diff --git a/examples/analyses/plot_mne_example.py b/examples/analyses/plot_mne_example.py
index 1e46dafb9..deef1f7a4 100644
--- a/examples/analyses/plot_mne_example.py
+++ b/examples/analyses/plot_mne_example.py
@@ -5,7 +5,7 @@
Parameterizing neural power spectra with MNE, doing a topographical analysis.
This tutorial requires that you have `MNE `_
-installed.
+installed. This tutorial needs mne >= 1.2.
If you don't already have MNE, you can follow instructions to get it
`here `_.
@@ -23,10 +23,7 @@
# Import MNE, as well as the MNE sample dataset
import mne
-from mne import io
from mne.datasets import sample
-from mne.viz import plot_topomap
-from mne.time_frequency import psd_welch
# FOOOF imports
from fooof import FOOOFGroup
@@ -52,8 +49,7 @@
###################################################################################################
# Get the data path for the MNE example data
-raw_fname = sample.data_path() + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
-event_fname = sample.data_path() + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
+raw_fname = sample.data_path() / 'MEG' / 'sample' / 'sample_audvis_filt-0-40_raw.fif'
# Load the example MNE data
raw = mne.io.read_raw_fif(raw_fname, preload=True, verbose=False)
@@ -61,7 +57,7 @@
###################################################################################################
# Select EEG channels from the dataset
-raw = raw.pick_types(meg=False, eeg=True, eog=False, exclude='bads')
+raw = raw.pick(['eeg'], exclude='bads')
###################################################################################################
@@ -110,15 +106,16 @@ def check_nans(data, nan_policy='zero'):
# frequency representations - meaning we have to calculate power spectra.
#
# To do so, we will leverage the time frequency tools available with MNE,
-# in the `time_frequency` module. In particular, we can use the ``psd_welch``
-# function, that takes in MNE data objects and calculates and returns power spectra.
+# in the `time_frequency` module. In particular, we can use the ``compute_psd``
+# method, that takes in MNE data objects and calculates and returns power spectra.
#
###################################################################################################
-# Calculate power spectra across the the continuous data
-spectra, freqs = psd_welch(raw, fmin=1, fmax=40, tmin=0, tmax=250,
- n_overlap=150, n_fft=300)
+# Calculate power spectra across the continuous data
+psd = raw.compute_psd(method="welch", fmin=1, fmax=40, tmin=0, tmax=250,
+ n_overlap=150, n_fft=300)
+spectra, freqs = psd.get_data(return_freqs=True)
###################################################################################################
# Fitting Power Spectrum Models
@@ -193,7 +190,7 @@ def check_nans(data, nan_policy='zero'):
###################################################################################################
# Plot the topography of alpha power
-plot_topomap(alpha_pw, raw.info, cmap=cm.viridis, contours=0);
+mne.viz.plot_topomap(alpha_pw, raw.info, cmap=cm.viridis, contours=0, size=4)
###################################################################################################
#
@@ -214,8 +211,7 @@ def check_nans(data, nan_policy='zero'):
band_power = check_nans(get_band_peak_fg(fg, band_def)[:, 1])
# Create a topomap for the current oscillation band
- mne.viz.plot_topomap(band_power, raw.info, cmap=cm.viridis, contours=0,
- axes=axes[ind], show=False);
+ mne.viz.plot_topomap(band_power, raw.info, cmap=cm.viridis, contours=0, axes=axes[ind])
# Set the plot title
axes[ind].set_title(label + ' power', {'fontsize' : 20})
@@ -268,7 +264,7 @@ def check_nans(data, nan_policy='zero'):
###################################################################################################
# Plot the topography of aperiodic exponents
-plot_topomap(exps, raw.info, cmap=cm.viridis, contours=0)
+mne.viz.plot_topomap(exps, raw.info, cmap=cm.viridis, contours=0, size=4)
###################################################################################################
#
@@ -297,6 +293,3 @@ def check_nans(data, nan_policy='zero'):
# In this example, we have seen how to apply power spectrum models to data that is
# managed and processed with MNE.
#
-
-###################################################################################################
-#
diff --git a/requirements-docs.txt b/requirements-docs.txt
index 1f36fc9f5..e43038411 100644
--- a/requirements-docs.txt
+++ b/requirements-docs.txt
@@ -10,7 +10,7 @@ matplotlib
tqdm
# Requirements for running the examples
-mne
+mne > 1.2
# Requirements for running the motivations
neurodsp >= 2.0.0
\ No newline at end of file