
SUMMARY

Use preemption to achieve 60 FPS, no matter how
heavy the tree is to build/layout.

Author: Jingyi Chen (fzyzcjy)
Go Link: flutter.dev/go/sixty-fps (still in PR)
Created: 09/22 / Last updated: 09/22

WHAT PROBLEM IS THIS SOLVING?
Many people face a jank for Flutter applications, because the build and layout of the
tree is so heavy to be done within 1/60 second. Thus, I hope to make it 60 FPS even
on low end devices, no matter how heavy the tree is to build/layout.

Preface: Thank you, Flutter! (And why I do this)

Flutter has saved me months, if not a year, by allowing me to write a single
codebase and run on dual platforms (saving half of the time), to use the very
productive declarative framework and hot reload, to utilize the quickly-progressing
Dart language with expressive and safe type system, to easily customize the
appearance as accurate as pixel level, to be able to dig down and modify engine
code when I need a new feature (impossible with Web), and many more.

That is a big reason why I decided to contribute this PR (Preemption for 60 FPS) to
Flutter. Flutter has saved me so much time, so now it is my turn to provide my time
to Flutter to make it better. I also love open source very much, such as my

PUBLICLY SHARED

https://github.com/flutter/website/pull/7587
https://github.com/flutter/engine/pull/32334

PUBLICLY SHARED
flutter_rust_bridge open-source library (which could have been closed-source and
only used by myself), and my previous PRs to Flutter fixing bugs, which is another
driving force.

Scenarios

Here are some scenarios where build and layout janks:

● A test case in the framework, pointed out by @dnfield: He said, this ends
up being janky because layout gets expensive for all that text (on a lower end
phone it can easily take 20-30+ms just to layout all the text there, and the
ListTile is a little deceptive because Material introduces expense - this is the
kind of thing we want to figure out how to break up "automatically").

● Bytedance’s apps: Infra team reports that they see such janks (around
here). In addition, the infra team seems to have interest in my issue and
chatted a lot discussing it - this surely will not happen if it were not a problem
for bytedance.

● All apps using keframe: Keframe is a library to optimize such janks (with
comparison below), with 94% popularity on pub.dev and 741 stars on
GitHub. If there is no such jank, I guess the package will have no users.

● Really slow devices: There exist many slow, slower, and slower-than-slower
devices in the world. Without this proposal, a Flutter app must be janky when
running on devices beneath a certain computation power threshold; with the
proposal, they will still be smooth, or at least such threshold is lowered by a
magnitude.

● Locality: @gaaclarke said that the thing that might be holding back layout /
build is locality which will be hard to fix, with more guesses here. (The guess
will be fixed by this proposal.)

● Heavy sync computation: A little portion of real-world users may have to do
heavy sync computation inside initState within the main isolate, because the
data is not transferable or too big to send to a second isolate. (This exists,
but is not the main target case that the proposal is going to solve.)

● Implicit scenarios: If I understand correctly, googlers (@Hixie, @dnfield,
@JonahWilliams) and bytedancers (@JsouLiang, @Nayuta) have had some
discussions around solving this problem, so the problem just exists. (See
here for the chat history links)

PUBLICLY SHARED

https://github.com/fzyzcjy/flutter_rust_bridge
https://github.com/flutter/flutter/blob/master/dev/benchmarks/macrobenchmarks/lib/src/list_text_layout.dart
https://github.com/flutter/flutter/issues/101227#issuecomment-1247641562
https://discord.com/channels/608014603317936148/608021234516754444/1021980287787352125
https://github.com/flutter/flutter/issues/101227
https://discord.com/channels/608014603317936148/1021987751710699632
https://pub.dev/packages/keframe
https://discord.com/channels/608014603317936148/608021234516754444/1022292715221831680
https://discord.com/channels/608014603317936148/608021234516754444/1022296432738320454
https://github.com/flutter/flutter/issues/101227#issuecomment-1249961627

PUBLICLY SHARED

Comparison

(Suggested @JonahWilliams for a comparison.)

There are some other methods (abbreviated as “OM” in below) related to
smoothness optimizations, which can be roughly separated into two categories:

1. Modify the build phase, including the following (abbreviation: OM-B)
a. The `keframe` package
b. My (failed) experiments (abbreviation: OM-B-M)

2. Modify the layout phase, including the following (abbreviation: OM-L)
a. Googlers (@Hixie, @dnfield and other googlers) had some discussions

about it
b. Several bytedance infra team people also had some discussions
c. My (failed) experiments (abbreviation: OM-L-M)

Indeed, I have made many failed experiments and failed proposals before reaching
this design you are reading :)

In the following subsections, problems of those approaches will be discussed.
Those problems are overcome in the proposed method.

Unnecessary re-layout
OM-B and OM-L methods have the extra cost of re-layouting subtrees in each
frame.

For a simple example, suppose we have a Column/ListView with five children. In
frame #1, it renders the first, and children 2-5 return empty boxes. In frame #2, the
Column has to perform a full layout (i.e. call `performLayout()` fully), so is frame #3,
#4 and #5. Different OM-B and OM-L methods may vary about how many widgets
are rendered in each frame, but the relayout overhead is still there.

If it were just a Column we may accept the overhead, but it can be a big ancestor
tree. We have to re-layout over and over again in every frame, for the whole
ancestor tree, up to the nearest relayout boundary. The consequences of such
overhead will be discussed further below. The proposed method does not have the
problem.

Unnecessary re-paint
OM-B and OM-L methods have the extra cost of unnecessary re-paint in each

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/101227#issuecomment-1250186784
https://github.com/flutter/flutter/issues/101227#issuecomment-1248894781

PUBLICLY SHARED
frame.

Suppose a heavy rendering needs 0.1s, then OM-B and OM-L methods will run the
full paint phase for 6 times, while the proposed method only needs one paint call.
This is especially troublesome when painting is slow, and still not very great even if
each paint only takes 2ms - it adds up and occupies precious time of useful work.
The proposed method does not have the problem.

Unnecessary whole-pipeline re-execution
OM-B and OM-L methods need to re-execute the whole pipeline while the proposed
method does not.

For example, when Keframe replaces placeholders with real widgets, or when other
OM-B and OM-L methods run build/layout on a few widgets, it is driven by the vsync
signal to execute the drawFrame and submit to the engine, so it will execute the
complete build/layout/paint etc process. However, the build/layout/paint other
than the actual widget is not necessary.

On the contrary, in the proposed method, the UI thread just voluntarily submits a
frame to the Engine after roughly 16ms of detection, and then returns to the
normal rendering flow without much additional overhead.

(Suggested by @Nayuta)

Unnecessary CPU idle even when pending work
OM-B and OM-L methods will make CPU idle, even though there is a ton of work to
be done, thus making more unnecessary perceptual lagging. The idle period for UI
thread is after current pipeline ending and before next vsync.

Moreover, it is hard to remove such idle periods. If we halt too early (say, current
frame ends at 12ms), then we waste 16.67-12=4.67ms; if we halt too lately (say,
current frame ends at 19ms), then we even waste more - 16.67x2-19=14.3ms,
because we are idle until the next vsync. As is discussed in other subsections, it is
hard to know when to halt the existing build/layout can make the current frame
end at 16ms.

In my OM-L-M experiment (can see a timeline figure there), about 39% of the UI
thread time is idle, though there is still build/layout work to do. This may be tunable
to be less harmful with careful choice of parameters, but by nature it cannot be
fully removed.

On the contrary, the proposed method has exactly 0% idle time while work is not

PUBLICLY SHARED

PUBLICLY SHARED
finished, without any need of tuning parameters.

Unnecessary FPS drop: 30FPS when could be 59FPS
OM-B and OM-L methods will immediately drop to 30FPS even if the frame is only
0.01ms longer than 16.67ms, while the proposed method will be 59FPS.

The “a little bit longer than 16.67ms” situation is inevitable because of two reasons:
On one hand, as described above, when we decide to suspend/halt, we still have an
unpredictable non-negligible amount of work remaining to do within the current
frame. On the other hand, there may not be enough positions to halt, such as when
a single widget layout can take several milliseconds. Thus, we will either halt too
early (cause problems pointed out above) or too late (the drop-to-30FPS problem).

The analysis of 30FPS is as follows. To simplify math, suppose each frame needs
16.67+0.01ms and continue for one second. Then, those approaches will miss half
of the vsync, i.e. will only get vsync per 33.33ms. Therefore, they will simply run the
pipeline per 33.33ms, which is 30FPS. On the contrary, the proposed method will
call `window.render` to submit a frame to the rasterizer per 16.67+0.01ms,
regardless whether it misses a vsync or not, so we will see roughly 59 frames on the
screen in one second.

Remark: The “average FPS” in DevTools seems to be wrong for such cases.

Remark: Given this discussion, when reading something like “17ms” in the
“*_frame_build_time_millis” in benchmark results, it indeed means a completely
different end-user feeling (30FPS vs 59FPS). In the “When to call preemptRender”
section later, there are also some discussions.

Unnecessary perceptual slowness
OM-B and OM-L methods take more frames to render all elements in the whole UI
than it could have been.

This is a direct consequence of the problems above, since the system has less time
to deal with the real heavy subtree needing build/layout.

In my OM-L-M experiment, if we want each frame to be under 16ms, it seems the
overhead is so big that we will only have <10ms for handling the real widgets (rough
numbers), and I even fail to make it be under 16ms in total for some devices. On
the contrary, the proposed method has much less overhead (0.53ms per frame, to
be discussed in the experiment section).

PUBLICLY SHARED

https://github.com/flutter/devtools/issues/4522

PUBLICLY SHARED

Costly suspending
This point is related to some points above, using another perspective to view it. In
some of the OM-B and OM-L methods, the layout phase will be suspended via
various approaches, such as early-returning the layout function (OM-L-M), build a
placeholder widget (OM-B), etc. However, it seems that all has overhead in terms of
memory and CPU. On the contrary, the proposed approach does not have
overhead when suspending.

Coarse suspending points
OM-B and OM-L methods can only act per Widget/RenderObject, so if one
Widget/RO is too slow to build/layout, it still janks. A real case may be a text widget
containing long content.

On the contrary, the proposed method can pause in the middle of any arbitrary
function, as long as the function is called during the build/layout phase. This is
because the `maybePreemptRender` call can be inserted anywhere you like.

Problems specific to a subset of methods

The following drawbacks mainly apply to a subset of the OM methods.

● Some of the OM-B methods add exactly one widget in one frame, no matter
how fast or slow it is. As we know, the build/layout time for one widget varies
greatly on different devices. For example, on low-end devices it may still be
too much to add one widget in one frame, then we still get jank. On high-end
devices, it may be OK to add five widgets in one frame, then we are rendering
the UI using 5 frames even if we could have done it within 1 frame. The
proposed method does not have the problem.

● Some of the OM-B methods always have one frame lag. For example, if you
provide a child in frame #10, it will never be visible until frame #11 ends, no
longer how high-end and how spare the device is. In addition, as @DanField
points out, “this will cause problems with scrolling/touch events”. The
proposed method does not have the problem.

● For those “build/layout as many as possible, until it is near timeout” OM-B
methods, like in OM-B-M, there are also problems: When we see it is nearly
timeout and do not provide further build/layout, we will still have to do a lot.
We have to finish the build/layout of the remaining non-managed widgets,
and we have to paint the whole tree, finalize (dispose widgets) the whole
tree, etc. All of them take UI thread time, and takes a lot in scroll-ListView
case in my experiment. Then, even if we halt at, say, 12ms, we may still miss

PUBLICLY SHARED

PUBLICLY SHARED
the 16.6ms deadline, and it is not 60fps now. On the contrary, the proposed
method will not have so much overhead, but only do a little job (send existing
layer tree to raster thread), which is much more predictable in terms of time,
so we have less risk of missing 16.6ms.

● In some of the OM-L methods, users of Flutter framework may need to
modify their code because implicit assumptions such as
“build/didUpdateWidget happens on each frame” has been broken. More
details: When suspended, those approaches will have some subtree of
RenderObject whose performLayout has not been called in this frame, i.e.
still dirty, even if a frame ends. Given the existence of LayoutBuilder, we will
also have some Widget.build not called within that frame. This requires each
and every widgets and RenderObjects to update their code to allow such
behavior, which will not only be a lot of work inside Flutter framework
widgets, but also a lot for all package and app developers. The proposed
method does not have the problem.

● In OM-L-M, those approaches paint nothing (i.e. do not call child.paint) if a
Suspendable is suspended. This will destroy the layer tree and C++ engine
layer trees, making performance much worse. This may be overcomed but I
have not experimented. The proposed method does not have the problem.

● In OM-L-M, if a child under Suspendable marks itself as needed to
relayout/rebuild, and there is a relayout boundary between that child and
Suspendable, then the suspending mechanism will not work at all. The
proposed method does not have the problem.

BACKGROUND

Audience
Flutter contributors who want to improve Flutter’s performance.

Glossary
N/A

OVERVIEW

Non-goals
Jank caused by raster threads (probably addressed by Impeller etc).

EXPERIMENTS (THE PROTOTYPE)
In this section, I will show the experiments (prototype) I have done with quantitative
and qualitative results.

PUBLICLY SHARED

PUBLICLY SHARED

Scenario: Entering a new page with heavy subtrees
As is suggested by @dnfield, I made this prototype by reproducing a very common
case: Enter a new page, with slide animations, and that page contains subtrees
which are heavy to build/layout.

To demonstrate more clearly, the subtree is set to be so heavy that it needs 500ms
to show on my test (low-end) Android phone. Surely, without the proposed method,
the page transition animation does not animate at all.

Video

Video Link: Tap here, or tap here.

The video contains:
1. Case without optimization, repeated twice, showing jank.
2. Case with the proposed method, repeated twice, showing smoothness.
3. Content for sanity check (a jumping number animation; if you see it janky

then the video/display may have problem)

The video is recorded by a second phone camera at 60FPS, in order to better mimic the
human eye perception.

PUBLICLY SHARED

https://discordapp.com/channels/608014603317936148/1021987751710699632/1021993721140621353
https://user-images.githubusercontent.com/5236035/192254354-e65a8bd2-9f49-4c5b-acdf-eda3932402f9.mp4
https://github.com/flutter/flutter/issues/101227#issuecomment-1257823134
https://github.com/flutter/flutter/issues/101227#issuecomment-1257823134

PUBLICLY SHARED

User-facing API

Well, just the standard things, except for the PreemptBuilder, which looks like
AnimatedBuilder.

// the new thing: PreemptBuilder

PreemptBuilder(

builder: (context, child) => _MyAnimation(child: child),

child: TheVeryComplexPage(),

);

// just the very standard things…
class _MyAnimation { … }

class _MyAnimationState extends State<_MyAnimation> with

SingleTickerProviderStateMixin {

var controller = AnimationController(...);

var offsetAnimation = Tween(begin: const Offset(1, 0), end: const Offset(0,

0)).animate(controller);

void initState() => controller.forward();

Widget build(BuildContext context) => SlideTransition(position: offsetAnimation,

child: widget.child);

}

Full code
The latest code is in https://github.com/fzyzcjy/engine/tree/experiment-smooth and
https://github.com/fzyzcjy/flutter/tree/experiment-forest.

FPS analysis: From ~2FPS to ~60FPS
As can be seen, without optimization, it takes more than half a second to show the
new page, so it is <2FPS. With optimization, it is near 60FPS by the following
analysis.

I use the following command to extract each frame as JPEG files out of the mp4 file:

ffmpeg -i $VIDEO -pix_fmt rgba -vsync 0 -frame_pts true -vf

drawtext=fontfile=/usr/share/fonts/truetype/freefont/FreeMonoBold.ttf:fontsize=80:t

ext='%{pts}':fontcolor=white@0.8:x=7:y=7 -filter:v "crop=1920:250:0:0"

~/temp/video_frames_cropped/output_%04d.png

Below are the frames during smooth animation (open them in a new page for best
view). There are two series of photos, because the operation is repeated twice in
the video.

Since the content (mainly the Icons.back in AppBar) is different in each frame, we

PUBLICLY SHARED

https://github.com/fzyzcjy/engine/tree/experiment-smooth
https://github.com/fzyzcjy/flutter/tree/experiment-forest

PUBLICLY SHARED
know the Flutter UI refreshes at ~60FPS. We do see two photos that move the “left
arrow” twice the shift compared with other photos, thus there are 5% frames
crossing vsync, making maybe 57FPS is more accurate (I may explore later why
3FPS is lost when making the PR).

There often exist two or three “left arrows” inside one photo. This is inevitable since
we are using a camera to capture a video, and the Flutter UIdoes not have the
problem.

Overhead analysis: 3.9%

Indeed, I am suspecting whether it is an “overhead” or a “must”. In order to have a
60FPS smooth UI, we must render something onto the screen, so must pay some
extra UI thread time). What is done in `preemptRender` looks quite minimal.

PUBLICLY SHARED

PUBLICLY SHARED

I use `DateTime.now()` to simply record the time of `preemptRender`, and later print
it out in a `PreemptRender times=[...]` log. Raw data:

times=[1.123, 9.671, 0.626, 0.694, 0.426, 0.625, 0.535, 0.614, 0.735, 0.608, 0.578, 0.6, 0.737, 0.852, 0.56, 0.832, 0.694, 0.58, 0.574, 0.52, 0.508, 0.58, 0.434, 0.562, 0.457, 0.435, 0.507, 0.503, 0.482,
0.411, 0.495, 0.468, 0.483, 0.458, 0.562, 0.442, 0.454, 0.634, 0.768, 0.797, 0.777, 0.757, 0.767, 0.607, 0.537, 0.69, 0.562, 0.737, 0.653, 0.462, 0.75, 0.613, 0.74, 0.626, 0.513, 0.447, 0.64, 0.429, 0.415,
0.503, 0.488, 0.513, 0.492, 0.502, 0.542, 0.451, 0.584, 0.455, 0.443, 0.512, 0.48, 0.48, 0.435, 0.574, 0.42, 0.719, 0.78, 0.772, 0.911, 0.853, 0.698, 0.662, 0.643, 0.453, 0.625, 0.641, 0.656, 0.576, 0.466,
0.615, 0.6, 0.484, 0.472, 0.456, 0.414, 0.524, 0.427, 0.435, 0.44, 0.566, 0.459, 0.507, 0.474, 0.518, 0.436, 0.455, 0.492, 0.46, 0.517, 0.434, 0.448]

The statistics is:
● P95: 0.81ms
● P99: 1.10ms
● Medium: 0.54ms
● Average: 0.65ms

So 0.65ms/16.67ms = 3.9% and 0.54ms/16.67ms = 3.2%.

I also record the time from `initState` to the post frame callback, in order to
determine how long the page is needed to be visible to the users. The raw data:

slow_all=[745.347, 653.874, 720.377, 720.496, 731.236, 720.158, 731.52, 646.012, 734.658, 701.606, 733.994]; fast_all=[746.954, 701.56, 685.499, 688.476, 681.832, 692.165, 685.588, 676.315, 688.286, 682.473,
689.403]

The statistics:
● Without optimization: p95=740 p99=744 med=720 avg=712
● With the proposed method: p95=724 p99=742 med=688 avg=692

To my surprise, the proposed method has negative overhead. I honestly report it
here for completeness, and may explore further if making a PR. Anyway, we also do
not observe a significantly longer loading time, so there is at least no perceptible
problem.

Remark: The speed will be much slower (even a 400% increase) if there is logging and printing. So
when reproducing the experiment, you need to remove all before testing if the branch tip contains
some temporary log at that time.

Needed code change
With the prototype, I roughly know what code change needs to be done to the
engine and the framework. In the following paragraphs, I will list them, and also
discuss their effects. Indeed, there are not many changes excluding the completely
isolated PreemptBuilder and its underlying implementation.

The framework
● Add the whole `PreemptBuilder` and its underlying implementation. The new

code will be separated from all existing code, so will not affect any existing
code or user.

● Add `TickerRegistry` (InheritedWidget) and let Tickers report their existence
to the registry. The change will not affect existing things.

● (Optional) Add `maybePreemptRender` to the `RenderObject.layout` function.
Alternatively, adding a new `PreemptPoint` widget is also enough. The widget

PUBLICLY SHARED

PUBLICLY SHARED
solution will not affect existing things, and the add-to-layout solution will only
minor affect the implementation.

The engine
● Add a few lines to `Animator::Render`, allowing the UI thread to submit to the

rasterizer thread multiple times (but the Dart code will control itself such that
it does not submit more than once per vsync).

● Change `VsyncAwaiter` to save the latest vsync time to a thread-shared
variable, and later the UI thread will read it when needed. (P.S. The current
prototype is merely a hack when implementing this; will do it seriously in the
real PR.)

USAGE EXAMPLES

The new widget
We will introduce a new widget. Usage is like:

PreemptBuilder(

builder: (context, child) => build_animation_that_needs_60_fps,

child: arbitrary_sub_tree_such_as_a_new_page,

)

Well, it is very similar to what we are all familiar with, such as AnimationBuilder.

Example 1: Animation at 60fps, while having a heavy tree at the same
time

Remark: The next example will be most interesting. This example only serves to
understand the design step by step.

Suppose we have a page with a very heavy widget tree to build/layout. In the
meantime, we want to show a 60-fps loading animation when it is not ready
(building or fetching data or something else).

It can be implemented as follows. Indeed, just wrap with PreemptBuilder, nothing
more.

Stack(// can be any parent, just for example

children: [

your_fancy_other_widget_trees,

PUBLICLY SHARED

https://github.com/fzyzcjy/engine/blob/c78138e3e79abfc771449a3a8341f7fc9211066f/shell/common/animator.cc#L187-L196

PUBLICLY SHARED

PreemptBuilder(builder: (_, __) => CircularProgressIndicator()),

more_about_your_fancy_other_widget_trees,

]

)

Example 2: Smooth ListView

Suppose we have a page with ListView, and the contents in it are very heavy to
build/layout. This is very common in the real world. In the old days, when scrolling,
it may have been janky; but now it will be smooth as 60fps.

Users should not need any change except for adding a bool flag -
`ListView(preempt: true)`. We can also make that flag on by default, then users need
to do nothing when upgrading.

As for how it is implemented inside the ListView, it is also simple:

PreemptBuilder(

builder: (_, child) => SlideTransition(

position: scrollController.compute_extra_shift_at_this_extra_frame_by_inertia,

child: child,

),

child: ListView(...),

)

Example 3: Page transition (enter new page needs to a big new tree,
while needing transition animation at 60fps)

UPDATE: A demo (prototype) is done for it. Please see the “Experiments
(Prototype)” whole section.

When entering a page, the transition animation may be janky if the new whole page
is so heavy to build/layout. But with this proposal, it should be smooth.

Same as above, users need to do nothing except for using PreemptBuilder just like
AnimatedBuilder.

YourParentWidgets(

child: PreemptBuilder(

builder: (_, child) => YourFancyAnimationWhichNeeds60FPS(child: child)),

PUBLICLY SHARED

PUBLICLY SHARED

child: YourNewPageAndSoOn(),

)

)

Example 4: Custom scenario

The users should be able to implement their own arbitrary want-to-be-60-fps UI.
Just mimic the examples above - add a PreemptBuilder.

DETAILED DESIGN/DISCUSSION

In short: Preempt build/layout (by calling a synchronous function), update the layer
tree a little bit for animation, render the extra frame, resume build/layout (by naive
function return).

The analogy / mental model

Some researchers or Nvidia DLSS have some algorithm such that, they can input
some low fps frames, and output high fps frames. Consider this proposal as such a
kind of "tween creator". In other words, originally we have janky rendering (say,
15fps). And now, we add three extra animating frames after each of the 15fps
frames, to get a 60fps smooth feeling.

The flow chart

EDIT: As an optimization, we may move `preemptModifyLayerTree` from where it
exists now to the beginning of each 60fps frame. Then, we will do even less work
between observing a near-timeout and submitting things to raster thread, thus
even reducing the risk of accidentally be over the deadline further. But just think
about it as it is now since it may be easier to understand firstly.

Below is the flowchart of one cycle. (I will refine and reformat the chart if this doc is
later approved.)

The C++ code and main isolate runs on the UI thread, just like what we already do
currently. In other words, there is no extra thread or coroutines in this proposal.

Description of the figure:

PUBLICLY SHARED

PUBLICLY SHARED
● vsync comes.
● As normal, C++ calls Dart's drawFrame.
● Suppose Dart has 3 widgets to build/layout. It build/layout the 1st, then 2nd.
● Then it realizes time has up (say, 15ms has come), when layout() the 2nd

widget. Then it calls preemptRaster() (a dart function).
● In preemptRaster, we firstly call preemptModifyLayerTree to modify the layer

tree a bit. See below for examples about this function.
● In preemptRaster, we then call a probably modified version of

FlutterView.render. In other words, we provide layer tree to C++ code, and
c++ code provide it to raster thread. Notice what layer tree we provide here:
Because preemptRaster is called within a layout(), the paint phase has not
started, so the layer tree is completely old (instead of mixed). ThusIn
addition, preemptModifyLayerTree will modify the layer tree a bit. That's all.
We will send this to raster.

● Raster thread renders that layer tree as usual, so we see beautiful things on
screen.

● UI thread C++/Dart goes on, because preemptRaster function returns. The
Dart code will continue from where preemptRaster is called (you know, just
very plain function calls; but this solves the "how to suspend a layout call"
implicitly indeed). In Dart's view, it thinks it is still the 1st frame. Let's say it
continues layouting the 2nd widget. Then 3rd widget. Then paint, flush
compositing bits, semantics, etc.

● Then finally, as a normal pipeline stage, dart provides the new layer tree and
let c++ to throw it to the raster thread.

● Raster thread renders it to screen in the background.
● Then, just like what will be done normally in frame 1, call post frame

callbacks, c++ calls dart for some callbacks, etc.
● Now ui thread is idle. When next vsync comes, the same loop will go.

PUBLICLY SHARED

PUBLICLY SHARED

The code

PUBLICLY SHARED

PUBLICLY SHARED

The high-level code will look like this:

class RenderObject {

void layout(Constraints constraints, { bool parentUsesSize = false }) {

if (nearTimeout) { preemptRender(); }

… the original layout code …
}

}

void preemptRender() {

// remark: At this location, the layer tree has not yet been touched by the

current frame pipeline. So we have plain old layer tree.

preemptModifyLayerTree();

FlutterView.render(layer_tree);

}

To understand the core concept, suppose preemptModifyLayerTree is nothing but a
very naive function that modifies the existing layer tree by hand (such as,
`renderView.layer!.offset += 123`). We will refine it later.

From preemptModifyLayerTree to PreemptBuilder

If all sections above are done, we now have a mechanism for 60FPS smooth
animation, no matter how heavy the tree is to build/layout. However, that 60FPS
animation is very hard to build - we have to manipulate the layer properties by
hand inside preemptModifyLayerTree.

In this section, we will see how we create a simplest PreemptBuilder widget, and no
developer (or Flutter framework dev) will ever know the existence of
preemptModifyLayerTree.

The core idea is to use a second tree in addition to the main tree. In other words,
we create a separate BuildOwner/PipelineOwner/root-widget/etc (correspond to
SecondTreePack in prototype code). Then, we are free to call its
buildScope/flushLayout/flushPaint at any time at any frequency we like. Its input is a
widget tree (indeed PreemptBuilder.builder output), and its output is a layer tree
(indeed to be inserted to the main tree).

Then, we need to graft the second-tree’s layer tree and the main-tree’s layer tree.
Shortly speaking, we do so in `paint` function by `context.addLayer` and so on.
Details can be found in the code.

When to call preemptRender

PUBLICLY SHARED

PUBLICLY SHARED
Just call it when `now - lastVsyncTime > threshold` where threshold is smaller than
and near 16.67ms.

Indeed, this approach is robust to the choice of threshold, and the execution time
of preemptRender itself. If the preemptRender misses the vsync deadline, nothing
bad will happen. This is shown in the figure below.

For completeness, three cases are discussed - a janky frame needs <16ms, ~32ms,
and infinitely long. In the diagram, we deliberately assume the `preemptRender` all
misses the vsync deadline. Surely, if they meet the deadline, the scenario can just
be better instead of worse. As can be seen in the diagram, in each 1/60s, we see the
rasterizer thread produce one outcome, so it runs exactly at 60fps.

ACCESSIBILITY
None

INTERNATIONALIZATION
None

PUBLICLY SHARED

PUBLICLY SHARED

INTEGRATION WITH EXISTING FEATURES
Well it is just a bool flag “preempt=true/false” (in the users’ view), so I guess the API
looks natural.

OPEN QUESTIONS
● Will it work?
● How to check whether it is near the timeout, such as one check per

`RenderObject.layout`. One approach may be reducing it. Such as check every
N times, or check only when layout depth is lower than K. Another approach
may be utilizing C++. Maybe we have a C++ atomic variable `is_near_timeout`,
which is set in another thread and read here. I have not dealt with the details
yet, since I want to focus on the main problem now.

TESTING PLAN
● Build a prototype to verify it works
● Enhance flutter testing package so it understands that, one “tester.pump”

can result in multiple rasterized frames
● Test modified widgets, e.g. CircularProgressIndicator and ListView

DOCUMENTATION PLAN
● API should document the “preempt” flag
● Maybe add an article explaining what is going on (I am willing to write one)

MIGRATION PLAN
For end users, no need to migrate - it is just a bool flag (“preempt”) that is optional.

PUBLICLY SHARED

PUBLICLY SHARED

OUTDATED CONTENT

All contents below are outdated (outdated API, and outdated prototype). They are
not deleted because otherwise may delete some Google Doc comments bound to
them.

There are more details, which can be seen in full code prototype about this “from
preemptModifyLayerTree to PreemptBuilder):
https://github.com/fzyzcjy/flutter/blob/1332f1e8b46f16efe26ba679f3f815695bdfe3
49/packages/hello_package/lib/main.dart . Indeed, in that prototype, the last step -
assembling PreemptBuilder - is not done, but quite close. Just combine
AdapterInMainTreeWidget + AdapterInSecondTreeWidget + secondTreeWidget and
wrap them into one single PreemptBuilder and we are done. This prototype does
not aim at anything like speed up, but only shows ingredients of PreemptBuilder,
i.e. this section.

Here is a screenshot of the demo (I know it is not beautiful in terms of art…). If you
run it, you will see all colorful things change color in every second (i.e. every new
frame tick). The orange border is from main-tree ancestors, the blue is from
second-tree, and the red is from main-tree children. Thus, I show that they
coordinate well together.

Implement “Example 1: CircularProgressIndicator, or any single
DisplayListLayer animation”

Let’s start by building it from the low level API. Then, we can later abstract out some
high level APIs.

When user puts a `CircularProgressIndicator(preempt: true)`, we may convert it to:

PreemptDisplayList(

child: CircularProgressIndicator(preempt: false, … other argos …),

)

PUBLICLY SHARED

https://github.com/fzyzcjy/flutter/blob/1332f1e8b46f16efe26ba679f3f815695bdfe349/packages/hello_package/lib/main.dart
https://github.com/fzyzcjy/flutter/blob/1332f1e8b46f16efe26ba679f3f815695bdfe349/packages/hello_package/lib/main.dart

PUBLICLY SHARED
The `PreemptDisplayList` may be a SingleChildRenderObjectWidget. Its render
object is:

class RenderPreemptDisplayList extends RenderBox {

@override

void paint(PaintingContext context, Offset offset) {

layer = paint_child_subtree_inside_a_DisplayListLayer();

}

@override

void preemptModifyLayerTree() {

layer = paint_child_subtree_inside_a_DisplayListLayer();

}

}

In other words, we just let the subtree paint on a DisplayListLayer, and that is what
we do inside preemptModifyLayerTree. Then, when later the layer tree is submitted
to rasterize, we will see the CircularProgressIndicator is having 60fps.

Implement “Example 2: Smooth ListView”

There are multiple ways to do it, and here is one of them (maybe simplest to
explain and see the idea, though not the most flexible).

Firstly, a `ListView(preempt: true)` is converted to:

PreemptShiftByGesture(

child: ListView(preempt: false, … other argos …),

)

The PreemptShiftByGesture is again a SingleChildRenderObjectWidget. The render
object is:

class RenderPreemptShiftByGesture extends RenderProxyBox {

var preemptShift = 0.0;

// REMOVED

// @override

// void preemptHandleTouchEvents(PointerMoveEvent e) {

// preemptShift += e.current_shift_amount;

// }

@override

void paint() { // Well maybe not exactly do this in paint, this is just rough

idea

// reset it, because the ListView will handle the touch events and shift its

PUBLICLY SHARED

PUBLICLY SHARED

real content now

preemptShift = 0;

layer = pushOffsetLayer();

}

@override

void preemptModifyLayerTree() {

layer.offset = preemptShift;

// in each preempt painting, consider the inertia about how much ListView wants

to shift and shift it.

// May not be proper to put the code exactly here, and we may need another

callback etc, but this is rough idea

preemptShift += get_list_view_current_speed_caused_by_inertia();

}

}

In other words, suppose the ListView runs at 20fps. Then, between each of the
janky 20fps frame (which means ListView receives user inputs, shifts it, layout/build
it, and paint it), we add two more extra frames by the following logic: Inside the
60fps preemptRender, we use preemptModifyLayerTree to shift the content a little
bit (the extent is derived from ListView’s current inertia).

At a first glance, it may seem that it is still janky, because we do not accept gestures
at 60fps, but only at 20fps (in the example). However, normal gestures about
shifting a ListView seem to be smooth, i.e. the speed of dragging does not change
abruptly. Therefore, by using inertia to calculate the ListView shift, it should still be
smooth. In addition, consider the “mental model” we mentioned above. Gamers
using Nvidia DLSS (which creates additional frames to games) seem to be happy
about that, and “get extra tween frames to scrolling a ListView” may mimic “get
extra tween frames in a game”.

Implement “Example 3: Enter page”

Well, just mimic the two examples above.

The prototype with video

Please refer to
https://github.com/flutter/flutter/issues/101227#issuecomment-1257098789 to see
a working prototype (a page-transition example). It has a video demonstrating that
it runs at ~60fps, while widget build/layout needs ~500ms.

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/101227#issuecomment-1257098789

