Skip to content
Root dictionaries for sentiment analysis on Twitter data
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
LICENSE.md
README.md
sentiment_dict_en_1.txt
sentiment_dict_it_1.txt

README.md

Sentiment analysis root dictionaries

My TvSeriesTweet app collects popular tweets from the best Tv Series. I’ve recently added a Sentiment Analysis tab, to provide info about how the Tv Series communication on Twitter is polarized (positive, negative or neutral content) and what type of content best suits the followers. Unlike other analysts, I like to study the communication of the Twitter influencers instead of the sentiments of the users reacting to them.

After having studied and tried the best current approaches to Sentiment analysis (syntactic-semantic grammar rules, heuristic methods, combined methods), I decided to develop a different solution to better address the Twitter user content.

Twitter users tend to use a lot of hashtags and aggregated words, so a classic dictionary based algorithm wouldn’t correctly recognize a lot of words. I created a new dictionary, using only the root of every word (e.g. the root “alert” for the words: alerts, alerting, alerted) and used it to look for the roots inside every word of a given tweet (so that the root gets recognized within the #spoileralert hashtag).

The roots dictionary is derived from the AFINN-111 file. It’s a text file, every row contains the root of a word, and a positive or negative score (in the range -5/+5) separated by comma.

The English and Italian dictionary are provided; other dictionaries will be released next.

More info here: http://www.whiletrue.it/sentiment-analysis-approach/

You can’t perform that action at this time.