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Abstract

[very rough start:] . . . .. Here, we drew upon # records from the Global Forest Carbon Database (ForC),
representing all major forest types and the nine most significant forest autotrophic carbon flux (FACF)
variables, to comprehensively explore how C cycling in mature, undisturbed forests varies with latitude and
climate on a global scale. We show that, across all FACF variables analyzed, C cycling decreases linearly
with latitude –a finding that confirms multiple previous studies but contradicts the idea that productivity of
temperate forests rivals that of tropical forests. The FACF variables increase in proportion to one another,
with no differences in allocation detectable at this global scale, but differed in that latitude explained a
lower proportion of variation among subsidiary fluxes (in particular, woody aboveground productivity and
belowground net primary productivity, BNPP ). Climate explained a significant proportion (#-#%) of
variation in all C fluxes analyzed (less for subsidiary fluxes), with temperature variables in general and mean
annual temperature (MAT ) in particular being the best predictors of FACF on this global scale. While
other climate variables (e.g., displayed significant correlation with FACF, none of them improved significantly
over the explanatory power MAT . The effects of temperature were modified by moisture availability, with
reduced FACF under hot and dry conditions and sometimes under very high precipitaiton (especially for
BNPP ). FACF declined with temperature seasonality, but growing season length doesn’t improve upon
MAT as a predictor. Within the growing season, the influence of climate on C cycling is smaller but still
significant for a number of carbon fluxes. These findings clarify the big picture of how FACF varies with
latitude and climate on a global scale. As we enter a period of accelerating climatic change, understanding of
the fundamental climatic controls on FACF sets a foundation for understanding patterns of change.

Introduction

Forests play a critical role in regulating atmospheric CO_2 and climate (Bonan). The total
amount of CO_2 cycling through Earth’s forests each year (i.e., total gross primary production, GPP ) is
more than five times anthropogenic fossil fuel emissions, and net sequestration (~2.4 GtCyr-1) offsetting
roughly 30% of these emissions (Pan et al., 2011). As atmospheric carbon dioxide levels continue to rise,
with consequences for global climate, there is increasing recognition that proper protection and management
of forest resources will have an important role to play in mitigating climate change (** REFS- e.g., IPCC
1.5C and land reports**). Carbon fixation, allocation, and metabolism by trees set the basis for energy and
material flows in forest ecosystems and define their interactions with Earth’s changing climate.

Forests’ autotrophic carbon flux (FACF, bbl:define) influences all organic matter stocks in
ecosystems and is linked to cycling of energy, water, and nutrients (REFS; Piao et al. 2010.
Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91(3),
652-661 ). Forest productivity sets the energy ultimately available to heterotrophic organisms (including
microbes), in turn influencing their abundance (REFS) and possibly diversity (Waide et al. 2009REFS)–but
probably not individual metabolic rate (Anderson & Jetz 2005, but check more recent literature).
However, our ability to draw general macroscopic conclusions regarding global variation in multiple productivity
variables with respect to climate has been limited in that these analyses often mix forests that vary in stand
age, disturbance history, and/or management status; do not always sufficiently parse related variables (e.g.,
combining net primary productivity records with and without belowground components); and typically
consider only one or a few variables at a time.

The productivity of forests varies with latitude, showing a general trend of decreasing productivity
with latitude (Beer et al., 2010; Jung et al., 2011). Studies agree that productivity is lowest in the boreal
regions, and increases into the temperate regions (Luyssaert et al., 2007; Huston and Wolverton, 2009; Beer
et al., 2010; Jung et al., 2011). However, evidence is inconclusive on whether productivity continues to
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increase into the tropics, or whether it plateaus in temperate regions. Evidence for this is further complicated
by the fact that different studies use different measures of productivity to explore these relationships. For
example, modelling of global terrestrial ecosystem gross primary productivity (GPP) through upscaling and
calibration of eddy flux measurements indicates that GPP peaks in tropical forests (Beer et al., 2010; Jung
et al., 2011);Bagdley et al. 2019). This is corroborated by analysis of site-level GPP measurements, which
appear to reach their highest levels in tropical forests (Luyssaert et al., 2007). In contrast, there is evidence
that the highest values of net primary productivity (NPP) may be found in temperate forests (Luyssaert
et al., 2007; Huston and Wolverton, 2009), although other studies find NPP is highest in the tropics, showing
a decrease with latitude (Šímová and Storch, 2017). Other studies have chosen to focus exclusively on
above-ground net primary productivity (ANPP), finding evidence of a weak negative relationship between
ANPP and latitude (Huston and Wolverton, 2009; Gillman et al., 2015).

Climate is a significant driver of productivity across broad spatial scales (Cleveland et al., 2011).
The majority of studies have focused on exploring the relationships between productivity and mean annual
temperature (MAT) and mean annual precipitation (MAP), as the most commonly reported site-level climate
variables. These variables have the advantage that they describe broad trends in temperature and water
availability, and therefore capture a lot of global-scale variation in climate. There is strong evidence that both
MAT and MAP show significant positive relationships with productivity (Chu et al., 2016). However, as with
latitude, the shape of those relationships is not always clear, and, again, is complicated by the use of different
measures of productivity across studies. Various measures of primary productivity saturate at high levels
of MAP, though the saturation points identified vary from 1500mm (Luyssaert et al., 2007) up to 2445mm
MAP (Schuur, 2003). Studies of the influence of MAT on productivity are less conclusive. Luyssaert et al.
(2007) examined GPP and NPP and found that, while GPP increases linearly with MAT, NPP saturates at
around 10◦C MAT. In contrast, Larjavaara and Muller-Landau (2012), find that increases in GPP saturate
at approximately 25◦C MAT, while Schuur (2003) shows that NPP increases linearly with temperature.
bbl:maybe remove following sentences The influence of these climate variables on productivity is further
complicated by the possibility of interactive effects occurring between them. Taylor et al. (2017) showed that
increased MAP had a negative effect at low MAT, but a positive effect at high levels of MAT, and vice versa,
suggesting that both temperature and water availability are important in explaining productivity.

Primary productivity can be influenced by many other factors as well, which often act across a
range of scales, and may show interactive effects with each other (Cleveland et al., 2011). On a local scale,
stand age (Litton et al., 2007; Gillman et al., 2015), biodiversity (Liang et al. 2019. Positive biodiversity-
productivity relationship predominant in global forests. Science 354, Issue 6309, aaf8957), management
(Šímová and Storch, 2017); nutrient availability (Aragão et al., 2009); and altitude (Girardin et al., 2010;
Malhi et al., 2017) all impact forest productivity. On a global scale, we expect that productivity is most
strongly influenced by broad climatic gradients. There is evidence that productivity also responds to variables
such as cloud cover (Taylor et al., 2017), solar radiation (Fyllas et al., 2017), and potential evapotranspiration
(Kerkhoff et al., 2005) in potentially significant ways. Furthermore, MAT and MAP are very coarse measures
of climate, and so fail to capture much variation in climate on an intra-annual scale, including the effects of
factors such as growing season length, number of frost-free days, temperature seasonality, and dry season
length. Some studies have suggested that the apparently strong relationship between MAT and productivity
is actually a factor of the correlation between MAT and growing season length (Kerkhoff et al., 2005; Malhi,
2012; Michaletz et al., 2014, 2018). Kerkhoff et al. (2005) and Michaletz et al. (2014) find that, within the
growing season, there is no significant relationship between productivity and MAT, indicating that the effect
of temperature is due to increased length of growing season, rather than an inherent influence of temperature
on productivity.

The recent development of a global forest carbon database synthesizing multiple variables and
including records of stand history (ForC; (Anderson-Teixeira et al., 2016, 2018)) opens up the
possibility for a standardized analysis of global scale variation in multiple components of forest
productivity and the principle climatic drivers of these patterns. In order to approach these broad and
complex issues, we simplify the major gaps in our knowledge to five broad hypotheses and corresponding
specific predictions (Table 1). First, we ask how forest autotrophic carbon fluxes (FACF) vary with latitude.
We then test how these fluxes relate to MAT and MAP, and additionally how they respond to other, less well
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studied, climate variables. We finally consider the relationship between FACF and seasonality, considering
the role of seasonality in explaining variation in carbon fluxes, and the influence of climate on FACF per
month of the growing season. We use a comprehensive global database of forest carbon fluxes to explore the
above questions for nine carbon fluxes, allowing for an in-depth exploration of the effect of climate on global
productivity.
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Table 1: **Summary of hypotheses, corresponding specific predictions, and results.** Direction of significant relationships is indicated by ’+’ and ’-’, and shape is summarized as
linear (L), concave up (CU), and concave down (CD). ’n.s.’ indicates that the relationship is not signficant.

Forest autotrophic carbon fluxes (FACF)

Hypotheses & Specific Predictions Related references Overall GPP NPP ANPP BNPP ANPP
foliage

ANPP
woody
stem

BNPP
fine root

R auto
root

R auto Support

H1. FACFs decrease linearly with latitude, and in constant proportion.

1.1. FACFs decrease linearly with latitude (L-) Luyssaert et al. (2007) yes yes yes yes yes yes yes yes yes yes Fig. 2-3

1.1.alt. FACFs are similar in tropical and temperate
forests, but lower in boreal regions (CD-)

Gillman et al. (2015);
Simova and Storch (2017)

no no no no no no no no no no Fig. 2-3

1.2. Allocation of GPP to subsidiary fluxes varies
with latitude

Litton et al. (2007);
DeLucia et al. (2007)

no - no no no no no no - -

H2. FACFs increase with MAT, with an interactive effect of MAP.

2.1. FACFs increase linearly with MAT (L+) Schuur (2003) yes yes yes yes yes yes yes yes yes yes Fig. 5

2.2. FACFs increase with precipitation but saturate
or decrease at very high levels (CD+)

Luyssaert et al. (2007);
Schuur (2003)

yes yes yes yes yes yes n.s. L+ L+ yes Fig. 5

2.3. There is a postive interaction between
temperature and precipitation (I+)

Taylor et al. (2016) (yes) yes L+ yes L- L+ yes L- yes yes Fig. 4

H3. FACFs are strongly correlated with other annual climate variables.

3.1. FACFs increases with PET, but saturates or
decreases at high levels (CD+)

(yes) yes yes yes yes L+ yes L+ yes L+ Fig. 5

3.2. FACFs increase with vapour pressure deficit, but
saturate or decrease at high levels (CD+)

(yes) yes yes yes yes yes yes L+ yes yes Fig. 5

3.3. FACFs increase linearly with solar radiation (L+) (yes) yes yes yes CD+ yes CD+ yes n.s. yes

H4. FACFs are reduced under seasonal climates.

4.1. FACFs decrease linearly with temperature
seasonality (L-)

yes CU+ CU+ CU+ yes yes yes yes CU+ CU+ Fig. 5

4.2. FACFs decrease linearly with precipitation
seasonality (L-)

no n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

4.3. FACFs increase linearly with growing season
length (L+)

Malhi (2012); Michaletz et
al. (2014); Chu et al.
(2016)

yes yes yes yes yes yes yes yes yes yes Fig. 5

4.4. Growing season length is a better predictor of
FACFs than MAT

Michaletz et al. (2014);
Chu et al. (2016)

no no no no no no no no no no

H5. Considering only growing season months, FACF correlates with climatic drivers.

5.1. Increase with temperature (L+) Michaletz et al. (2014) (mixed) n.s. n.s. yes n.s. yes n.s. n.s. n.s. n.s.

5.2. Increase with PET (L+) (yes) yes yes n.s. yes n.s. yes yes n.s. n.s.

5.3. Increase with precipitation (L+) no n.s. n.s. yes n.s. yes n.s. n.s. n.s. n.s.

5.4. Increase with solar radiation (L+) (mixed) yes yes n.s. yes n.s. n.s. yes n.s. n.s.
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Materials and Methods

Analyses were conducted on data contained in the open-access ForC database (Anderson-Teixeira et al.,
2016, 2018). This database contains records of field-based measurements of forest carbon stocks and annual
fluxes, compiled from original publications and existing data compilations and databases. Associated data,
such as stand age, measurement methodologies, and disturbance history, are also included. The database
was significantly expanded since the publication of (Anderson-Teixeira et al., 2018) through integration
with the Global Database of Soil Respiration Database (Bond-Lamberty and Thomson, 2010). Additional
targeted literature searches were conducted to identify any further available data on primary productivity,
with particular focus on mature forests in temperate and boreal regions. ForC currently contains 29730
records from 4979 plots, representing 20 distinct ecozones across all forested biogeographic and climate zones.
We used ForC v3.0, archived on Zenodo with DOI 10.5281/zenodo.3403855.

Figure 1: Map showing all data used in the analysis, coded by variable

Data selection. Over 50 variables of forest carbon stocks and annual fluxes are represented in the ForC
database; this analysis focussed on measures of primary productivity. Table 1 contains details of the variables
selected for analysis.

Table 2: Definitions and sample sizes of variables used in analysis. Geographic areas group geographically proximate sites,
defined using a hierarchical cluster analysis on the distance matrix of the sites, and a cutoff of 25km.

Variable Definition
Components
included Methodologies used

Number
of
records

Number
of geo-
graphic
areas

GPP Annual gross
primary production;
annual uptake of
carbon dioxide by
an ecosystem

NA Flux partitioning of eddy
covariance

243 49
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Variable Definition
Components
included Methodologies used

Number
of
records

Number
of geo-
graphic
areas

NPP Annual net primary
production; the
component of GPP
that is stored in
plant tissue;
GPP − Rauto

Foliage,
branch, stem,
coarse root
and fine root

Direct measurement of
annual increments of
components

92 42

ANPP Aboveground net
primary production

Foliage, stem,
and
optionally
branch

Direct measurement of
annual increments of
components

256 80

ANPPfoliage Net primary
production of foliage

Foliage Direct measurement of
litterfall, correcting for
changes in leaf biomass
when measured

98 49

ANPPwoody−stemNet primary
production of woody
stems

Woody stems Direct measurement of
stem growth increment

264 96

BNPProot Belowground net
primary production

Coarse and
fine roots

Direct measurement of
one or more of: fine root
turnover, soil cores, root
ingrowth cores,
minirhizotrons; indirect
estimates of coarse roots
using allometries based
on aboveground stem
increment measures

101 48

BNPPfine.root Net primary
production of fine
roots

Fine roots Direct measurement of
one or more of:
minirhizotrons, fine root
turnover, soil cores, root
ingrowth cores

88 41

Rauto Annual autotrophic
respiration,
including above- and
belowground
components

Foliage, stem,
and root

Chamber measurements
of component gas
exchange

22 13

Rroot Annual root
respiration

Coarse and
fine roots

Measurement of root gas
exchange, root exclusion
from soil respiration
chambers

64 26

A subset of the ForC database was generated for the purposes of this analysis, in order to control for data
quality and remove biasing factors. Since management can alter observed patterns of primary productivity
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(Šímová and Storch, 2017), sites were excluded from analysis if they were managed, defined as plots that
were planted, managed as plantations, irrigated, fertilised or including the term “managed” in their site
description. Sites that had experienced significant disturbance were also excluded. Disturbances that justified
site exclusion were major cutting or harvesting, and/or burning, flooding, drought and storm events with site
mortality >10% of trees. Grazed sites were retained.
There is evidence that stand age influences patterns of primary productivity and carbon allocation in forest
ecosystems, and can confound relationships between latitude and primary productivity (De Lucia et al., 2007;
Gillman et al., 2015). To reduce any biasing effects of stand age, stands under 100 years of age were excluded
from analysis. Sites for which stand age was unknown were excluded from analysis.

Methodological consistency. The data in ForC is derived from a range of studies, often employing different
methods. For this reason, criteria were introduced to standardise for differences in methodology. Where data
was based on forest plot census measurements, studies which used a minimum diameter at breast height
(DBH) measure of >10cm were excluded from analysis. It would be preferable to standardise by minimum
area sampled; however x% of plots in the database are 1 ha or under in size; excluding these plots would
place significant constraints on sample size.

As discussed above, estimates of NPP , ANPP , and BNPP are generated through summing measurements
of their component parts. Since the components included in productivity estimates vary between studies,
estimates of productivity were classified within the ForC database according to their components, and then
filtered for analysis. Estimates of NPP were selected if they included foliage, branch, stem, coarse root, and
fine root. Measures of NPP which included additional components, including understorey, volatile organic
compounds (VOCs), exudates, estimates of NPP lost to herbivory, and the NPP of reproductive structures,
were excluded. Estimates of ANPP were selected if they included foliage, stem growth and optionally branch
turnover. Any measures of primary productivity where components were unknown were excluded from
analysis.

Climate datasets. Where site-level data on mean annual temperature, mean annual precipitation, and latitude
were available in the primary literature, this data was compiled and entered directly into the ForC database.
Based on the geographic co-ordinates for each site, data on a further 11 climate variables was extracted
from five open-access climate datasets: WorldClim (Hijmans et al., 2005), WorldClim2 (Fick and Hijmans,
2017), the Climate Research Unit (CRU) time-series dataset v. 4.03 (Harris et al., 2014), the Global Aridity
Index and Potential Evapotranspiration Climate Database (Trabucco and Zomer, 2018), and TerraClimate
(Abatzoglou et al., 2018) (see Supplementary Information S1 for details of climate variables). Where site-level
data was missing for mean annual temperature and/or mean annual precipitation, data was extracted from
the WorldClim dataset.

Additionally, two climate variables were derived from the above datasets: maximum vapour pressure deficit,
defined as the vapour pressure deficit of the month with the largest deficit; and water stress months, defined
as the number of months annually where precipitation was lower than potential evapotranspiration.

Length of growing season. Growing season months were defined as months with mean minimum temperature
> 0.5◦C. Growing season months were initially calculated following methods used by Kerkhoff et al. (2005),
which additionally required that growing season months had a moisture index, defined as (MAT - PET)/PET,
> -0.95. Michaletz et al. (2014) included an equivalent requirement in their calculation of growing season
length. However, we found that including this requirement had no effect on the estimates of growing season
length, and so chose to exclude it.

Monthly data for PET, precipitation, and temperature was downloaded from the Climate Research Unit
(CRU) time-series dataset v 4.03 (Harris et al., 2014), and for solar radiation from WorldClim2 (Fick and
Hijmans, 2017), and used to calculate mean monthly PET, precipitation, temperature and solar radiation
during the growing season. Total growing season precipitation and solar radiation were also calculated.

Model specification. The effects of climate and latitude on primary productivity were analysed using mixed
effects models using the package ‘lme4’ (Bates et al., 2015) in R v.3.5.1 (R Core Team, 2018). The effect
of each extracted climate variable on each measure of primary productivity was modelled by specifying the
climate variable as a fixed effect. For each climate variable, three models were specified: a null model; a
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model with the climate variable as a linear term; and a model with the climate variable as a polynomial
term. AIC values were calculated for the models and used to select the best model. If the best model
included a polynomial term, the shape of the polynomial relationship was considered. If the shape of the
relationship made biological sense, and was a significant improvement on the linear relationship (deltaAIC
>2), we accepted the polynomial as the best model. If not, we ran the linear model as the final model. R2

values were calculated for the best model. All R2 values presented here are marginal R2 values, and refer to
the proportion of variation explained by only the fixed effects, unless otherwise specified. In addition, slope
coefficients were calculated for the linear models.

Because the magnitude of fluxes varies significantly, in order to facilitate comparisons between regression
models for each flux, data for each flux was scaled, to give the data a mean of 0 and standard deviation of 1.
As each data set was scaled separately, this does not allow for statistical comparisons of slope values, but
does assist in visualising the data.

To test for a potential influence of altitude, models were also run with site altitude included as a second fixed
effect. These models were compared against models with no altitude term, and AIC values calculated to
identify whether inclusion of altitude as a term improved the models. Including altitude had a very small
effect on most models, with the difference in AIC values between models including and excluding altitude
often being <2, suggesting the models are very similar in their explanatory power. As a result, it was decided
to present results only from models do not include altitude as a fixed term.

Within the ForC database, sites within 25km2 of each other are clustered into geographic areas. To account
for correlations in measurements between tightly clustered sites, a random effect was specified as plot
nested within geographic area. Data from the temperate regions was heavily skewed towards studies from
the old-growth forests of the Pacific Northwest. These forests have very high productivity, and so to ensure
that results were not unduly influenced by geographic sampling bias, we tried a version of the model where
data were weighted according to forested land area within each Koeppen climate zone. Results were similar
between the weighted and unweighted model, so, to avoid problems of over-fitting, the weighted model was
dropped, and results from this are not presented here.

Models were run for total annual productivity against annual climate variables, and for monthly growing
season productivity, defined as total productivity/length of growing season, against growing season climate
variables. For analyses on data within the growing season, only linear models were specified.

To investigate the potential interactive effects of climate variables on carbon fluxes, multivariate models were
also specified. To ensure that models were biologically meaningful, the terms included in the models tested
built on results from the univariate models. Modelling of individual climate variables identified that the best
predictors of carbon fluxes were variables related to temperature. We therefore decided to include mean
annual temperature as a term in all multivariate models. We first modelled the interaction effect between
mean annual temperature and mean annual precipitation, in order to capture climate variation along the axes
of temperature and water availability. Models were tested for a significant interactive effect and a significant
additive effect. We then explored whether any other climate variable, in combination with mean annual
temperature, could significantly improve on the combination of mean annual temperature and mean annual
precipitation. In specifying the range of models to test, climate variables which were strongly correlated with
temperature were dropped, in order to capture the greatest range of variation in climate. For each possible
pairing of climate variables, two models were specified: a model with the two climate variables showing an
additive effect; and a model with the two climate variables showing an interactive effect. As before, plot
nested within geographic area was included as a random effect. Altitude was not considered. AIC values were
calculated for the models, and used to compare models. Models were considered to be significantly better
than the baseline MAT*MAP model if:
i) the AIC value of the model was smaller than the AIC value of the baseline model by >2
ii) the r-squared value of the model was larger than the r-squared value of the baseline model by >5

Validating models of component fluxes. Comparison of component fluxes is based on the assumption that
components sum accurately to estimates of larger fluxes. To test this, components of larger fluxes were
regressed against latitude, and the models used to generate a series of point estimates along lines of best
fit for each component. The point estimates for smaller component fluxes were summed to generate new
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“stacked” estimates of larger fluxes, which were then compared against actual measurements of the larger flux.
Confidence intervals for the larger flux were calculated using the ‘bootMer’ function from the lme4 package
(Bates et al., 2015). Stacked plots were generated for:
1. GPP = NPP + Rauto
2. NPP = ANPP + BNPP
3. ANPP = ANPPfoliage + ANPPwoody stem
4. Total belowground carbon flux = BNPP + Rroot

Allocation to carbon fluxes along latitudinal gradients. Variation in allocation to component carbon fluxes
along latitudinal gradients was explored for a range of pairings: firstly, GPP:NPP, ANPP:BNPP, and
ANPPfoliage:ANPPwoody stem; and secondly, the ratio of NPP to each of ANPP, BNPP, ANPPfoliage, and
ANPPwoody stem. For each set of paired fluxes, measurements taken at the same site and plot, and in the
same year, were paired together, and the ratio of each pair of measurements calculated. The ratios were
regressed against latitude and climate variables, using the linear model specified above. Cook’s distance
analyses were carried out for each of the models, and indicated that data from a few high-elevation sites were
having a disproportionate influence on the regressions. To account for this, models were re-run using only
data from sites ≤ 1000m.

Results

In total, we analyzed 1228 records from 9 C flux variables taken from forests that had experienced no major
anthropogenic disturbances within the past 100 years. These records represented a total of 154 distinct
geographic areas (Fig. 1, Table 2), across all forested biogeographic and climate zones.

How does productivity vary with latitude?

All major carbon fluxes increased linearly with decreasing latitude (fig. 2).
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Figure 2: Graphs to show primary productivity (MgC ha−1 yr−1) regressed against latitude. Lines of best fit are plotted
according to the best model selected during analysis. All regressions are significant (p < 0.05).

Latitude was a strong predictor for many of the carbon fluxes, explaining 64% of variation in GPP (n = 254,
p<0.0001), 50% in NPP (n = 114, p<0.0001) and 45% in ANPP (n = 259, p<0.0001). For all fluxes, their
relationship with latitude was best predicted by the linear model.

Relationships and differences among fluxes. In general, smaller component fluxes summed approximately to
larger fluxes across the latitudinal gradient (fig. 3). That is, modelled estimates of GPP, generated from the
sum of NPP and R auto; NPP, generated from the sum of ANPP and BNPProot; and ANPP, generated from
the sum of ANPPfoliage and ANPPwoody stem, fell completely within the confidence intervals of the regressions
of field estimates of GPP, NPP and ANPP respectively.

bbl: here or in the discussion, note that this is a fairly stringent test: it’s easy for sub-fluxes not to sum up!
(Extensive citations from EC literature for example.)
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Figure 3: Graphs of primary productivity (MgC ha−1 yr−1) regressed against latitude. Lines of best fit are plotted according
to the best model selected during analysis. All regressions are significant (p < 0.05). Plots 1 - 3 show two component fluxes; a
larger flux, defined as the combination of the two component fluxes; and a modelled estimate of the sum of the two component
fluxes. 95% confidence intervals are plotted for the larger flux. Plot 4 shows three belowground fluxes, and a modelled estimate
of the total belowground carbon flux

We found no evidence that allocation between fluxes varied substantially with latitude or climate. There were
no significant results from regressing ratios of carbon fluxes against latitude, or against any of the climate
variables.

R2 values were generally highest in the major fluxes, and decreased in subsidiary fluxes (Supporting Information
S2). Of the major fluxes, Rauto and GPP were the most strongly explained by latitude and climate, with
climate explaining at most 71% of variation in GPP, and 65% in Rauto. The proportion of variation explained
by climate and latitude decreased in NPP and ANPP, with climate explaining at most 51% of variation in
NPP and 44% in ANPP. Of the major fluxes, BNPProot was the least well explained by climate and latitude,
with climate explaining at most 36% of variation.

With the exception of ANPPfoliage, the proportion of variation explained by climate and latitude in subsidiary
fluxes was much lower. Climate explained at most 24% of the variation in ANPPwoody stem, 19% in BNPPfine
root, and 27% in Rroot. In contrast, climate strongly explained variation in ANPPfoliage, with mean annual
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temperature explaining 58% of variation. This pattern was also seen in the R2 values for multivariate models.

How does productivity relate to MAT and MAP? MAT and MAP are the most commonly reported site-level
climate variables, and much previous research into the effect of climate on forest productivity has focused on
these as key climate variables. MAT was a significant (p<0.05) and strong predictor of productivity for all
carbon fluxes tested, with all fluxes showing a linear increase with temperature (fig. 5). We found no support
for a saturation point of productivity with temperature.

MAP was found to be a significant (p<0.05) but poor predictor of productivity, explaining, with the exception
of Rauto, at most 37% of variation in carbon flux. For the majority of fluxes productivity was best predicted
by a polynomial model. Productivity increased with precipitation, up until a saturation point at between
3000 and 4000mm annual precipitation, above which productivity started to decrease (fig. 5). The notable
exception to this was GPP: the model indicated that GPP continued to increase with precipitation up to
measures of at least 5000mm annually (p<0.0001, R2 = 0.33. Data above this point was not available, but
the model trend indicated that the saturation point for this model would be around 5000mm MAP.

There was a significant interactive effect between MAT and MAP for GPP, BNPProot, BNPPfine root, ANPP,
ANPPwoody stem, and Rroot (fig.4). There was a significant additive effect for Rauto. NPP and ANPPfoliage
showed no significant interactive or additive effect.

For the variables which showed a significant interactive or additive effect between MAT and MAP, no other
climate variable, in combination with MAT, significantly improved on that model. For NPP, there was a
significant interactive effect between MAT and water stress months, with this model explaining nearly 5%
more variation in NPP than MAT alone. However, for ANPPfoliage, no multivariate model improved on the
univariate model including only MAT.
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Figure 4: Plots of primary productivity (MgC ha−1 yr−1) regressed against mean annual precipitation. Points are grouped
into bins of 0 - 1000, 1001 - 2000, 2001 - 3000, and >3000mm mean annual precipitation, and lines of best fit plotted for mean
annual precipitation values of 500, 1500, 2500, and 3500mm. All regressions are significant (p < 0.05).

How does productivity relate to other climate variables? Our results indicated that productivity was most
strongly explained by temperature at the global scale, with temperature-related climate variables coming out
as strong predictors of productivity. In addition to MAT, temperature seasonality, annual temperature range,
and annual frost days were consistently identified as good predictors of productivity across fluxes.

We found a significant relationship between productivity and potential evapotranspiration for all fluxes.
ANPPfoliage, BNPPfine root and Rroot increased linearly with PET; however, all other fluxes showed a
polynomial relationship with PET (fig. 5). We found strong evidence for a saturation point or peak with
PET: productivity tended to increase at values below 1000mm, before saturating between 1200 and 1700mm.
There was also evidence that productivity begins to decrease at values above 1800mm PET.

Vapour pressure deficit was a significant predictor of productivity for all fluxes. BNPPfine root showed a
linear relationship with vapour pressure deficit (R2 = 0.07, p<0.05), but all other fluxes showed a polynomial
relationship (fig. 5). Productivity initially increased with vapour pressure deficit, before saturating at around
0.8 kPa. At values above 0.8 kPa, productivity began to decrease.
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All fluxes, with the exception of Rroot, showed a positive linear relationship with solar radiation. Solar
radiation explained a low proportion of variability in productivity for all fluxes, explaining less than 20% of
the variation in each flux, with the exception of Rauto (R2 = 0.26, p<0.05).

Of the climate variables tested, annual wet days, aridity, cloud cover, mean diurnal temperature range,
precipitation seasonality, maximum vapour pressure deficit and water stress months were poor or non-
significant explainers of variation in productivity, explaining less than 20% of the variation in each of the
carbon fluxes.
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Figure 5: Plots of primary productivity (MgC ha−1 yr−1) regressed against (a) mean annual temperature; (b) mean annual
precipitation; (c) potential evapotranspiration, (d) vapour pressure deficit; (e) temperature seasonality; (f) length of growing
season. Lines of best fit are plotted according to the best model selected during analysis. All regressions are significant (p < 0.05).
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What is the role of seasonality in explaining productivity? Temperature seasonality was a significant predictor
of productivity. GPP, NPP, ANPP, and Rroot exhibited a polynomial relationship with seasonality (fig.
5). ANPPfoliage, ANPPwoody stem and Rauto decreased linearly with temperature seasonality. Temperature
seasonality was strongly correlated with annual temperature range, and, as expected, all fluxes showed almost
identical responses to it. Productivity was highest where temperature seasonality = 0, and at an annual
temperature range of 15◦C or lower. In contrast, there was no significant effect of precipitation seasonality
on productivity.

We found a significant relationship between length of growing season and productivity, with all fluxes showing
a linear increase in productivity with length of growing season (fig. 5). Length of growing season was a strong
predictor of productivity, explaining 51% of variation in GPP, 39% of variation in NPP, and 34% of variation
in ANPP, but it was not identified as a stronger predictor than MAT for any of the fluxes analysed.

Within the growing season, how does productivity vary with climate? Within growing season months, we
found that climate had a much weaker effect on productivity. For each of temperature, precipitation, PET,
and solar radiation, we found a small effect of climate for certain carbon fluxes. There was a small increase
in productivity with temperature and precipitation for ANPP (with temperature R2 = 0.10, p<0.001; with
precipitation R2 = 0.04, p<0.05) and ANPPfoliage (with temperature R2 = 0.16, p<0.01; with precipitation
R2 = 0.09, p<0.05). Productivity increased with solar radiation for GPP (R2 = 0.21, p<0.001), NPP (R2 =
0.21, p<0.001), BNPP (R2 = 0.16, p<0.001) and BNPPfine root (R2 = 0.12, p<0.01), and with PET for GPP
(R2 = 0.15, p<0.01), NPP (R2 = 0.18, p<0.01), BNPP (R2 = 0.23, p<0.0001), BNPPfine root (R2 = 0.11,
p<0.05), and ANPPwoody stem (R2 = 0.06, p<0.05).

Discussion

We used a large global database (ForC), containing an unprecedented amount of data representing all major
forest types (Fig. 1) and the nine most significant forest autotrophic carbon flux (FACF) variables (Table 2),
to comprehensively explore how C cycling in mature, undisturbed forests varies with latitude and climate
on a global scale. We test a suite of hypotheses, including many previously posed (Table 1), standardising
for factors that have not always been controlled for (e.g., stand age, flux components measured) to gain a
stronger understanding of climatic effects on FACF.

bbl: Most of these two paragraphs (following) just restate the results. Honestly I would remove them enitrely,
but at the very least, condense into a single paragraph.

We show that, across all nine FACF variables analyzed, C cycling decreases linearly with latitude (H1.1 ; Figs.
2-3)–a finding that confirms multiple previous studies (REFS) but contradicts the idea that productivity of
temperate forests rivals that of tropical forests (H1.1.alt; REFS). The FACF variables increase in proportion to
one another (H1.2 ), with no differences in allocation detectable at this global scale and with component fluxes
summing appropriately to larger fluxes (Fig. 3), indicating no major, systematic omissions or overestimations
of flux components. However, we did detect a tendency for greater variability among subsidiary C fluxes
(e.g., ANPPwoody, BNPPfine.root; Fig. 2; some SI table?).

Climate explains a significant proportion of variation in all C fluxes analyzed (albiet less for
subsidiary fluxes), with temperature variables the best predictors of FACF at this global scale (Figs. 4-
5). While other climate variables are significant predictors of FACF (H3 ), none of them improve on the
explanatory power of temperature-related variables in general or MAT specifically (Fig. 5). Water availability
is an important factor in explaining FACF on a global scale: we find a positive influence of precipitation at
low MAP, with saturation at higher levels of MAP (Fig. 5b) and a significant interaction between MAT and
MAP for seven of the nine variables analyzed (Fig. 4). Temperature seasonality and growing season length
are closely correlated with MAT and are strong predictors of FACF (H4 ; Fig. 5e-f), though growing season
length doesn’t improve upon MAT as a predictor. Within the growing season, the influence of climate on C
cycling is smaller but still significant for a number of carbon fluxes (H5 ; some SI table?). These findings
clarify the big picture of how FACF varies with latitude and climate on a global scale.

Past studies have differed in their conclusions regarding the relationship between productivity and latitude
or its correlates (Table 1, H1 ; REFS)–quite possibly because of lack of standardization with respect to
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stand age and disturbance history. Our findings indicate that, among mature, undisturbed stands, FACF
is unambiguously highest in the tropical regions, and the relationship is approximately linear (Figs. 2-3).
This contrasts with suggestions that productivity of temperate forests is similar to that of tropical forests
(REFS). Temperate forests tend to be younger than tropical forests (REF), so analyses comparing across
latitudinal gradients without controlling for stand age risk confounding age with biome effects (Poulter et al.
2018-DOI:10.1594/PANGAEA.889943; Potapov et al. 2008. Mapping the World’s Intact Forest Landscapes
by Remote Sensing. Ecology and Society 13 (2), 51. ). In addition, because C allocation varies with stand age
(De Lucia et al., 2007) (See Nobby’s comment in manuscript-draft_NK.pdf), age differences may
introduce systematic biases into analyses of FACF across latitude or global climatic gradients. For example,
woody productivity tends to be higher in rapidly aggrading secondary stands than in old-growth forests,
where proportionally more C is allocated to respiration (** Nobby AFM paper: Understanding the controls
over forest carbon use efficiency on small spatial scales: Effects of forest disturbance and tree diversity**)
[*purpose for respiration/ other compenents (See Nobby’s comment in manuscript-draft_NK.pdf)].

We show that FACF are broadly consistent in their responses to climate drivers on the global scale (with
the exception of some differences in MAT-MAP interactions; Fig. 4), with no major trends in C allocation
among the variable pairs tested (Table 1, H1 ; Fig. 2; Some SI table). Although variation in allocation
has been observed along gradients of elevation (Moser et al., 2011) and water availability (Newman et al.,
2006)–along with non-climatic axes of stand age (Litton et al., 2007), nutrient availability (Litton et al.,
2007; Gill and Finzi, 2016), and forest structure (Taylor et al., 2019)–variation in relation to climate is not
apparent at the global scale within ForC, which contains the bulk of relevant data. Our conclusion, then, is
that hypothesized gradients in allocation along global climate gradients cannot currently be supported for
mature forests, although data quantity and standardization is currently insufficent to rule out the possibility
that such trends exist.

bbl: remove this sentence? Of particular interest and significance are the relationships amongst GPP , net
primary productivity (NPP and its components, particularly ANPPwoody−stem), and respiration (Rauto and
components). There have been suggestions that tropical forests tend to have low carbon use efficiency (CUE=
NPP/GPP=(GPP -Rauto/GPP ), which are based on observations of low CUE in old-growth tropical forests
relative to (mostly younger) extratropical forests (De Lucia et al., 2007; Malhi 2012; Anderson-Teixeira et al.,
2016), but our analysis suggests that these low values might more appropriately be attributed to the fact that
these forests are old than to their tropical climate. Indeed, CUE is known to decline with forest age ((De Lucia
et al., 2007); Collalti & Prentice 2019) but appears to be roughly independent of GPP (Litton et al., 2007).
Among our sites with relevant data, there is indication that CUE or ANPPwoody−stem/GPP increase with
latitude (some SI table). Additional measurements with careful methodological standardization across a
consistent set of mature forest sites will be necessary to determine whether any climate-driven gradients in
allocation exist at the global scale.

One interesting observation was that climate tends to explain more variation in the major fluxes (GPP ,
NPP , Rauto - latitude R2 ≥ 48%) than in subsidiary fluxes (latitude R2 <27% for BNPPfine.root,
Rauto−root,ANPPwoody−stem) (Fig. 2; some SI table?). There are two, non-exclusive, potential ex-
planations for this. First, it may be that methodological variation is larger relative to flux magnitude for some
of the subsidiary fluxes. Belowground fluxes in particular are difficult to quantify, and measurement methods
for the belowground fluxes considered here may be measured through fundamentally different approaches
(e.g., minirhizotrons, ingrowth cores, or sequential coring for BNPProot−fine; root exclusion, stable isotope
tracking, or gas exchange of excised roots for Rauto−root), and sampling depth is variable and often insufficient
to capture the full soil profile. ANPPwoody−stem, which is also poorly explained by latitude or climate, is
more straightforward to measure but is subject to variability introduced by differences such as biomass
allometries applied and minimum plant size sampled (bbl: cite e.g. Huntzinger?). However, methodological
variation and uncertainty affect all of fluxes considered here–not necessarily any less than the aforementioned,
and some of the larger fluxes that vary more strongly with respect to climate (ANPP , NPP ) are estimated
by summing uncertain component fluxes. Second, differences among variables in the proportion of variation
explained by climate may be attributable to more dicrect climatic control over GPP than subsidiary fluxes.
That is, subsidiary fluxes may be shaped by climate both indirectly through its influence on GPP and
respiration and directly through any climatic influence on C allocation, as well as by many other local- and
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regional-scale factors (REFS).

The latitudinal gradient in FACF (Figs. 2-3) is driven primarily by temperature-related climate variables,
and secondarily by moisture availability (Table 1, H2-H3 ; Figs. 4-5). Because many climate variables co-vary
across the latitudinal gradient, because climatic drivers affect forest carbon flux on much shorter time scales
than can be captured by annual climate summary variables, and because both climatic conditions and C
flux vary intra- and inter-annually around the long-term means, it is not appropriate to attempt to identify
any one mean annual climate variable as a mechanistic driver of FACF. However, it remains informative
to consider these relationships. We find that temperature-related climate variables (MAT , temperature
seasonality, . . .LIST) explain the highest proportion of variability in productivity, and among these, MAT
is generally the best predictor–perhaps because site-specific MAT is recorded for the majority of sites in
ForC, whereas other variables are extracted from global gridded data products (Table S1?). The effects of
temperature are modified by moisture availability, with reduced FACF under hot and dry conditions (i.e.,
high PET, high deficit; Fig. 5c-d) and sometimes under very high precipitaiton (Figs. 4, 5b). Negative effects
of very high precipitation on FACF have been previously observed (REFS) and are attributable to nutrient
and light limitations (REFS) Thus, although temperature and water availability jointly and interactively
drive global-scale patterns of FACF.

bbl: this seems really interesting and novel, consider expanding the following paragraph

FACF is reduced by temperature seasonality (Table 1, H4 ; Fig. 5e), and productivity is shut down during
cold- or dry- dormant seasons. To account for this, a number of analyses seeking to characterize global-scale
effects of climate on productivity have examined the relationship of FACF per month of the growing season
with growing season climatic conditions (Table 1, H5 ; REFS). We found that the sort of simple metric
needed to define growing season at a global scale was uncertain for temperature and problematic for moisture
(WORK ON THIS). A temperature-defined growing season length had stong positive correlation with
FACF (Fig. 5f), but explained less variation than MAT . Dividing FACFs by growing season length to yield
FACF per growing season month removed the majority of climate-related variation, supporting the idea that
the latitudinal gradient in FACF is attributable more to shorter growing seasons at high latitudes than to
inherently lower rates of photosyntheiss or respiration by high-latitude forests ([ Enquist et al. 2007 GCB- but
check]). However, there remained a number of significant correlations with growing season climatic conditions,
suggesting that climatic conditions remain influential within the growing season. We conclude that while
correcting for growing season length takes analyses a step closer to mechanistic linkage of instantaneous C
flux rates to environmental conditions, it remains very crude relative to the the timescales on which climate
affects plant metabolism and does not advance statistical predictive power. Rather, mechanistic accounting
for climatic effects on global productivity patterns requires models representing physiologically meaningful
timescales (e.g., refs).

Our analysis clarifies how FACF varies (bbl: is FACF singular or plural? Be consistent) with latitude and
climate on a global scale, with some important implications for how forest carbon cycling relates to climate
and, by extension, how it is likely to respond to climatic warming. We find no support for non-linear trends
in mature forest C cycling with respect to latitude or MAT , and no distinct trends in C allocation across the
global scale (Fig. 3). The implication is that under warmer conditions with similar moisture availability–and
within the temperature range to which forest communities are adapated and acclimatized–higher temperatures
result in a generalized acceleration of FACF, with no major shifts in C allocation among subsidiary fluxes.
Of course, actual climatic changes will result in very different sets of conditions than represented across
geographic gradients in climate, but our analysis clarifies how carbon cycles through contemporary forest
ecosystems. As we enter a period of accelerating climatic change, understanding of the fundamental climatic
controls on FACF sets a foundation for understanding patterns of change. [work on this]
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