Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Python Module for Tabular Datasets in XLS, CSV, JSON, YAML, &c.

This branch is 103 commits behind kennethreitz:develop

Fetching latest commit…

Cannot retrieve the latest commit at this time

Failed to load latest commit information.
docs
tablib
.gitignore
.travis.yml
AUTHORS
HACKING
HISTORY.rst
LICENSE
MANIFEST.in
NOTICE
README.rst
TODO.rst
setup.py
test_tablib.py
toy.py

README.rst

Tablib: format-agnostic tabular dataset library

_____         ______  ___________ ______
__  /_______ ____  /_ ___  /___(_)___  /_
_  __/_  __ `/__  __ \__  / __  / __  __ \
/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
\__/  \__,_/  /_.___/ /_/   /_/   /_.___/

Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

  • Excel (Sets + Books)
  • JSON (Sets + Books)
  • YAML (Sets + Books)
  • HTML (Sets)
  • TSV (Sets)
  • CSV (Sets)

Note that tablib purposefully excludes XML support. It always will. (Note: This is a joke. Pull requests are welcome.)

Overview

tablib.Dataset()
A Dataset is a table of tabular data. It may or may not have a header row. They can be build and manipulated as raw Python datatypes (Lists of tuples|dictionaries). Datasets can be imported from JSON, YAML, and CSV; they can be exported to XLSX, XLS, ODS, JSON, YAML, CSV, TSV, and HTML.
tablib.Databook()
A Databook is a set of Datasets. The most common form of a Databook is an Excel file with multiple spreadsheets. Databooks can be imported from JSON and YAML; they can be exported to XLSX, XLS, ODS, JSON, and YAML.

Usage

Populate fresh data files:

headers = ('first_name', 'last_name')

data = [
    ('John', 'Adams'),
    ('George', 'Washington')
]

data = tablib.Dataset(*data, headers=headers)

Intelligently add new rows:

>>> data.append(('Henry', 'Ford'))

Intelligently add new columns:

>>> data.append_col((90, 67, 83), header='age')

Slice rows:

>>> print data[:2]
[('John', 'Adams', 90), ('George', 'Washington', 67)]

Slice columns by header:

>>> print data['first_name']
['John', 'George', 'Henry']

Easily delete rows:

>>> del data[1]

Exports

Drumroll please...........

JSON!

>>> print data.json
[
  {
    "last_name": "Adams",
    "age": 90,
    "first_name": "John"
  },
  {
    "last_name": "Ford",
    "age": 83,
    "first_name": "Henry"
  }
]

YAML!

>>> print data.yaml
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}

CSV...

>>> print data.csv
first_name,last_name,age
John,Adams,90
Henry,Ford,83

EXCEL!

>>> open('people.xls', 'wb').write(data.xls)

It's that easy.

Installation

To install tablib, simply:

$ pip install tablib

Or, if you absolutely must:

$ easy_install tablib

Contribute

If you'd like to contribute, simply fork the repository, commit your changes to the develop branch (or branch off of it), and send a pull request. Make sure you add yourself to AUTHORS.

Something went wrong with that request. Please try again.