diff --git a/doc/conf.py b/doc/conf.py index 6403cd65b..173c86876 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -138,3 +138,7 @@ 'reference_url': {'fooof': None}, 'remove_config_comments': True, } + +intersphinx_mapping = { + 'neurodsp': ('https://neurodsp-tools.github.io/neurodsp/', None), +} diff --git a/motivations/concepts/plot_DoYouEvenOscillate.py b/motivations/concepts/plot_DoYouEvenOscillate.py index 9ef27ef17..ce69c1dab 100644 --- a/motivations/concepts/plot_DoYouEvenOscillate.py +++ b/motivations/concepts/plot_DoYouEvenOscillate.py @@ -46,14 +46,14 @@ # Use NeuroDSP for time series simulations & analyses from neurodsp import sim -from neurodsp.utils import create_times, set_random_seed +from neurodsp.utils import create_times from neurodsp.spectral import compute_spectrum_welch from neurodsp.plts import plot_time_series, plot_power_spectra ################################################################################################### # Set random seed, for consistency generating simulated data -set_random_seed(21) +sim.set_random_seed(21) # Simulation Settings n_seconds = 2 diff --git a/motivations/concepts/plot_IfYouFilterTheyWillCome.py b/motivations/concepts/plot_IfYouFilterTheyWillCome.py index 1cd342216..76a8ca8d1 100644 --- a/motivations/concepts/plot_IfYouFilterTheyWillCome.py +++ b/motivations/concepts/plot_IfYouFilterTheyWillCome.py @@ -33,10 +33,10 @@ from fooof.bands import Bands # Imports from NeuroDSP to simulate & plot time series -from neurodsp.sim import sim_powerlaw +from neurodsp.sim import sim_powerlaw, set_random_seed from neurodsp.filt import filter_signal from neurodsp.plts import plot_time_series -from neurodsp.utils import create_times, set_random_seed +from neurodsp.utils import create_times ################################################################################################### @@ -96,8 +96,8 @@ band_sig = filter_signal(sig, s_rate, 'bandpass', f_range) # Plot the time series of the current band, and adjust plot aesthetics - plot_time_series(times, band_sig, title=label + ' ' + str(f_range), ax=ax) - ax.set_xlim(0, n_seconds); ax.set_ylim(-1, 1); ax.set_xlabel(''); + plot_time_series(times, band_sig, title=label + ' ' + str(f_range), ax=ax, + xlim=(0, n_seconds), ylim=(-1, 1), xlabel='') ################################################################################################### # @@ -159,8 +159,7 @@ band_sig = filter_signal(sig_delta_ap, s_rate, 'bandpass', bands.beta) # Plot the filtered time series -plot_time_series(times, band_sig) -plt.xlim(0, n_seconds); plt.ylim(-1, 1); +plot_time_series(times, band_sig, xlim=(0, n_seconds), ylim=(-1, 1)) ################################################################################################### # @@ -177,8 +176,7 @@ band_sig = filter_signal(sig_delta_ap, s_rate, 'bandpass', bands.high_gamma) # Plot the filtered time series -plot_time_series(times, band_sig) -plt.xlim(0, n_seconds); plt.ylim(-1, 1); +plot_time_series(times, band_sig, xlim=(0, n_seconds), ylim=(-1, 1)) ################################################################################################### #