
Games, graphs, and machines

Asilata Bapat

August 8, 2023

Contents

Contents 2

1 Some foundations 3
1.1 Sets . 3
1.2 Relations . 4
1.3 Functions . 4
1.4 Graphs . 4
1.5 Properties of relations . 6

2 Equivalence relations 8
2.1 Modular arithmetic . 9

3 Graphs 11
3.1 Overview . 11
3.2 Adjacency matrix . 12
3.3 Graph colouring . 16
3.4 TODO Hamiltonian paths and circuits 16

4 TODO Combinatorial games 17
4.1 Easy examples . 17
4.2 Strategic and Grundy labelling 17
4.3 Nim . 17

5 TODO Matrix games 18
5.1 Matrices . 18

1 Some foundations

We begin by briefly introducing some language to talk about the objects
we will encounter in this course. We will revisit this foundational material
several times throughout the course in several contexts.

1.1 Sets

Informally, a set is an unordered collection of objects with no repetitions.
This is the most basic object usually used to discuss almost every con-
struction in mathematics. If 𝑇 is a set and 𝑥 is any object, we have the
following dichotomy*: either 𝑥 is an element of 𝑇, denoted 𝑥 ∈ 𝑇, or 𝑥
is not an element of 𝑇, denoted 𝑥 ∉ 𝑇. Two sets are equal if and only if
they have the same elements. That is, every element of the first set is an
element of the second set, and vice versa.

The Zermelo–Fraenkel axioms† can be used to develop this theory more
formally, but we will not go into the details in this course.

Sets are often denoted by capital letters such as 𝑆, 𝑇, and potential
elements as small letters 𝑥, 𝑦‡. If we are listing all the elements of a set,
we put them in curly braces, for example {1, 2, 3, 4}. We can also specify a
set by taking all elements of another set that satisfy a particular property,
for example {𝑥 ∈ ℕ | 𝑥 is even}.

A set 𝑆 is a subset of a set 𝑇, denoted 𝑆 ⊂ 𝑇, if every element of 𝑆 is also
an element of 𝑇. A set 𝑈 is a superset of a set 𝑇, denoted 𝑈 ⊃ 𝑇, if every
element of 𝑇 is also an element of 𝑈 . There is a unique set that contains
no elements. It is called the empty set and is denoted ∅. The empty set is
vacuously§ a subset of every set.

Here are some things we can do with sets.
Example 1.

1. {1, 2} ∪ {2, 3} = {1, 2, 3}.

2. {1, 2} ∩ {2, 3} = {2}.

Unions The union of 𝑆 and 𝑇, denoted 𝑆 ∪ 𝑇, is the set such that each
element of 𝑆 ∪ 𝑇 is either an element of 𝑆 or of 𝑇, or both.

Intersections The intersection of 𝑆 and 𝑇, denoted 𝑆 ∩ 𝑇, is the set such
that each element of 𝑆 ∩ 𝑇 is both an element of 𝑆 and an element
of 𝑇.

Power set The power set of 𝑆, denoted P(𝑆), is the set whose elements
are all the subsets of 𝑆.

Example 2.

1. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

2. {1, 2} × {2, 3} =

{(1, 2), (1, 3), (2, 2), (2, 3)}.

3. {1, 2} × ∅ = ∅.

Cartesian products The Cartesian product of 𝑆 and 𝑇, denoted 𝑆 ×𝑇, is
the set whose elements are ordered pairs (𝑥, 𝑦), where 𝑥 runs over
all the elements of 𝑆, and 𝑦 runs over all the elements of 𝑇. Note
that if one of the two sets is empty, then the Cartesian product is
also empty.

* A situation in which exactly one of two possible options is true.
† Historical remarks and something about ZFC?
‡ This is just a convention. In fact, sets are often elements of other sets, so there is no clear

distinction between sets and potential elements.
§ We say that a statement of type "if . . . then . . . ", or equivalently "for every . . . we have

. . . " is vacuously true if nothing satisfies the "if" or "for every" condition.

1.2 Relations

Informally, a relation is a specification that links objects of one set and
objects of another set. If 𝑥 is related to 𝑦 under a relation 𝑅, we say that the
ordered pair (𝑥, 𝑦) satisfies 𝑅. For example, we may consider a relation
called is-factor-of, on pairs of natural numbers, which specifies that
(𝑥, 𝑦) satisfies is-factor-of if and only if 𝑥 is a factor of 𝑦. In this case,
(1, 3), (3, 27), (4, 24) are all examples of ordered pairs that satisfy the
relation is-factor-of¶.

To model this mathematically, we formally define a relation as a subset
𝑅 ⊂ 𝑆 × 𝑇, where 𝑆 and 𝑇 are two sets. In this case, the elements of 𝑅
are precisely the ordered pairs that we think of as satisfying the relation
𝑅. In the previous example, we have 𝑆 = 𝑇 = ℕ. If we want 𝑅 to model
the relation is-factor-of, then we take 𝑅 to be the subset of ℕ × ℕ

consisting of exactly the pairs (𝑥, 𝑦) where 𝑥 is a factor of 𝑦.

As in the previous example, we often want 𝑆 and 𝑇 to be the same set. In
this case, we say that a subset 𝑅 ⊂ 𝑆 × 𝑆 is a (binary) relation on 𝑆.

1.3 Functions

Informally, a function is a rule that can be used to find the output value
given a certain input value. This can be formally expressed using relations,
as follows. Let 𝑅 ⊂ 𝑆 × 𝑇 be a relation. We say that 𝑅 is a function if
whenever (𝑠, 𝑡) ∈ 𝑅 and (𝑠, 𝑢) ∈ 𝑅, we have 𝑡 = 𝑢. In other words, any

Example 3.

1. The relation {(𝑎, 𝑏) ∈ ℕ × ℕ | 𝑎 +
𝑏 is even } is not a function because,
for example, (2, 4) and (2, 0) are both
in it.

2. The relation {(𝑎, 𝑏) ∈ ℕ × ℕ | 𝑏 =

𝑎2} is a function.

first coordinate has at most one possible second coordinate. In this case,
we often write 𝑡 = 𝑅(𝑠) or often 𝑡 = 𝑓 (𝑠). We also have the following
definitions.

Domain The domain of this function is the set

{𝑥 ∈ 𝑆 | (𝑥, 𝑦) ∈ 𝑅 for some 𝑦 ∈ 𝑇}.

Codomain (or range) The codomain of this function is the set

{𝑦 ∈ 𝑇 | (𝑥, 𝑦) ∈ 𝑅 for some 𝑥 ∈ 𝑆}.

If 𝑆′ is the domain and 𝑇′ is the range, we usually say that 𝑓 is a function
from 𝑆′ to 𝑇′, written 𝑓 : 𝑆′ → 𝑇′.

1.4 Graphs

Graphs provide an extremely useful way to organise information about
relations. For the moment we use them as powerful visual aids, but we
will see later that graphs also lend themselves well to computational
tools.

A directed graph consists of a vertex set 𝑉 and an edge set 𝐸. We require
that the edge set 𝐸 is a relation on 𝑉 , that is, 𝐸 ⊂ 𝑉 ×𝑉 . We will write

¶ In English, we might read one of these as "3 is a factor of 27".
This is a binary relation because we are looking at a subset of the product of two copies of
𝑆. An 𝑛-ary relation on 𝑆 would just be a subset of the product of 𝑛 copies of 𝑆.

this graph as (𝑉, 𝐸). Visually, we draw the vertices as nodes and an edge
(𝑣, 𝑤) as an arrow from 𝑣 to 𝑤.

Figure 1.1: A directed and an undirected
graph

We think of undirected graph as a directed graph with the extra property
that the edge relation 𝐸 is symmetric. That is, (𝑣, 𝑤) ∈ 𝐸 if and only if
(𝑤, 𝑣) ∈ 𝐸. In this case, we draw the vertices as nodes, and we draw a
single segment joining 𝑣 and 𝑤 for every corresponding pair of edges
(𝑣, 𝑤) and (𝑤, 𝑣).

1.4.1 Representing a relation on a set as a graph

Note that the definition of a graph is very similar to the definition of a
relation on a single set — in fact, a directed graph is just another way of
looking at a relation on a set. More precisely, let 𝑅 be a relation on a set 𝑆.
Then we can construct a directed graph whose vertex set is 𝑆 and whose
edge set is 𝑅. This point of view is useful in certain situations, as we will
see later.

1.4.2 The adjacency matrix of a graph

Recall that a matrix is a rectangular array, usually filled with numbers.
An 𝑚 × 𝑛 matrix 𝑀 has 𝑚 rows (numbered 1 through 𝑚) and 𝑛 columns
(numbered 1) through 𝑛). The entry in the 𝑖th row and 𝑗th column is
denoted 𝑀𝑖 𝑗 .

It is extremely useful to encode the data of a graph into a matrix, called
an adjacency matrix. Suppose (𝑉, 𝐸) is a graph**. Choose an ordering on
the elements of 𝑉 , say the ordered tuple (𝑣1 , . . . , 𝑣𝑛). We construct the
adjacency matrix as an 𝑛 × 𝑛 matrix 𝐴, such that

𝐴𝑖 𝑗 =

{
1, (𝑖 , 𝑗) ∈ 𝐸,

0, (𝑖 , 𝑗) ∉ 𝐸
.

The adjacency matrix is a matrix that only contains the elements 0 and
1. It encodes the entire information contained in the original graph, in
a way that is highly adapted to calculations — we will see more of this
soon.

Example 4. Let (𝑉, 𝐸) be the directed graph
shown in Figure 1.1, with the ordering on
the vertices chosen to be (𝑎, 𝑏, 𝑐). Then the
adjacency matrix is

𝐴 =
©­«
0 1 0
0 0 1
1 0 0

ª®¬ .
Now if we reorder the vertices as (𝑐, 𝑏, 𝑎),
the adjacency matrix becomes

𝐴′ = ©­«
0 0 1
1 0 0
0 1 0

ª®¬ .

Note that changing the ordering on the elements of𝑉 produces a different-
looking adjacency matrix. It is related to the original adjacency matrix
by a serious of simultaneous swaps of corresponding row and column
numbers. For example, the adjacency matrix given by the ordering
(𝑣2 , 𝑣1 , 𝑣3 , . . . , 𝑣𝑛) can be obtained from 𝐴 by swapping rows 1 and 2
and also swapping columns 1 and 2.

** For simplicity we usually consider finite sets 𝑉 when we construct adjacency matrices
but in general 𝑉 may be infinite.

1.5 Properties of relations

Sometimes, relations (on a single set) satisfy further special properties.
Here are some common ones. Remember that a relation 𝑅 is simply a
subset of 𝑆 × 𝑆 for some set 𝑆. So the following properties are about 𝑅 as
a whole, as a subset of 𝑆 × 𝑆.

Example 5.

1. The relation

𝑅 = {(𝑎, 𝑏) ∈ ℕ×ℕ | 𝑎 divides 𝑏}

is reflexive, anti-symmetric, and
transitive.

2. The relation

𝑅 = {(𝑎, 𝑏) ∈ ℕ×ℕ | 𝑎+𝑏 is odd}

is symmetric but not reflexive or
transitive.

Reflexivity A relation 𝑅 is reflexive if (𝑥, 𝑥) ∈ 𝑅 for each 𝑥 ∈ 𝑆.
Symmetry A relation 𝑅 is symmetric if whenever we have (𝑥, 𝑦) ∈ 𝑅, we

also have (𝑦, 𝑥) ∈ 𝑅.
Anti-symmetry A relation 𝑅 is anti-symmetric if having both (𝑥, 𝑦) ∈ 𝑅

and (𝑦, 𝑥) ∈ 𝑅 implies that 𝑥 = 𝑦.
Transitivity A relation 𝑅 is transitive if whenever (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈

𝑅, we also have (𝑥, 𝑧) ∈ 𝑅.
Note that the properties of being symmetric and anti-symmetric are
almost but not quite complementary to each other: if a relation is
both symmetric and anti-symmetric, it means that only pairs of
the form (𝑥, 𝑥) can be in the relation††. However, not all pairs of
this form have to satisfy the relation (i.e. the relation need not be
reflexive).
The adjacency matrix can be helpful in order to read off properties
about the relation. For example, since a reflexive relation has all
possible pairs (𝑥, 𝑥) in it, all diagonal entries 𝐴𝑖𝑖 of the adjacency
matrix must equal 1, and conversely if 𝐴𝑖𝑖 = 1 for each 𝑖, then the
relation is reflexive.
Similarly, a relation is symmetric if 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 for each 𝑖 , 𝑗. That is,
if the adjacency matrix is symmetric. A relation is anti-symmetric
if whenever 𝑖 ≠ 𝑗 and 𝐴𝑖 𝑗 = 1, we have 𝐴 𝑗𝑖 = 0.
What does it mean in terms of the adjacency matrix if a relation is
transitive? The answer to this question is slightly more complicated,
and we will get back to it later.

1.5.1 Closures of relations

If 𝑆 is any set, then the entire cartesian product 𝑆 × 𝑆 is itself a relation
on 𝑆. Note that certain properties are true for 𝑆 × 𝑆: for example, of the
four properties discussed in the previous section, 𝑆 × 𝑆 has reflexivity,
symmetry, and transitivity.

If 𝑅 is any relation on 𝑆, it makes sense to ask about the reflexive closure
(resp. symmetric or transitive closure) of 𝑅. In the following discussion
we’ll talk about the reflexive closure, but you can use the same definition
for symmetric and transitive closures respectively.

Informally, we’d like the reflexive closure of 𝑅 to be the smallest relation
on 𝑆 that contains 𝑅, and which is reflexive. If 𝑅 is already reflexive,
then it is its own reflexive closure. Otherwise, the reflexive closure will
contain some more elements. But what does smallest mean in the above
context‡‡? To make this precise, we give the following definition.

†† Convince yourself of this from the definitions!
‡‡ If 𝑆 is a finite set, then we can say that that smallest means the one with the least number

of elements, but we give a general definition because we don’t want to be restricted to
this case.

Definition 6. A reflexive (resp. symmetric, transitive) closure of 𝑅 is a set 𝑅
with the following properties.

1. 𝑅 ⊂ 𝑅 ⊂ 𝑆 × 𝑆.

2. 𝑅 is reflexive (resp. symmetric, transitive).

3. If 𝑇 is a subset of 𝑆 × 𝑆 such that 𝑅 ⊂ 𝑇 ⊊ 𝑅, then 𝑇 is not reflexive
(resp. symmetric, transitive).

It can be shown that reflexive (resp. symmetric, transitive) closures
always exist, and that they are unique§§. We won’t prove this formally,
but instead we will just produce a construction of each.

Let us first tackle the reflexive closure. To make a relation reflexive,
we need to add in all pairs of the form {(𝑥, 𝑥)}, where 𝑥 ∈ 𝑆. So
you can convince yourself that the reflexive closure is simply the set
𝑅∪ {(𝑥, 𝑥) | 𝑥 ∈ 𝑆}: not only is this new relation reflexive, but also if you
take away any pair that is not already an element of 𝑅, you get something
non-reflexive. In terms of adjacency matrices, the reflexive closure is the
relation corresponding to the matrix obtained by changing all diagonal
entries of the original adjacency matrix to 1.

Similarly, the symmetric closure of 𝑅 is obtained by adding the flipped
pair {(𝑏, 𝑎)} for every pair (𝑎, 𝑏) ∈ 𝑅. This is the same thing as taking
𝑅 ∪ {(𝑎, 𝑏) | (𝑏, 𝑎) ∈ 𝑅}. In terms of the adjacency matrix, we obtain this
by symmetrising the adjacency matrix¶¶: whenever 𝐴𝑖 𝑗 = 1, we also set
𝐴 𝑗𝑖 = 1.

Once again, it is not so easy to describe how to construct the transitive
closure of a relation 𝑅, but it can be done by developing some techniques
for working with adjacency matrices. We will revisit this later once we
have those techniques.

§§ Think about when it makes sense to ask for the closure of a relation with respect to a
property, and when you can expect it to exist uniquely. For example, it doesn’t really
make sense to ask for the anti-symmetric closure of a relation. Do you see why?

¶¶ This is the same as taking 1
2 (𝐴 + 𝐴𝑡). Do you see why?

2 Equivalence relations

Recall that a relation 𝑅 on a set 𝑆 is just a subset of the product 𝑆 × 𝑆. We
take a short tour through the theory of equivalence relations, which are
extremely important in constructing all sorts of mathematical structures.

Definition 7. A equivalence relation is one that is reflexive, symmetric, and
transitive.

Example 8. label:ex:parity Let 𝑅 be the relation on ℤ defined as

𝑅 = {(𝑎, 𝑏) ∈ ℤ ×ℤ | 𝑎 − 𝑏 is even}.

Usually, if we have an equivalence relation 𝑅 on a set 𝑆, we say that
𝑥 ∼𝑅 𝑦 if (𝑥, 𝑦) is in 𝑅. If the context is clear, we will simply say 𝑥 ∼ 𝑦.
The most important application is that having an equivalence relation on
a set allows us to treat an object 𝑥 as "being equivalent" to an object 𝑦 if
𝑥 ∼ 𝑦: the equivalence relation gives us a new way of identifying various
objects. We will capture this identification with the notion of equivalence
classes*.

Definition 9. Let 𝑅 be an equivalence relation on a set 𝑆. For any 𝑥 ∈ 𝑆, the
equivalence class of 𝑥, denoted [𝑥], is the subset of 𝑆 defined as follows:

[𝑥] = {𝑦 ∈ 𝑆 | 𝑥 ∼𝑅 𝑦}.
In ??, 𝑎 ∼ 𝑏 if and only if they have the
same parity, so there are two equivalence
classes of 𝑅 on ℤ, namely [0] and [1].
Note that [0] is the same as [2] or [−6],
and [1] is the same as [−55] or [7], but
it’s traditional to use the smallest non-
negative values, which are [0] and [1].

The special properties that an equivalence relation satisfies guarantees
the following proposition.

Proposition 10. Let 𝑅 be an equivalence relation on a set 𝑆.

1. Every element of 𝑆 belongs to at least one equivalence class (its own!).

2. If 𝑥, 𝑦 ∈ 𝑆 such that 𝑦 ∈ [𝑥], then [𝑥] = [𝑦]. In other words, the set of
equivalence classes of an equivalence relation partitions† the set 𝑆 into
disjoint subsets whose union is 𝑆.

Proof. Let 𝑥 be any element of 𝑆. First note that 𝑥 ∈ [𝑥] by reflexivity,
which proves the first statement. To prove the second statement, suppose
that 𝑥, 𝑦 ∈ 𝑆 such that 𝑦 ∈ [𝑥]. To show that [𝑥] = [𝑦], we need to show
that for every 𝑧 ∈ 𝑆, we have 𝑧 ∈ [𝑥] if and only if 𝑧 ∈ [𝑦].

Recall that 𝑦 ∈ [𝑥] means that 𝑥 ∼𝑅 𝑦. If 𝑧 ∈ [𝑦], then we have 𝑧 ∈ [𝑥] by
transitivity: 𝑥 ∼𝑅 𝑦 and 𝑦 ∼𝑅 𝑧 implies 𝑥 ∼𝑅 𝑧. On the other hand, since
we know that 𝑦 ∈ [𝑥], we also have 𝑥 ∈ [𝑦] by symmetry, and then by
the previous argument we see that if 𝑧 ∈ [𝑥] then 𝑧 ∈ [𝑦] by transitivity.
The proof is now complete. □

If 𝑦 ∈ [𝑥], we say that 𝑦 is a representative
of [𝑥]. Often we can uncover new structures by working with the set of equiv-

alence classes rather than the original set 𝑆, and it can even give rise
to new structures. An important example of this technique is modular
arithmetic.

2.1 Modular arithmetic

As an important application of equivalence classes, we briefly study
modular arithmetic. First recall the relation from cref:ex:parity. We can
observe that in the integers, the sum of two numbers is always even. The
sum of an even with an odd is odd, and the sum of two odd numbers is
always odd. But the set of even numbers has another name: [0], and the
set of odd numbers is also called [1] with respect to this relation.

So we can express the above statements by writing down the following
statements instead.

1. Whenever 𝑎 ∈ [0] and 𝑏 ∈ [0], we have 𝑎 + 𝑏 ∈ [0].

2. Whenever 𝑎 ∈ [0] and 𝑏 ∈ [1], we have 𝑎 + 𝑏 ∈ [1].

3. Whenever 𝑎 ∈ [1] and 𝑏 ∈ [0], we have 𝑎 + 𝑏 ∈ [1].

4. Whenever 𝑎 ∈ [1] and 𝑏 ∈ [1], we have 𝑎 + 𝑏 ∈ [0].

Let us instead express this by defining a new addition operation on
the set‡ {[0], [1]}. We will simply define this addition using the
four properties above, which can be written more concisely as

[𝑎] + [𝑏] B [𝑎 + 𝑏] for each 𝑎, 𝑏 ∈ ℤ.

Because we know the properties we stated above about even/odd
addition, we have effectively proven that it actually doesn’t matter
whic representative we take for each equivalence class. This is the
idea behind modular arithmetic.

Exercise 11. Check that∼𝑑 is an equivalence
relation.More generally, fix a modulus 𝑑 ∈ ℕ. We say that 𝑥 ∼𝑑 𝑦 if 𝑥 − 𝑦 is

divisible by 𝑑, which is also written as 𝑑 | 𝑥 − 𝑦. More traditionally,
we write 𝑥 ≡ 𝑦 (mod 𝑑). Note that if 𝑥 ∼𝑑 𝑦, then there is some
integer 𝑚 ∈ ℤ such that 𝑥 − 𝑦 = 𝑚𝑑.

In this case, we have equivalence classes [0], [1], . . . , [𝑑 − 1]. Note
that [𝑑] = [0] again. But if 0 ≤ 𝑒 , 𝑓 < 𝑑, how do we know for sure
that [𝑒] ≠ [𝑓] when 𝑒 ≠ 𝑓 ? We know this by Euclid’s algorithm,
which guarantees that for every integer 𝑛 and positive integer 𝑑,
we can write a unique equation

𝑛 = 𝑞𝑑 + 𝑟, 0 ≤ 𝑟 < 𝑑.

* The idea is that we can treat all elements of one equivalence class as being interchangeable
in some sense.

† If 𝑆 = 𝑆1 ∪ · · · ∪ 𝑆𝑛 , we say that it is a partition if 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for 𝑖 ≠ 𝑗. In this case we write
𝑆 = 𝑆1 ⊔ · · · ⊔ 𝑆𝑛 , or more concisely, 𝑆 =

⊔𝑛
𝑖=1 𝑆𝑖 .

‡ Note that this set is not equal to ℤ! It is also not equal to the set {0, 1}. Instead this is a set
with two elements, which are themselves subsets of ℤ.

In our case, suppose that 𝑒 ≥ 𝑓 . Since 0 ≤ 𝑒 − 𝑓 < 𝑑, the equation
for 𝑒− 𝑓 has to be 𝑒− 𝑓 = 0 ·𝑑+(𝑒− 𝑓). On the other hand if [𝑒] = [𝑓]
then we also have a valid equation that looks like 𝑒 − 𝑓 = 𝑚 · 𝑑 + 0
for some 𝑚. Matching up the two, we see that 𝑚 = 0 and 𝑒 = 𝑓 is
the only possibility.

Having established this, we now know that we have exactly 𝑑

different equivalence classes, namely [0], [1], . . . , [𝑑− 1]. Of course
these can be represented by different integers. For example, [1] =
{. . . , 1−2𝑑, 1−𝑑, 1, 1+𝑑, 1+2𝑑, . . . }, so any of these elements would
do as a representative of [1]. We will writeℤ/𝑑ℤ = {[0], . . . , [𝑑−1]}
to be the set of equivalence classes in this case.

Once again we define a new addition operation, this time on ℤ/𝑑ℤ.
The definition is the same: for any [𝑎], [𝑏] ∈ ℤ/𝑑ℤ, set

[𝑎] + [𝑏] B [𝑎 + 𝑏].

We now have to check whether this is well-defined§ Suppose that
[𝑝] = [𝑎] and [𝑞] = [𝑏]. Then 𝑝 − 𝑎 = 𝑚𝑑 and 𝑞 − 𝑏 = 𝑛𝑑 for some
integers 𝑚, 𝑛. Adding these, we see that (𝑝+ 𝑞)−(𝑎+𝑏) = (𝑚+𝑛)𝑑,
and so [𝑝+ 𝑞] = [𝑎+ 𝑏]. Indeed, our operation is well-defined! This
is called modular addition.

Notice that this has properties similar to the addition in the integers,
with some key differences. For example, we have the following.

similarity [0] + [𝑎] = [𝑎] + [0] = [𝑎]
similarity [𝑎] + [𝑏] = [𝑏] + [𝑎]
difference! [𝑎] + [𝑎] + · · · + [𝑎] can equal [0] even if [𝑎] ≠ 0. For

example, [1] + [1] + [1] = [0] when 𝑑 = 3.

What about multiplication? Can we define a modular multiplica-
tion? Let us try. We will attempt to define a multiplication operation
by saying that

[𝑎] · [𝑏] should b [𝑎𝑏].

Again, we must check that this is well-defined. Suppose that
Exercise 12. What are some similarities and
differences between modular multiplication
and usual integer multiplication?

[𝑝] = [𝑎] and [𝑞] = [𝑏]. Then 𝑝 − 𝑎 = 𝑚𝑑 and 𝑞 − 𝑏 = 𝑛𝑑 for
some integers 𝑚, 𝑛. Note that 𝑝𝑞 − 𝑎𝑞 = 𝑚𝑞𝑑 and 𝑎𝑞 − 𝑎𝑏 = 𝑛𝑎𝑑.
Adding these, we see that 𝑝𝑞 − 𝑎𝑏 = (𝑚𝑞 + 𝑛𝑎)𝑑, so [𝑝𝑞] = [𝑎𝑏],
and this multiplication is well-defined! This is called modular
multiplication.

§ This means that if [𝑝] = [𝑎] and [𝑞] = [𝑏], do we have [𝑝 + 𝑞] = [𝑎 + 𝑏]? If not, we don’t
have a good definition because it depends on the specific representative we had chosen!

3 Graphs

3.1 Overview

Let us recall the definitions. A (directed) graph consists of a vertex set
𝑉 and an edge set 𝐸 ⊂ 𝑉 × 𝑉 . If (𝑎, 𝑏) ∈ 𝐸, we also write 𝑎 → 𝑏 as a
directed edge. Typically we consider finite vertex sets when we work
with concrete examples. An undirected graph is one in which the edge
relation is symmetric: (𝑎, 𝑏) ∈ 𝐸 if and only if (𝑏, 𝑎) ∈ 𝐸. In this case, we
often group the two flipped ordered pairs {(𝑎, 𝑏), (𝑏, 𝑎)} and think of it
as a single undirected edge 𝑎 − 𝑏. Note that in this case if 𝑎 = 𝑏, then the
set {(𝑎, 𝑏), (𝑏, 𝑎)} just becomes {(𝑎, 𝑎)}, so we don’t get a double loop.

Usually we consider simple graphs, that is, those where we disallow
multiple edges and parallel loops.

3.1.1 TODO Draw some pictures?

3.1.2 Some natural questions

Graphs are a natural tool used to model various kinds of networks. This
includes, for example, road/rail/flight networks, electrical/water flow
networks, the "Facebook friend" graph, links between webpages, etc.
Sometimes, these networks can be enhanced by adding "edge weights",
which can be used, for example, to represent the distance between the
two corresponding vertices, or in the context of flows, the "capacity" of
an edge*. There are some very natural questions that one can ask about
graphs: either practical ones that come up in many of the above contexts,
or more theoretical ones. Here is a sample list, by no means exhaustive.

1. Is there a route from point 𝐴 to point 𝐵?

2. How long is the route, and what is the shortest path?

3. How many routes are there? How long are they?

4. How much water/current/etc can flow through the network when
at full capacity?

5. Is there a good way to figure out natural "clusters" in the graph?
For example, how does Facebook know whom to suggest to you as
a potential friend?

6. Can you find an unbroken path along the edges of the graph that
goes through each vertex exactly once? (This is the Hamiltonian path
problem.)

7. Can you find an unbroken path along the edges of the graph that
goes through each edge exactly once? (This is the Eulerian path
problem.)

* In a "normal" graph, we usually take each edge to have weight 1.

8. What is the shortest circuit (path that comes back to the starting
point) that visits each vertex exactly once?

9. Is the graph planar? That is, can you draw the graph on a plane
without crossing any of the edges?

3.2 Adjacency matrix

Recall the definition of an adjacency matrix of a graph. Given a graph
(𝑉, 𝐸), first we order the set 𝑉 into a tuple (𝑣1 , . . . , 𝑣𝑛). Then we create
an 𝑛 × 𝑛 matrix 𝐴 such that 𝐴𝑖 𝑗 = 1 if 𝑖 → 𝑗 in the graph, and 𝐴𝑖 𝑗 = 0
otherwise. In this section we will see how studying adjacency matrices of
graphs helps us make progress towards some of the questions above.

3.2.1 Matrix products
Example 13. Suppose that

𝐴 =

(
1 2
0 −1

)
, 𝐵 =

(
0 1 −2
2 3 4

)
Then

𝐴𝐵 =

(
4 7 6
−2 −3 −4

)
.

First we recall matrix products. If 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝

matrix, then we can construct a product matrix 𝐴𝐵, defined as follows:

(𝐴𝐵)𝑖 𝑗 = 𝐴𝑖1𝐵1𝑗 + 𝐴𝑖2𝐵2𝑗 + · · · + 𝐴𝑖𝑛𝐵𝑛𝑗 =

𝑛∑
𝑘=1

𝐴𝑖𝑘𝐵𝑘 𝑗 .

3.2.2 Powers of the adjacency matrix

Figure 3.1: A directed graph Consider the example directed graph shown in cref:fig:adjmatrix. The
adjacency matrix and its square are

𝐴 =

©­­­­­«
0 1 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

ª®®®®®¬
, 𝐴2 =

©­­­­­«
0 0 0 0 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬
.

Note that 𝐴𝑘 = 0 for all 𝑘 > 2. From the graph and from the matrix, we
see that the only nonzero entry in 𝐴2 is the entry at position (1, 5), which
equals 3. It arises as the sum 1 · 1+ 1 · 1+ 1 · 1, which itself records all the
possible compositions of two edges such that the composed path goes
from 1 to 5. As in the picture, there are exactly three possibilities, and so
the answer is 3.

This is a general phenomenon, and we have the following result.

Proposition 14. label:prop:adj-power Let 𝐴 be the adjacency matrix of a simple
directed graph (𝑉, 𝐸). Suppose that the vertices are ordered as (𝑣1 , . . . , 𝑣𝑛).
Then the entry in the (𝑖 , 𝑗)th position of the 𝑘th power 𝐴𝑘 of 𝐴 counts the
number of paths of length 𝑘 from the vertex 𝑣𝑖 to the vertex 𝑣 𝑗 .

Proof. We proceed by induction. Indeed for 𝑘 = 1, from the definition of
the adjacency matrix, the (𝑖 , 𝑗)th entry equals 1 if and only if there is an
edge from 𝑖 to 𝑗 in the graph. Now assume that we know the result for
some 𝑘 > 0, and we prove it for 𝑘 + 1.

Let 𝐵 = 𝐴𝑘 , so that we can write 𝐴𝑘+1 = 𝐵 · 𝐴. We calculate the (𝑖 , 𝑗)th
entry of 𝐴𝑘+1 as follows.

By the definition of matrix product, we know that this entry is the
following sum:

(𝐴𝑘+1)𝑖 , 𝑗 = 𝐵𝑖 ,1 · 𝐴1, 𝑗 + 𝐵𝑖 ,2 · 𝐴2, 𝑗 + · · · + 𝐵𝑖 ,𝑛 · 𝐴𝑛,𝑗 .

For each number 1 ≤ ℓ ≤ 𝑛, we know that 𝐵𝑖 ,ℓ is the number of paths
of length 𝑘 from 𝑣𝑖 to 𝑣ℓ , and 𝐴ℓ , 𝑗 is the number of edges from 𝑣ℓ to 𝑣 𝑗 .
All together, the product 𝐵𝑖 ,ℓ𝐴ℓ , 𝑗 equals the number of paths of length
𝑘 + 1 from 𝑣𝑖 to 𝑣 𝑗 that travel through the vertex 𝑣ℓ . Since we add over
all possible vertices 𝑣ℓ , the result (which is the (𝑖 , 𝑗)th entry of 𝐴𝑘+1) is
the total number of paths of length 𝑘 + 1 from 𝑣𝑖 to 𝑣 𝑗 . □

We can also use the adjacency matrix to answer questions about connect-
edness of graphs. Suppose we want to know whether there is a path (of
any length) from a vertex 𝑣𝑖 to a vertex 𝑣 𝑗 . The previous proposition tells
us that to find paths of a given length 𝑘, we need to look at entries of 𝐴𝑘 .
So as long as we find a positive entry in the (𝑖 , 𝑗)th spot of some power
of 𝐴, we know that we have found a path. In other words, we can look at
the (𝑖 , 𝑗)th entry of a sum 𝐴 + 𝐴2 + · · ·, and stop once we find a positive
entry.

But how do we know when to stop adding? To answer this question, let
us analyse the shortest possible path from some 𝑣𝑖 to some 𝑣 𝑗 , under the
assumption that there is at least one path.

Proposition 15. If 𝑣𝑖 and 𝑣 𝑗 are vertices in the graph such that there is at least
one path from 𝑣𝑖 to 𝑣 𝑗 , then the length of the shortest path from 𝑣𝑖 to 𝑣 𝑗 cannot
be more than 𝑛. Further, if 𝑣𝑖 ≠ 𝑣 𝑗 , then the length of the shortest path from 𝑣𝑖
to 𝑣 𝑗 cannot be more than 𝑛 − 1.

3.2.3 The Boolean product and transitive closures

In this subsection and the next, we study a couple of variant products
on the adjacency matrix, that let us compute different things about our
graphs. The first variant is the Boolean product, which will be used to
compute transitive closures.

First we define the following binary operations on the set {0, 1}. That is,
we define the following functions {0, 1} × {0, 1} → {0, 1}.

Boolean addition This is also known as "OR" or "∨", and is defined as
follows:

0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1.

Boolean multiplication This is also known as "AND" or "∧", and is
defined as follows†:

1 ∧ 1 = 1, 0 ∧ 1 = 1 ∧ 0 = 0 ∧ 0 = 0.

† Note that Boolean multiplication coincides with the usual multiplication operation
restricted to the set {0, 1}.

The Boolean matrix product is then defined on matrices with entries
in the set {0, 1}, and also outputs a matrix with entries in the same set
{0, 1}. To define the Boolean matrix product, we use ∨ instead of +, and
∧ instead of ×" respectively, as follows. Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐵

be an 𝑛 × 𝑘 matrix, both with entries in the set {0, 1}. Then the Boolean
product 𝐴 ∗ 𝐵 is defined as follows (entry-wise):

(𝐴 ∗ 𝐵)𝑖 , 𝑗 = (𝐴𝑖1 ∧ 𝐵1𝑗) ∨ (𝐴𝑖2 ∧ 𝐵2𝑗) ∨ · · · ∨ (𝐴𝑖𝑛 ∧ 𝐵𝑛𝑗)

=

𝑛∨
𝑘=1

𝐴𝑖𝑘 ∧ 𝐵𝑘 𝑗 .

Now let 𝐴 be the adjacency matrix of a graph. Then the (𝑖 , 𝑗)th entry
of the Boolean square of 𝐴 equals 1 if and only if there exists a path of
length two from 𝑖 to 𝑗 in the graph. This is because the (𝑖 , 𝑗)th entry is
a Boolean sum (∨) of several entries, and the ℓ th such entry equals 1 if
and only if there is an edge from 𝑖 to ℓ and also an edge from ℓ to 𝑗. The
Boolean sum of all of these equals 1 if and only if at least one of the entries
is equal to 1, which is true if and only if there is some path of length two
from 𝑖 to 𝑗. Extending this reasoning to a 𝑘-fold product, we obtain the
following result. The proof is similar to that of cref:prop:adj-power and
so we omit it.

Proposition 16. Let 𝐴 be the adjacency matrix of a simple directed graph
(𝑉, 𝐸). Suppose that the vertices are ordered as (𝑣1 , . . . , 𝑣𝑛). Then the entry in
the (𝑖 , 𝑗)th position of the 𝑘th Boolean power 𝐴∗𝑘 of 𝐴 equals 1 if there is a path
of length 𝑘 from the vertex 𝑣𝑖 to the vertex 𝑣 𝑗 , and equals 0 otherwise.

3.2.4 Weighted graphs and weighted adjacency matrices

Now suppose that 𝐺 = (𝑉, 𝐸) is a weighted graph. This means that each
edge has an associated weight, which is usually a non-negative real
number. Mathematically, we can write this as a function 𝑤 : 𝐸 → ℝ,
sending each edge to a real number. In practical applications, graphs
often have edge weights, for example the length of a road or the cost of
going through a toll bridge, and weighted graphs are models of these
situations. We would like to use adjacency matrices to compute the
weight of the least-cost (that is, smallest weight) path between any pair
of vertices. We can achieve this by writing down a weighted adjacency
matrix, and by computing a new product on it. The weighted adjacency
matrix simply lists the weight of each edge. The diagonal entries are all
0 because one can get from any vertex to itself with zero cost (by not
moving). All entries (𝑖 , 𝑗) where (𝑖 , 𝑗) is not an edge are set to ∞‡.

Definition 17. Let 𝐺 = (𝑉, 𝐸) be a directed graph with weight function
𝑤 : 𝐸 → ℝ. Suppose that the vertices are ordered as (𝑣1 , . . . , 𝑣𝑛). The weighted
adjacency matrix of 𝐺 is an 𝑛 × 𝑛 matrix 𝑊 , defined as follows:

𝑊𝑖 𝑗 =


0, if 𝑖 = 𝑗 ,

𝑤((𝑖 , 𝑗)), if (𝑖 , 𝑗) ∈ 𝐸,

∞, otherwise.
‡ We use the symbol ∞ as a placeholder for an extremely large number: for any real number
𝑟 in our calculations, we will set 𝑟 +∞ = ∞ and min{𝑟,∞} = 𝑟.

Example 18. Consider the weighted graph
shown below.

Its weighted adjacency matrix is

𝑊 =

©­­­«
0 5 2 ∞
∞ 0 ∞ 3
∞ 1 0 ∞
∞ ∞ ∞ 0

ª®®®¬
.

Note that this adjacency matrix is set up in a way such that the (𝑖 , 𝑗)th
entry shows the minimum-cost path of length at most 1 (that is, either
one edge or no edge, in the case that 𝑖 = 𝑗) from 𝑖 to 𝑗. To find the
minimum-cost path of length at most 2 from 𝑖 to 𝑗, we need to iterate
over all possible intermediate steps 𝑖 → ℓ → 𝑗, add the edge weights
of 𝑖 → ℓ and ℓ → 𝑘, and then take the minimum. This operation is
extremely similar to the standard matrix product, except that instead of
multiplying the (𝑖 , ℓ)th entry with the (ℓ , 𝑗)th entry we are adding them,
and instead of adding over all possibilities we are taking the minimum
over all possibilities. We define this "min-plus" matrix product as follows.

Definition 19. Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐵 be an 𝑛 × 𝑘 matrix, such that
the entries of 𝐴 and 𝐵 are either real numbers or ∞. The "min-plus" product of
𝐴 and 𝐵, denoted 𝐴 ⊙ 𝐵, is defined as follows (entry-wise):

(𝐴 ⊙ 𝐵)𝑖 , 𝑗 = min{(𝐴𝑖1 + 𝐵1𝑗), (𝐴𝑖2 + 𝐵2𝑗), . . . , (𝐴𝑖𝑛 + 𝐵𝑛𝑗)}.

Now let 𝑊 be the weighted adjacency matrix of a weighted graph. Note
that the (𝑖 , 𝑗)th entry of 𝑊 ⊙𝑊 is precisely the weight of the minimum-
weight path from 𝑖 to 𝑗 that has at most two edges. Generalising this, we
have the following proposition. The proof is similar to that of cref:prop:adj-
power, and is omitted.

Example 20. For the graph in Example 18,
the second and third min-plus powers of the
weighted adjacency matrix are:

𝑊⊙2 =

©­­­«
0 3 2 8
∞ 0 ∞ 3
∞ 1 0 4
∞ ∞ ∞ 0

ª®®®¬ ,
and

𝑊⊙3 =

©­­­«
0 3 2 6
∞ 0 ∞ 3
∞ 1 0 4
∞ ∞ ∞ 0

ª®®®¬ .
Indeed, the entries of the min-plus cube give
the minimum weights of possible paths be-
tween any pairs of vertices in the graph.

Proposition 21. Let 𝑊 be the weighted adjacency matrix of a weighted graph
with 𝑛 vertices.

1. The (𝑖 , 𝑗)th entry of 𝑊⊙𝑘 is the weight of the minimum-weight path from
𝑖 to 𝑗 that has at most 𝑘 edges.

2. If all the edge weights are non-negative, then the (𝑖 , 𝑗)th entry of 𝑊⊙(𝑛−1)

is the weight of the minimum-weight path (with any number of edges)
from 𝑖 to 𝑗.

3.2.5 The technique of repeated squaring

This section is an aside. We discuss the method of repeated squaring
to quickly find powers of a matrix (or indeed, to quickly find powers
in general). This method works for any associative product operation,
including the standard matrix product, the Boolean matrix product, and
the min-plus matrix product. For concreteness, we discuss it for the
standard matrix product.

Let 𝐴 be a square matrix. The naive method to compute a power of
𝐴, for example 𝐴8, would be to multiply 𝐴 serially with itself 8 times.
This consist of 7 matrix product operations. However, there is a quicker
method: if we first find and save 𝐴2, then we can multiply that with
itself to obtain and save 𝐴4, and finally multiply that with itself to get
𝐴8. In total, that corresponds to only 3 matrix product operations! This is
considerably faster than serial multiplication.

But what if we don’t have an even number, or a power of two as the
power we need to compute? Suppose we are trying to compute 𝐴𝑛 where

𝑛 is not necessarily a power of two. In this case, we simply square the
matrix repeatedly, saving the results, until we reach a power less than
or equal to 𝑛. Then we write 𝑛 as a sum of distinct powers of two§, and
then multiply together the corresponding powers of 𝐴 to get the final
result. Here is an example.

Example 22. Suppose that 𝑛 = 19. In this case, we remember 𝑀0 = 𝐴,
𝑀1 = 𝐴2, 𝑀2 = 𝑀2

1 = 𝐴4, 𝑀3 = 𝐴8, and 𝑀4 = 𝐴16. Finally, note that
19 = 16 + 2 + 1 = 24 + 21 + 20, and so

𝐴19 = 𝑀4 · 𝑀1 · 𝑀0.

This process corresponds to a total of 6 matrix product operations (four squarings
and two multiplications), as opposed to the 18 product operations required for
serial multiplication.

3.3 Graph colouring

3.3.1 TODO The four-colour problem

3.3.2 TODO The chromatic function

3.4 TODO Hamiltonian paths and circuits

§ Writing a positive integer 𝑛 as the sum of distinct powers of two is also called binary
writing. There are several ways to obtain it. For example, we can follow the following
recursive algorithm: if 𝑛 is even, we write it as 2𝑚, and if 𝑛 is odd, we write it as 2𝑚 + 1.
Repeating the process on the 𝑚 obtained until we reach 1, we obtain an expression which
expands to a sum of distinct powers of two. For example,

7 = 2(3) + 1 = 2(2(1) + 1) + 1
= 4 + 2 + 1.

4 TODO Combinatorial games

We begin the course with some games. The theory of games is a rich
subject that can be used to model problems in logic, computer science,
economics, and social science, depending on the rules you impose on
your games. We will focus on impartial combinatorial games.

An impartial combinatorial game is usually played with two players and
satisfies the following conditions.

1. There is a (usually finite) set of possible game states.

2. There are rules that describe the possible moves from a given game
state to other game states.

3. The game is impartial, which means that the rules to go from one
game state to the next do not depend on which player is about to
make the move*.

4. The players alternate making moves to move from one game state
to the next.

5. The first player to be unable to make a move loses the game†.

6. There is complete information (the entire game state is known to
both players at all times).

7. There are no chance moves.

4.1 Easy examples

4.2 Strategic and Grundy labelling

4.3 Nim

* Contrast this to a game such as chess, in which one player may only move the white pieces
and the other player may only move the black pieces.

† This is called normal play. In the variant called misère play, the first player unable to make
a move wins the game.

5 TODO Matrix games

5.1 Matrices

	Games, graphs, and machines
	Contents
	Some foundations
	Sets
	Relations
	Functions
	Graphs
	Properties of relations

	Equivalence relations
	Modular arithmetic

	Graphs
	Overview
	Adjacency matrix
	Graph colouring
	TODO Hamiltonian paths and circuits

	TODO Combinatorial games
	Easy examples
	Strategic and Grundy labelling
	Nim

	TODO Matrix games
	Matrices

