Issues
	A.1 Purpose of This Chapter
	A.1.1 Coding Conventions: Something for Everyone to Protest
	A.1.2 Definitions
	A.1.3 What This Appendix Addresses
	A.1.4 What This Appendix Does Not Address

	A.2 Design Issues
	A.2.1 Do Not Use Conditional Compilation for Platform-Specific Code
	A.2.2 Plan Your Feature as a Subsystem
	A.2.3 Do Not Overload Existing or System Registries
	A.2.4 Don’t Be a Stub Slob; Use Registries
	A.2.5 Don’t Hog the Chip

	A.3 Using C in the Cisco IOS Source Code
	A.3.1 Use ANSI C
	A.3.2 Fifty Ways to Shoot Yourself in the Foot
	Function Prototypes
	Order of Functions within a File
	Typecasting
	Obscure C Features
	Ensuring Correct Results
	Static Class
	Const Qualifier
	Register Storage Class
	Format of Data Structures
	Conversion from Signed to Unsigned Types
	Enumerated Types and #defines
	Passing Structures
	Mixing C and Assembly Language
	Floating-Point Operations
	Header Files


	A.4 Presentation of the Cisco IOS Source Code
	A.4.1 Specific Code Formatting Issues
	Standard Cisco Header
	#include Directives
	Standard Indention
	Spaces in Function Definitions and Prototypes
	If...Else Statements
	Spaces around Parentheses
	Stubbing Out code
	Formatting Block Comments

	A.4.2 Some Comments about Comments

	A.5 Variable and Storage Persistence, Scope, and Naming
	A.6 Coding for Reliability
	Checking NULL Pointers
	Specifying Default Cases
	Pointer Arithmetic
	Pointers within Structures
	Checking the malloc() and getbuffer Return
	Arithmetic Overflow
	Data Alignment

	A.7 Coding for Performance
	A.7.1 Performance of Algorithms and Data Structures
	A.7.2 Performance Resulting from Use and Abuse of the Cisco IOS Infrastructure
	A.7.3 Instruction-level Performance
	A.7.3.1 Helping GCC Turn Glop into Gold
	A.7.3.2 Not All Memories Are Golden



	Cisco IOS Software Organization
	B.1 Description of the Cisco IOS Subsystems
	B.2 Description of the IP Subsystems
	B.2.1 IP Host Subsystem
	B.2.2 IP Routing Subsystem
	B.2.3 IP Services Subsystem

	B.3 Description of the Cisco IOS Kernel Subsystems
	B.3.1 Scheduler Subsystem
	B.3.2 Chain Subsystem
	B.3.3 Media Subsystem
	B.3.4 Parser Subsystem
	B.3.5 Core TTY Subsystem
	B.3.6 Core Router Subsystem
	B.3.7 Core Memory Management, Logging, and Print Subsystem
	B.3.8 Core Time Services and Timer Subsystem
	B.3.9 Core Modular Subsystem
	B.3.10 Miscellaneous Subsystems


	CPU Profiling
	C.1 Overview: CPU Profiling
	C.2 How CPU Profiling Works
	C.2.1 Define Profile Blocks
	C.2.2 Profile Block Bins
	C.2.3 Tracking Ticks
	C.2.4 Overhead
	C.2.5 Special Modes

	C.3 Caveats about Using CPU Profiling
	C.4 Use the CPU Profiler
	C.5 Configure the Profiler
	C.5.1 Create a Profile Block and Enable Profiling
	C.5.2 Delete a Profile Block
	C.5.3 Stop Profiling
	C.5.4 Restart Profiling
	C.5.5 Zero Profile Blocks
	C.5.6 Enable Task and Interrupt Modes
	C.5.7 Disable Task and Interrupt Modes
	C.5.8 Enable CPUHOG Profiling
	C.5.9 Display Profiling Information

	C.6 Process the Profiler Output

	Older Version of the Scheduler
	D.1 How a Process Stops
	D.2 Queues and Process Priorities
	D.2.1 Scheduler Queues
	D.2.1.1 Comparison of New and Old Scheduler Queues
	D.2.1.2 Compatibility Queues
	D.2.1.3 Idle Queue

	D.2.2 Operation of Scheduler Queues
	D.2.2.1 Overall Scheduler Queue Operation
	D.2.2.2 Critical-Priority Scheduler Queue Operation
	D.2.2.3 High-Priority Scheduler Queue Operation
	Check the Ready Queues
	Check the Compatibility Queues

	D.2.2.4 Medium- and Low-Priority Scheduler Queue Operation
	Check the Ready Queues
	Check the Compatibility Queues



	D.3 Functions in the Old Scheduler
	D.4 cfork() (obsolete)
	Classification
	Input Parameters
	Output Parameters
	Return Type
	Return Values
	Usage Guidelines
	Side Effects
	Related Functions

	D.5 edisms() (obsolete)
	Classification
	Input Parameters
	Output Parameters
	Return Type
	Return Values
	Usage Guidelines
	Related Functions

	D.6 process_is_high_priority() (obsolete)
	Classification
	Input Parameters
	Output Parameters
	Return Type
	Return Values
	Usage Guidelines

	D.7 process_set_priority() (obsolete)
	Classification
	Input Parameter
	Output Parameters
	Return Type
	Return Values
	Usage Guidelines
	Related Functions

	D.8 s_tohigh() (obsolete)
	Classification
	Input Parameters
	Output Parameters
	Return Type
	Return Values
	Usage Guidelines
	Related Function

	D.9 s_tolow() (obsolete)
	Classification
	Input Parameters
	Output Parameters
	Return Type
	Return Values
	Usage Guidelines
	Related Function


	Glossary
	Index



