
Fluid In ML Model Serving
Lize Cai

Sept, 2022

Disclaimer

This is not a presentation by SAP. It is my personal account of our product and
experience at SAP, some of its implications and learnings.

Content

● What Is SAP AI Core
● Challenges In ML Model Serving
● Fluid on Model Artifact Caching
● Result and Feedback

What Is SAP AI Core

SAP AI Core is a service in the SAP Business Technology Platform which is designed to handle the execution and

operations of your AI assets in a standardized, scalable, and hyperscaler-agnostic way. It provides seamless integration

with your SAP solutions. Any AI function can be easily realized using open-source frameworks. SAP AI Core supports full

lifecycle management of AI scenarios.

https://help.sap.com/docs/AI_CORE/2d6c5984063c40a59eda62f4a9135bee/d029a32c22fb45fbb607e6a2c48c8a0e.html

What Is SAP AI Core

Typical user flow in SAP AI Core

1. Users have different AI Scenarios
2. For each AI Scenario, there are workflow templates and serving templates
3. Users train model via workflow template, and save the model into object

store.
4. Users deploy their model via serving template and object store.

A Typical ML Pipeline

Challenges In ML Model Serving

Challenges In ML Model Serving

A Typical ML Serving

Challenges In ML Model Serving

How to package
your code?

How to package
your model?

How to ensure
scalability, availability
and security? and
reduce the cost?

How to improve the
performance?

Type of inferences?

Advanced
deployment
strategies

What to monitor?

A Typical ML Serving

Challenges in ML Model Serving

Challenges Solutions

Idle deployment increases the cost Serverless to allow scale to zero for idle
deployment

Deployment takes time to scale up Node pool + image cache, model cache,
etc

ML workload deployment vs normal workload deployment:
● Compute intensive (CPU/GPU/FPGA etc)
● Image is large (up to 5 GB)
● Model artifact and it is large as well (100 MB ~ 1.5 GB+)

Fluid on Model Artifacts Caching
Background:

● 0 -> 1 scaling is slow
● 1 -> N scaling is slow as well

Why:

● Downloading model artifact takes time (1-2 mins)
● Keep downloading model artifact during the scaling

Requirements:

● Fast scaling for ML Workload
● High security on user’s data
● Not add too much cost to the users

Solution:

● Speed up the downloading or preload the model artifact
● Keep the model artifact in the cache, pull the model from the cache rather than remote storage.

Fluid on Model Artifacts Caching

Result and Feedback

● Two worker nodes: m5.large ($0.115/hour or $82/month): vCPU: 2, Memory: 8GiB, Instance Storage: EBS-Only,
Network Bandwidth: up to 10 Gbps, EBS Bandwidth: up to 4,750 Mbps. Volume Type gp2, 50GB SSD.

● Model artifact: 1.3 GB model from S3.

1. First time deployment: pull model without cache
2. Second time deployment: pull model from cache

Runtime Opensource Language 1st deployment 2nd deployment

Model
downloader

YES Python 1-2 mins 1-2 mins

JindoFS NO* C/C++ 29 seconds 5 seconds

Result and Feedback

Security

1. Data is within the fuse-sidecar
2. Not able access the data from worker node
3. Once runtime is deleted, data will be removed from the node

Result and Feedback

● Over head in fuse sidecar: creation and deletion is a bit slow
● Fuse sidecar: image is large
● Fuse sidecar: resource usage, can it be a init container?

