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 1
Introduction

The System V Application Binary Interface defines a linking interface for compiled application programs. The 
interface is described in two parts. The first part is the generic System V ABI, shared across all processor 
architectures. The second part is a processor specific supplement. This document is the processor specific 
supplement for use with ELF on processor systems based on the ARCv2 instruction-set architecture.

This document is not a complete System V Application Binary Interface Supplement, because it does not define 
any OS library-interface information. Further, this ABI pertains primarily to C and assembly and contains 
only limited information on C++.

In the ARCv2 architecture, a processor can run in either of two modes: big-endian mode or little-endian 
mode. Programs and (in general) data produced by programs that run on an implementation of the big-
endian interface are not portable to an implementation of the little-endian interface, and the converse is also 
true. An ARCv2 ABI-conforming system must support little-endian byte ordering. Accordingly, this ABI 
specification defines only the little-endian byte-ordering model. A future edition may define the big-endian 
version.

The ARCv2 ELF ABI is not the same as the preliminary ARC ABI published December 1999–April 2010. 

 1.1 How to Use the System V ABI Supplement
While the generic System V ABI is the prime reference document, this document contains ARCv2-specific 
implementation details, some of which supersede information in the generic ABI.

As with the System V ABI, this Supplement refers to other documents, especially the ARVv2 Programmer's Reference 
Manual, all of which should be considered part of this ARCv2 ABI Supplement and as binding as the requirements and 
data it explicitly includes.

 1.1.1 Structure

This ABI Supplement consists of the following major divisions: 

NoteNoteNoteNote This ABI does not specify software installation, media, and formats.

https://solvnet.synopsys.com
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■ Chapter 2, “Low-Level System Information” describes the machine interface, byte ordering, data 
types, storage mapping, function calling sequence, registers, stack frame, function prolog and epilog, 
and function calls and branching.

■ Chapter 3, “Object Files” describes the ELF header, special sections, symbol table, small-data area, 
mapping variables to registers, and relocation types and fields.

■ Chapter 4, “Program Loading and Dynamic Linking”is of interest to UNIX-style operating systems, 
and describes how programs are loaded and dynamically linked, including the global offset table and 
procedure linkage table.

■ The Index provides quick reference to key topics.

 1.1.2 Terminology

callee-saved 

Callee-saved registers (sometimes called non-volatile registers) hold values that are expected to be preserved 
across calls. 

caller-saved

Caller-saved registers (sometimes called volatile registers) hold temporary values that are not expected to be 
preserved across calls. 

word

Thirty-two bits of data, unless otherwise specified.

 1.2 Evolution of the ABI Specification 
The System V Application Binary Interface will evolve over time to address new technology and market 
requirements, and will be reissued at intervals. Each new edition of the specification is likely to contain 
extensions and additions that will increase the potential capabilities of applications that are written to 
conform to the ABI.

 1.3 Reference Documents
The following documents may be of interest to readers of this specification:

■ System V Interface Definition, Issue 3.

■ DWARF Debugging Information Format, Version 4, 2010, Free Standards Group, DWARF Debugging 
Information Format Workgroup

■ ARCv2 Programmer's Reference Manual 

https://solvnet.synopsys.com
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 1.4 Revision History

Table  1-1 Revision History

Version  Date Description

4092-001 July 2015 Initial publication

4092-002 September 2015 Added information on overlay-related sections

4092-003 December 2015 ■ Added information on .vectors section

■ Specified that signed integral types are used by default for enums.

4092-004 June 2016 ■ Corrected dispu7 to disp7u and documented the field.

■ Corrected disp10 field name to disp10u and documented the field.

■ Clarified that With the exception of word32, all relocations with replacement 
fields in four-byte words must be written using Middle-Endian Storage.

■ Labeled word32 fields word32me when they are subject to middle-endian 
storage.

■ Removed relocation type R_ARC_SPE_SECTOFF.

■ Corrected calculations of relocation types:

- R_ARC_32_ME
- R_ARC_N32_ME
- R_AC_SECTOFF_S9
- R_AC_SECTOFF_S9_1
- R_AC_SECTOFF_S9_2

■ Corrected field type of R_ARC_AOM_TOKEN_ME from limm to word32me.

■ Further clarified explanation of R_ARC_*_ME relocation type.

■ Noted that the ninth bit of the replacement field is not used for the following 
relocation types:

- R_AC_SECTOFF_U8
- R_AC_SECTOFF_U8_1
- R_AC_SECTOFF_U8_2

■ Corrected various typographical errors.

4092-005 March 2018 ■ Made the relocation displacement figures bit exact.

■ Clarified that the LP_COUNT, r58, and r59 registers are accumulators and 
caller-saved registers.

■ Clarified that register r25 is reserved by the EV6x processors.

■ Clarified that the r30 register is used as a scratch register.

■ Clarified that the r25 register is used for TLS by gcc.

■ Clarified that when calling an external function, the compiler assumes that 
registers %r0 through %r12 and %r30 are trashed; and that %r13 through %r29 
are preserved. 

■ Clarified that gcc reserves r25 as Thread pointer if Thread local storage is 
enabled
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Low-Level System Information

2.1 Machine Interface 

2.1.1 Processor Architecture

Programs intended to execute on ARCv2-based processors use the ARCv2 instruction set, and the 
instruction encoding and semantics of the architecture.

An application program can assume that all instructions defined by the architecture that are neither 
privileged nor optional exist and work as documented. 

To be ARC System V ABI-conforming, the processor must implement the instructions of the architecture, 
perform the specified operations, and produce the expected results. The ABI neither places performance 
constraints on systems nor specifies what instructions must be implemented in hardware. A software 
emulation of the architecture can conform to the ABI.

Some processors might support optional or additional instructions or capabilities. Programs that use those 
instructions or capabilities do not conform to the ARCv2 ABI; executing them on machines without the 
additional capabilities results in undefined behavior.

2.1.2 Data Representation 

2.1.2.1 Byte Ordering

The architecture defines an eight-bit byte, a 16-bit halfword, a 32-bit word, and a 64-bit double word. Byte 
ordering defines how the bytes that make up halfwords, words, and doublewords are ordered in memory. 
Most-significant-byte (MSB) ordering, or “big-endian,” as it is sometimes called, means that the most-
significant byte is located in the lowest addressed byte position in a storage unit (byte 0). Least-significant-
byte (LSB) ordering, or “little-endian,” as it is sometimes called, means that the least-significant byte is 
located in the lowest addressed byte position in a storage unit (byte 0).

ARCv2-based processors support either big-endian or little-endian byte ordering. However, this 
specification defines only the base-case little-endian (LSB) architecture. 

The following figures illustrate the conventions for bit and byte numbering within storage units of varying 
width. These conventions apply to both integer data and floating-point data, where the most-significant 
byte of a floating-point value holds the sign and at least the start of the exponent. The figures show byte 
numbers in the upper right corners, and bit numbers in the lower corners. 
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Figure 2-1 Bit and Byte Numbering in Halfwords

Figure 2-2 Bit and Byte Numbering in Words 

Figure 2-3 Bit and Byte Numbering in Doublewords

2.1.2.2 Data Layout in Memory

ARCv2-based processors access data memory using byte addresses and generally require that all memory 
addresses be aligned as follows:

■ 64-bit double-words are aligned to 32-bit word boundaries.

■ 32-bit words are aligned to 32-bit word boundaries.

■ 16-bit halfwords are aligned to 16-bit halfword boundaries.

■ Bytes have no specific alignment.

2.1.2.2.1 Sixty-Four-Bit Data

Figure 2-4 shows the little-endian representation in byte-wide memory. If the ARCv2-based processor 
supports -big-endian addressing, the data is stored in memory as shown in Figure 2-5 on page 15.

Figure 2-4 Sixty-Four-Bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

N Byte 0

N+1 Byte 1

N+2 Byte 2

N+3 Byte 3

N+4 Byte 4

N+5 Byte 5

N+6 Byte 6

N+7 Byte 7

MSB
1

15 8

0

7 0
LSB

MSB
3

31 24

2

23

1

15 8

0

7 0
LSB

16

MSB
7

31 24

6

23

5

15 8

4

7 016

3

31 24

2

23

1

15 8

0

7 0
LSB

16
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2.1.2.2.2 Thirty-Two-Bit Data

Figure 2-6 shows the data representation in a general purpose register. Figure 2-7 shows the little-endian 
representation in byte-wide memory. Figure 2-8 shows the big-endian representation.

2.1.2.2.3 Sixteen-Bit Data

Figure 2-9 on page 16 shows the 16-bit data representation in a general purpose register.

For the programmer's model, the data is always contained in the lower bits of the core register and the data 
memory is accessed using a byte address. This model is sometimes referred to as a data invariance principle. 
Figure 2-10 on page 16 shows the little-endian representation of 16-bit data in byte-wide memory. If the 

Figure 2-5 Sixty-Four-Bit Register Data in Byte-Wide Memory, Big-Endian

Address 7 6 5 4 3 2 1 0

N Byte 7

N+1 Byte 6

N+2 Byte 5

N+3 Byte 4

N+4 Byte 3

N+5 Byte 2

N+6 Byte 1

N+7 Byte 0

Figure 2-6 Register Containing Thirty-Two-Bit Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 3 Byte 2 Byte 1 Byte 0

Figure 2-7 Thirty-Two-Bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

N Byte 0

N+1 Byte 1

N+2 Byte 2

N+3 Byte 3

Figure 2-8 Thirty-Two-Bit Register Data in Byte-Wide Memory, Big-Endian

Address 7 6 5 4 3 2 1 0

N Byte 3

N+1 Byte 2

N+2 Byte 1

N+3 Byte 0
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ARCv2-based processor supports big-endian addressing, Figure 2-11 shows how the 16-bit data is stored in 
memory. 

2.1.2.2.4 Eight-Bit Data

Figure 2-12 on page 16 shows the 8-bit data representation in a general purpose register.

For the programmer's model, the data is always contained in the lower bits of the core register and the data 
memory is accessed using a byte address. This model is sometimes referred to as a data invariance principle. 
Figure 2-13 shows the representation of 8-bit data in byte-wide memory.

Regardless of the endianness of the ARCv2-based system, the byte-aligned address, n, of the byte is 
explicitly given and the byte is stored or read from that explicit address.

2.1.2.2.5 One-Bit Data

The ARCv2 instruction-set architecture supports single-bit operations on data stored in the core registers. A 
bit manipulation instruction includes an immediate value specifying the bit to operate on. Bit manipulation 
instructions can operate on 8-bit, 16-bit, or 32-bit data located within core registers because each bit is 
individually addressable.

Figure 2-9 Register Containing 16-Bit Data
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused Byte 1 Byte 0

Figure 2-10 Sixteen-Bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

N Byte 0

N+1 Byte 1

Figure 2-11 Sixteen-Bit Register Data in Byte-Wide Memory, Big-Endian

Address 7 6 5 4 3 2 1 0

N Byte 1

N+1 Byte 0

Figure 2-12 Register Containing Eight-Bit Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused Byte 0

Figure 2-13 Eight-Bit Register Data in Byte-Wide Memory

Address 7 6 5 4 3 2 1 0

N Byte 0

Figure 2-14 Register Containing One-Bit Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b14 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
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2.1.2.3 Fundamental Types

Table 2-1 on page 17 shows how ANSI C scalar types correspond to those of ARCv2-based processors. For 
all types, a null pointer has the value zero. The “Alignment” column specifies the required alignment of a 
field of the given type within a struct. Variables may be more strictly aligned than is shown in the table, 
but fields in a struct must follow the alignment specified to ensure consistent struct mapping.

2.1.2.4 Enumerations

The enum data type is mapped like an integer of equivalent size. Signed integral types are used by default.

2.1.2.5 Complex Types

When passed as arguments, complex data types are 32-bit word-aligned.

Table 2-1 Scalar Types

Type ANSI C Size
Alignment
(bytes)

ARCv2-Based 
Processors

Integral char
unsigned char

1 1 unsigned byte

signed char 1 1 signed byte

short
signed short

2 2 signed halfword

unsigned short 2 2 unsigned halfword

int
signed int
long
signed long

4 4 signed word

unsigned int
unsigned long

4 4 unsigned word

long long
signed long long

8 4 signed doubleword

unsigned long long 8 4 unsigned doubleword

Pointer any *
any (*) ()

4 4 unsigned word

Floating float 4 4 single precision

double
long double

8 4 double precision
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2.1.2.6 Aggregates and Unions

Aggregates (structures, classes, and arrays) and unions assume the alignment of their most strictly aligned 
component, that is, the component with the largest alignment. The size of any object, including aggregates, 
classes, and unions, is always a multiple of the alignment of the object. Non-bitfield members always start 
on byte boundaries. The size of a struct or class is the sum of the sizes of its members, including 
alignment padding between members. The size of a union is the size of its largest member, padded such 
that its size is evenly divisible by its alignment. Enumerations may be mapped to one, two, or four bytes, 
depending on their size. An array uses the same alignment as its elements. Structure and union objects may 
be packed or padded to meet size and alignment constraints:

■ An entire structure or union object is aligned on the same boundary as its most strictly aligned 
member, though a packed structure or union need not be aligned on word boundaries.

■ Each member is assigned to the lowest available offset with the appropriate alignment. Such 
alignment may require internal padding, depending on the previous member.

■ If necessary, a structure’s size is increased to make it a multiple of the structure's alignment. Such 
alignment may require tail padding, depending on the last member.

In the following examples, members’ byte offsets appear in the upper right corners.

Figure 2-15 Structure Smaller Than a Word

Byte aligned, sizeof is 1

Figure 2-16 No Padding

Word aligned, sizeof is 8.

NoteNoteNoteNote For detailed information on C++ classes, see “Storage Mapping for Class Objects ” on page 19.

struct {
  char c;
};

struct {
  char  c;
  char  d;
  short s;
  int   n;
};

c
0

s 2 d 1 0c

4
n
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Figure 2-17 Internal Padding

Halfword aligned, sizeof is 4.

Figure 2-18 Internal and Tail Padding

Word aligned, sizeof is 16

Figure 2-19 Union Allocation

Word aligned, sizeof is 4

2.1.3 Storage Mapping for Class Objects 

C++ class objects shall be mapped in accordance with the GNU Itanium ABI; see the following URL: 
http://mentorembedded.github.io/cxx-abi/abi.html

2.1.4 Bitfields 

C/C++ struct and union definitions may have bitfields, defining integral objects with a specified number 
of bits.

struct {
  char  c;
  short s;
};

struct {
 char   c;
 double d;
 short  s;
};

union {
  char  c;
  short s;
  int   j;
};

s
2

pad
1 0
c

pad 1 0c

4d

d 8

pad14
s

12

pad 1 0c

2
s

0

j 0
pad
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Bitfields are signed unless explicitly declared as unsigned. For example, a four-bit field declared as int 
can hold values from -8 to 7.

Table 2-2 Bitfield Types: Width and Range of Values shows the possible widths for bitfields, where w is 
maximum width (in bits). 

Bitfields obey the same size and alignment rules as other structure and union members, with the following 
additions: 

■ Bitfields are allocated from most to least significant bit on big-endian implementations. 

■ Bitfields are allocated from least to most significant bit on little-endian implementations. 

■ The alignment that a bit field imposes on its enclosing struct or union is the same as any ordinary 
(non-bit) field of the same type. Thus, a bitfield of type int imposes a four-byte alignment on the 
enclosing struct.

■ Bitfields are packed in consecutive bytes, except if a bitfield packed in consecutive bytes would cross 
a byte offset B where B % sizeof(FieldType) == 0. 

In particular:

❑ A bitfield of type char may not cross a byte boundary.

❑ A bitfield of type short may not cross a halfword boundary

❑ A bit field of type int may not cross a word boundary. 

Table 2-2 Bitfield Types: Width and Range of Values

Bitfield Type Max. Width w (Bits) Range of Values

signed char 1 to 8 2(w-1)-1 to -2(w-1)

char (default signedness) 1 to 8 0 to 2w-1

unsigned char 1 to 8 0 to 2w-1

short 1 to 16 -2(w-1) to 2(w-1)-1

unsigned short 1 to 16 0 to 2w-1

int 1 to 32 -2(w-1) to 2(w-1)-1

long 1 to 32 -2(w-1) to 2(w-1)-1

enum (unless signed values are 
assigned)

1 to 32 0 to 2w-1

unsigned int 1 to 32 0 to 2w-1

unsigned long 1 to 32 0 to 2w-1

long long int 1 to 64 -2(w-1) to 2(w-1)-1

unsigned long long int 1 to 64 0 to 2w-1
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❑ Because long long ints are four-byte-aligned on ARCv2-based processors, a bitfield of type 
long long may not cross two word boundaries. Thus, field B in the following code would start 
on byte 4 of the parent struct: struct S { int A:8; long long B:60; } 

Padding may be inserted to comply with these rules. 

Unnamed bitfields of non-zero length do not affect the external alignment. In all other respects, they behave 
the same as named bitfields. An unnamed bitfield of zero length causes alignment to occur at the next unit 
boundary, based on its type.

The struct in the following example may be mapped as illustrated in or Figure 2-20 “Structure Mapped in 
Little-Endian Orientation.”

Figure 2-20 Structure Mapped in Little-Endian Orientation   
      

The struct in Figure 2-20 is aligned on address boundaries divisible by four because it contains int types. 
Note that the unnamed bitfield (:0) forces padding, while alignment rules sometimes pad. 

If w were changed to a char type, it would still be forced to begin in byte four. If there were no unnamed 
bitfield, w would begin in byte two, three, or four, depending on whether it could fit in the space remaining 
without crossing its storage-unit boundary (which is four).

The following examples show the byte offsets of struct and union members in the upper right corners for 
little-endian implementations. Bit numbers appear in the lower corners.

struct {
   unsigned x:11, y:9, :0, w:13, z:1;
   char  c;
   short i;
   }  

y y y y

Byte 1 Byte 2 Byte 3

Byte 4 Byte 5 Byte 7

Byte 8 Byte 9

Byte 0

7 6 5 4 3 2 1 0

x x x x x x x x y y y y y x x x

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

w w w w w w w w c c c c c c c c

Byte 6

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

z w w w w w

i i i i i i i ii i i i i i i i
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Figure 2-21 Bit Numbering
0x01020304

Figure 2-22 Bitfield Allocation

Word aligned, sizeof is 4.

Figure 2-23 Boundary Alignment

Word aligned, sizeof is 12.

Figure 2-24 Storage-Unit Sharing
struct {
  char  c;
  short s : 8;
};

Halfword aligned, sizeof is 2.

struct {
  int j : 5;
  int k : 6;
  int m : 7;
};

struct {
  short s : 9;
  int   j : 9;
  char  c;
  short t : 9;
  short u : 9;
  char  d;
};

01
3

31 24

2

23
02 03

1

15 8

0

7 0
04

16

s
2

pad
1 0
c

pad
3

31 24 23 17 9

0

8 0
s

18
6

15 9 8 15 9

4

8 0
t

8

pad

jc

u
0

pad

pad
9

d

s

1

15 8

0

7
c

0
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Figure 2-25 Union Allocation
union {
  char  c;
  short s : 8;
};

Halfword aligned, sizeof is 2.

Figure 2-26 Unnamed Bitfields

Byte aligned, sizeof is 9.

2.2 Function Calling Sequence 
This section discusses the standard function calling sequence, including stack-frame layout, register usage, 
and argument passing.

Programs must follow the conventions given here. For examples of approaches permissible within these 
conventions, see “Coding Examples ” on page 29.

struct {
  char  c;
  int   : 0;
  char  d;
  short : 9;
  char  e;
};

NoteNoteNoteNote In this example, the presence of the unnamed int and short fields does not affect the 
alignment of the structure. They align the named members relative to the beginning of the 
structure, but the named members may not be aligned in memory on suitable boundaries. For 
example, the d members in an array of these structures are not all on an int (four-byte) 
boundary. Because there is no named field with any alignment requirements beyond a byte, the 
struct is nine bytes wide, one-byte aligned.
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2.2.1 Registers 

The base-case processor hardware provides 32 word-sized (32-bit) registers and a number of special-
purpose auxiliary registers. Auxiliary registers are used only by the LR and SR assembly instructions.

2.2.1.1 Core Registers

Table 2-3 and Table 2-4 summarize the registers and their functions in a standard processor build. If a 
reduced register set is specified, only four words of arguments are passed in registers: r0 through r3. In 
addition, registers r4-r9 and r16-r25 are not available with a reduced register set.

n

NoteNoteNoteNote Alternatively, a compiler may be configured to pass 64-bit arguments only in even/odd register 
pairs. In the example F(int a, long long b); argument a may be passed in r0, and 
argument b may be passed in r2 and r3. Note that r1 is skipped so that the 64-bit value can 
reside in an even/odd pair if preceded by a single 32-bit word.
Code generated with such an argument-passing mechanism is not compatible with code 
emitted using the mechanism described in Table 2-3. See your compiler documentation for 
compatibility options.

Table 2-3 General and Program-Counter Register Functions

Register Primary Function Secondary Function

r0 Integer result; argument 1 Caller-saved scratch register

r1 Argument 2 Caller-saved scratch register

r2 Argument 3 Caller-saved scratch register

r3 Argument 4 Caller-saved scratch register

r4 Argument 5 Caller-saved scratch register

r5 Argument 6 Caller-saved scratch register

r6 Argument 7 Caller-saved scratch register

r7 Argument 8 Caller-saved scratch register

r8 -r12 Caller-saved scratch register —

r13 — r24 Callee-saved register variable —

r25 Caller-saved scratch register gcc reserves r25 as Thread pointer if Thread local 
storage is enabled

r26 Small-data base register (gp) —

r27 Frame pointer (fp) —

r28 Stack top pointer (sp) —

r29 Interrupt link register —

r30 General purpose register Caller-saved scratch register
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The pcl register (r63) contains the four-byte-aligned value of the program counter. 

The lp_count register (r60) is the 32-bit loop-counter register. It is not preserved across function calls, but 
you can change this behavior by including it in the registers specified with option 
-Hirq_ctrl_saved="regs" or pragma irq_ctrl_saved("regs").

2.2.1.2 Auxiliary Registers

Table 2-4 summarizes the most commonly used auxiliary registers. Due to the large number of auxiliary 
registers possible on an ARC processor, this listing is necessarily incomplete, and may vary from one 
implementation to another. Refer to the Programmer’s Reference Manual for a specific ARCv2-based processor 
for a complete listing of the auxiliary registers that may be implemented on that processor.

r31 Branch link register (blink) —

r58 Accumulator Low ACCL (little endian), ACCH 
(big-endian)

Caller-saved scratch register

r59 Accumulator High- ACCH (little endian), ACCL 
(big endian)

Caller-saved scratch register

r60 Loop counter (lp_count) Caller-saved scratch register (compilers only—not 
user code)

r62 Long immediate data indicator —

r63 program-counter value (pcl) 

NoteNoteNoteNote
The scratch registers are not preserved across function calls. When calling an external function, the compiler 
assumes that registers %r0 through %r12 and %r30 are trashed; and that %r13 through %r29 are preserved.  
The EV6x processor reserves %r25.

Table 2-4 Auxiliary-Register Functions 

Address Function

0x2 Loop start address (lp_start)

0x3 Loop end address (lp_end)

0x4 Processor identification 

0x5 debug 

0x6 Program counter (nextpc) 

0xa Condition flags (status32) 

0xb Status save register for highest-priority interrupt (status32_p0)

Table 2-3 General and Program-Counter Register Functions (Continued) (Continued)

Register Primary Function Secondary Function
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The nextpc auxiliary register contains the program counter; the pcl register contains the 4-byte aligned 
value of the program counter. The status32 auxiliary register contains the condition flags.

For information on which registers can be used by which 16-bit instructions, see the Programmer’s Reference 
Manual for each processor. 

2.2.2 Stack Frame 

This section describes the layout of the stack frame and registers that must be saved by the callee prolog 
code. 

0xc Unused

0x21 Processor-timer-0 count value 

0x22 Processor-timer-0 control value 

0x23 Processor-timer-0 limit value 

0x25 Interrupt-vector base address 

0x68 Default vector-base build configuration 

0x100 Processor-timer-1 count value 

0x101 Processor-timer-1 control value 

0x102 Processor-timer-1 limit value 

0x201 Software interrupt 

0x290 JLI table base register

0x291 LDI table base register

0x292 EI table base register

0x400 Exception return address 

0x401 Exception-return branch-target address 

0x402 Exception-return status 

0x403 Exception cause

0x404 Exception-fault address

0x410 User-mode extension enables

0x412 Branch-target address

0x413 Unused

0x414 Unused

Table 2-4 Auxiliary-Register Functions  (Continued)
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2.2.2.1 The Stack-Pointer Register

The stack-pointer (sp) register always points to the lowest used address of the most recently allocated stack 
frame. The value of sp is a four-byte-aligned address. 

The stack-pointer register is commonly used as a base register to access stack-frame-based variables, which 
always have a positive offset. However, when alloca() is called, the stack-pointer register might be 
arbitrarily decremented after the stack frame is allocated. In such a case, the frame pointer register is used to 
reference stack-frame-based variables.

2.2.2.2 The Frame-Pointer Register

The frame pointer register (fp) is used when a function calls alloca() to allocate space on the stack, and 
stack-frame-based variables must be accessed.

2.2.2.3 The Callee’s Prolog Code

The callee’s prolog code saves all registers that need to be saved. Saved values include the value of the 
caller’s blink (return address) register, callee-saved registers used by the function, and the frame-pointer 
register, if required. 

The caller's stack-pointer (sp) register does not need to be saved because the compiler is able to restore the 
stack pointer for each function to its original value (for example, by using an add instruction).

Figure 2-27 Stack Frame for One Function Invocation 

2.2.3 Allocating Stack Space Dynamically 

Programs may dynamically grow the current stack frame using a memory-allocating function.

High Address

Low Address
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...
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Register Parameter Save Area
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The memory-allocating function must maintain a frame pointer and the stack mechanics outlined in 2.2.2 
Stack Frame  through 2.5.1 “Prolog and Epilog Code . The stack frame must be maintained using the frame 
pointer (%fp) instead of the stack pointer (%sp).

2.2.4 Argument Passing 

Arguments are passed as an ordered list of machine-level values from the caller to the callee. 

■ The first eight words (32 bytes) of arguments are loaded into registers r0 to r7. In builds with a 
reduced register set, the first four words are loaded into r0 to r3.

■ The remaining arguments are passed by storing them into the stack immediately above the stack-
pointer register. 

2.2.5 Return Values 

Function results are returned as shown below.

■ Any scalar or pointer type that is 32 bits or less in size (char, short, int, long) is returned in r0.

■ Eight-byte integers (long long, double, and float complex) are returned in r0 to r1.

■ Results of type complex double are returned in r0 to r3.

■ Results of type complex float are returned in r0 and r1.

■ Results of type struct are returned in a caller-supplied temporary variable whose address is passed 
inr0. For such functions, the arguments are shifted so that they are passed in r1 and up.

2.3 Process Initialization 
This Supplement does not define a process-initialization state. The processor begins executing code at a hard-
coded location and initially has no stack; establishing the operating environment for processes and 
programs entails setting up a stack and methods for passing arguments and return values as described in 
“Stack Frame ” on page 26. 

The processor supports kernel and user operating modes to permit different levels of privilege to be 
assigned to operating system kernels and user programs, strictly controlling access to privileged system-
control instructions and special registers. Kernel mode is the default mode from reset. For more information 
on the operating modes, see the Programmer’s Reference Manual. 

The processor can be restarted by clearing the H bit in the STATUS32 register. On restart, the pipeline is 
flushed; interrupts are disabled; status register flags are cleared; the semaphore register is cleared; loop 
count, loop-start and loop-end registers are cleared; the scoreboard unit is cleared; the pending-load flag is 
cleared; and program execution resumes at the The ARCv2-based processor starts executing instructions 
from the 32-bit address specified by the user as the first 32-bit entry in the interrupt-vector table, the reset 
vector. The core registers are not initialized except lp_count (which is cleared). A jump to the reset vector (a 
soft reset) does not pre-set any of the internal states of the processor. The reset value of the vector base 
register determines the reset vector address. 

NoteNoteNoteNote User extensions and optimizations to this area are permitted. 
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2.4 Operating System Interface 

2.4.1 Linux

OS ABI consists of system calls provided by Linux kernel and call upon by user space library code.

■ ABI is similar to a regular function call in terms of arguments passing semantics. For example, 64-bit 
data in register pairs.

■ Up to eight arguments allowed in register r0-r7.

■ Syscall number must be passed in register r8.

■ Syscall return value is returned back in r0.

■ All registers except r0 are preserved by kernel across the Syscall.

The current Linux OS ABI (v4.8 kernel onwards) is ABIv4. See the following wiki page for information 
about the ABI versions.

https://github.com/foss-for-synopsys-dwc-arc-processors/linux/wiki/ARC-Linux-Syscall-ABI-
Compatibility

2.5 Coding Examples 
This section discusses example code sequences for basic operations. 

2.5.1 Prolog and Epilog Code 

A function’s prolog and epilog code establish the environment needed by the body of the function. This 
Supplement does not specify any particular prolog or epilog code, but provides the following suggested 
guidelines and examples; the only requirements of a function prolog are that it meet the expectations of the 
caller and callee, particularly as regards the passing of parameters.

■ The prolog establishes a stack frame, if necessary, and can save any callee-saved registers the 
function uses. 

■ The epilog generally restores registers that were saved in the prolog code, restores the previous stack 
frame, and returns to the caller. 

In each of the prolog-code examples in this section, framesize is the size, in bytes, of the area needed for auto 
variables, spill temporaries, and saved registers.

2.5.1.1 Standard Prolog Code

Standard prolog code performs the following tasks, in this order:

1. Saves the return-address (blink) register on the stack.

2. Saves any callee-saved registers that are modified by the function.

3. Allocates any additional space required in the frame by decrementing the stack pointer accordingly.

This is the standard prolog code:

; Save return address register:
 push_s  %blink
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; Save registers r13, r14, r15, and so on 
; (all callee-saved registers that must be saved):

 push_s  %r13
 push_s  %r14
 push_s  %r15

: Allocate remainder of frame
 sub  %sp, %sp, additional_space

2.5.2 Abbreviated Prolog and Epilog

If a function is a leaf function (one that does not call other functions), a compiler may abbreviate the prolog 
and epilog, so long as it conforms to the ABI for globally accessed functions.

2.5.3 Data Objects 

The transfer of data to and from memory is accomplished with load and store instructions. 

2.5.4 Volatile and Uncached Variables 

The run-time model permits variables to be designated as volatile or uncached. 

■ A volatile variable is assumed to have a value that can asynchronously change independent of the 
thread that is referencing the variable. Thus it is not advisable to cache the value of such variables or 
to attempt to optimize multiple accesses to them.

■ Uncached variables are loaded and stored without using the processor’s data cache. The .ucdata 
section is provided to store them separately, if desired.

2.5.5 Function Calls and Branching

Programs may use one of several branch, jump, and link instructions to control execution flow through 
direct and indirect function calls and branching. For function calling, the conditional branch-and-link 
instruction has a maximum branch range of +/- 1 MB, and the target address is 32-bit-aligned. The 
unconditional branch-and-link format has a maximum branch range of +/- 16 MB. 

Refer to the Programmer’s Reference Manual for your ARCv2-based processor for a list of instructions.
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Object Files

3.1 ELF Header 

3.1.1 Machine Information 

For file identification in e_ident, ARCv2-based processors require the values shown below:

Processor identification resides in the ELF header's e_machine member, and must have the value 195 
(0xc3), defined as the name EM_ARCOMPACT2.

Tools may use e_flags to distinguish ARCv2-based processor families, where 5 identifies the ARC EM 
processor family, and 6 identifies the ARC HS processor family.

The high bits are used to select the Linux OSABI: 

3.2 Special Sections 
Various sections hold program and control information. 

3.2.1 Special Sections: Types and Attributes

The sections listed in Table 3-1: “Special Sections” on page 32 are used by the system and have the types and 
attributes shown. 

e_ident[EI_CLASS]   ELFCLASS32 For all 32-bit implementations

e_ident[EI_DATA]    ELFDATA2LSB  If execution environment is little-endian

e_ident[EI_DATA]    ELFDATA2MSB If execution environment is big-endian

0x000 OSABI_ORIG v2.6.35 kernel (sourceforge)

0x200 OSABI_V2 v3.2 kernel (sourceforge)

0x300 OSABI_V3 v3.9 kernel (sourceforge)

0x400 OSABI_V4 v24.8 kernel (sourceforge)
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3.2.2 Special Sections: Descriptions

The special sections are described below. Special features might create additional sections; for overlay-
related sections, see the Automated Overlay Manager User’s Guide.

Table 3-1 Special Sections 

Name Type Attributes

.arcextmap SHT_PROGBITS none

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.ctors SHT_PROGBITS SHF_ALLOC

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.fixtable SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.heap SHT_NOBITS SHF_ALLOC + SHF_WRITE

.initdata SHT_PROGBITS SHF_ALLOC

.offsetTable SHT_PROGBITS SHF_ALLOC + 
SHF_OVERLAY_OFFSET_TABLE + 
SHF_INCLUDE

.overlay SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR + 
SHF_OVERLAY + SHF_INCLUDE

.overlayMultiLists SHT_PROGBITS SHF_ALLOC + SHF_INCLUDE

.pictable SHT_PROGBITS SHF_ALLOC

.rodata_in_data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.sbss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.stack SHT_NOBITS SHF_ALLOC + SHF_WRITE

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINST

.tls SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.ucdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.vectors SHT_PROGBITS SHF_ALLOC + SHF_EXECINST

NoteNoteNoteNote To be compliant with the ARCv2 ABI, a system must support .tls, .sdata, and .sbss sections, 
and must recognize, but may choose to ignore, .arcextmap and .stack sections.

https://solvnet.synopsys.com
http://www.designware.com


Synopsys, Inc. 33SolvNet
DesignWare.com

Version 4092-006
December 2018

ARCv2 System V ABI Supplement                                                         Object Files

.arcextmap Debugging information relating to processor extensions

.bss Uninitialized variables that are not const-qualified (startup code normally sets .bss to 
all zeroes)

.ctors Contains an array of functions that are called at startup to initialize elements such as C++ 
static variables.

.data Static variables (local and global) 

.fixtable Function replacement prologs

.heap Uninitialized memory used for the heap

.initdata Initialized variables and code (usually compressed) to be copied into place during run-
time startup.

.offsetTable Overlay-offset table

.overlay All overlays defined in the executable

.overlayMultiLists Token lists for functions that appear in more than one overlay group

.pictable Table for relocating pre-initialized data when generating position-independent code and 
data 

.rodata_in_data  Read-only string constants when -Hharvard or -Hccm is specified.

.sbss Uninitialized data, set to all zeroes by startup code and directly accessible from the %gp 
register

.sdata Initialized small data, directly accessible from the %gp register, and small uninitialized 
variables

.stack Stack information

.text Executable code

.tls Thread-local data

NoteNoteNoteNote .tls is not necessarily the same as the .tdata section found in other architectures. It 
does not need special treatment except to be recognized as a valid .data section. It may 
or may not map into any current or future system thread architecture. It must remain 
programmable by the RTOS and application programmer as defined by the ARC 
MetaWare run time so that true lightweight threads can be implemented. 

.ucdata Holds data accessed using cache bypass.

.vectors Interrupt vector table

NoteNoteNoteNote Sections that contribute to a loadable program segment must not contain overlapping virtual 
addresses.
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3.3 Symbol Table 

3.3.1 Symbol Values

ARCv2-based processors that support the Linux operating system follow the Linux conventions for 
dynamic linking.

3.4 Small-Data Area 
Programs may use a small-data area to reduce code size by storing small variables in the .sdata and 
.sbss sections, where such data can be addressed using small, signed offsets from the %gp register. If the 
program uses small data, program startup must initialize the %gp register to the address of symbol 
_SDA_BASE_ Such initialization is typically performed by the default startup code.

3.5 Register Information 
The names and functions of the processor registers are described in “Registers ” on page 24. Compilers may 
map variables to a register or registers as needed in accordance with the rules described in “Argument 
Passing ” and “Return Values ” on page 28, including mapping multiple variables to a single register.

Compilers may place auto variables that are not mapped into registers at fixed offsets within the function’s 
stack frame as required, for example to obtain the variable’s address or if the variable is of an aggregate 
type.

3.6 Relocation 

3.6.1 Relocation Types 

Relocation entries describe how to alter the instruction and data relocation fields shown below. Bit numbers 
appear in the lower box corners; little-endian byte numbers appear in the upper right box corners.

3.6.2 Relocatable Fields

This document specifies several types of relocatable fields used by relocations.

Figure 3-1 bits8 Relocatable Field

7 6 5 4 3 2 1 0

bits8

bits8 Specifies eight bits of data in a separate byte.
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Figure 3-2 bits16 Relocatable Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bits16

bits16 Specifies 16 bits of data in a separate halfword.

Figure 3-3 bits24 Relocatable Field

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte2 Byte1 Byte0

bits24 Specifies 24 bits of data in a separate three-byte chunk.

Figure 3-4 disp7u Relocatable Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[6:3] Bits[2:0]

disp7u The gray areas in Figure 3-4 represent a disp7u relocatable field, which specifies a seven-bit 
unsigned displacement within a 16-bit instruction word, with bits 2-0 of the instruction stored in bits 
2-0 and bits 6-3 of the instruction stored in bits 7-4.
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Figure 3-5 disp9 Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[8:0]

disp9 The gray area in Figure 3-5 represents a disp9 relocatable field, which specifies a nine-bit 
signed displacement within a 32-bit instruction word.

Figure 3-6 disp9ls Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[7:0] Bit8

disp9ls The gray areas in Figure 3-6 represent a disp9ls relocatable field, which specifies a nine-bit 
signed displacement within a 32-bit instruction word.

Figure 3-7 disp9s Relocatable Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[8:0]

disp9s The gray area in Figure 3-7 represents a disp9s relocatable field, which specifies a 9-bit signed 
displacement within a 16-bit instruction word.

Figure 3-8 disp10u Relocatable Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[9:0]

disp10u The gray area in Figure 3-8 represents a disp10u relocatable field, which specifies a 10-bit 
unsigned displacement within a 16-bit instruction word.

Figure 3-9 disp13s Relocatable Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[12:2]

disp13s The gray area in Figure 3-9 represents a disp13s relocatable field, which specifies a signed 13-bit 
displacement within a 16-bit instruction word. The displacement is to a 32-bit-aligned location and 
thus bits 0 and 1 of the displacement are not explicitly stored.
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Figure 3-10 disp21h Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[10:1] Bits[20:11]

disp21h The gray areas in Figure 3-10 represent a disp21h relocatable field, which specifies a 21-bit 
signed displacement within a 32-bit instruction word. The displacement is to a halfword-aligned 
target location, and thus bit 0 of the displacement is not explicitly stored.
Note that the 32-bit instruction containing this relocation field may be either 16-bit-aligned or 32-bit-
aligned.

Figure 3-11 disp21w Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[10:2] Bits[20:11]

disp21w The gray areas in Figure 3-11 represent a disp21w relocatable field, which specifies a signed 
21-bit displacement within a 32-bit instruction word. The displacement is to a 32-bit-aligned target 
location, and thus bits 0 and 1 of the displacement are not explicitly stored.
Note that the 32-bit instruction containing this relocation field may be either 16-bit-aligned or 32-
bit-aligned.

Figure 3-12 disp25h Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[10:1] Bits[20:11] Bits[24:21]

disp25h The gray areas in Figure 3-12 represent a disp25h relocatable field, which specifies a 25-bit 
signed displacement within a 32-bit instruction word. The displacement is to a halfword-aligned 
target location, and thus bit 0 is not explicitly stored.
Note that the 32-bit instruction containing this relocation field may be either 16-bit-aligned or 32-
bit-aligned.

Figure 3-13 disp25w Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[10:2] Bits[20:11] Bits[24:21]
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disp25w The gray areas in Figure 3-13 represent a disp25w relocatable field, which specifies a 25-bit 
signed displacement within a 32-bit instruction word. The displacement is to a 32-bit-aligned target 
location, and thus bits 0 and 1 are not explicitly stored.
Note that the 32-bit instruction containing this relocation field may be either 16-bit-aligned or 32-
bit-aligned.

Figure 3-14 disps9 Relocatable Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[10:2]

disps9 The gray area in Figure 3-14 represents a disps9 relocatable field, which specifies a nine-
bit signed displacement within a 16-bit instruction word. The displacement is to a 32-bit-
aligned location, and thus bits 0 and 1 of the displacement are not explicitly stored This 
means that effectively the field is bits 10-2, stored at 8-0.

Figure 3-15 disps12 Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits[5:0] Bits[11:6]

disps12 The gray areas in Figure 3-15 represent a disps12 relocatable field, which specifies a 
twelve-bit signed displacement within a 32-bit instruction word. The high six bits are in 0-5, 
and the low six bits are in 6-11. 

Figure 3-16 word32 Relocatable Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

word32

word32 Specifies a 32-bit field occupying four bytes, the alignment of which is four bytes unless otherwise 
specified. See also Figure 3-17 and Figure 3-18.

Figure 3-17 word32me Relocatable Field on a Little-Endian Machine

Byte2 Byte3 Byte0 Byte1 Bytes in memory

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

word32
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3.6.2.1 Relocatable-Field Calculations

The calculations presented in this section assume that the actions are transforming a relocatable file into 
either an executable or a shared-object file. Conceptually, the link editor merges one or more relocatable 
files to form the output. It proceeds as follows:

1. Decides how to combine and locate the input files. 

2. Updates the symbol values.

3. Performs the relocation. 

Relocations applied to executable or shared object files are similar and accomplish the same result.

The descriptions in this section use the following notation.

word32me Specifies a 32-bit field in Middle-Endian Storage. Bits 31..16 are stored first, and bits 15..0 are 
stored adjacently.The individual halfwords are stored in the native endian orientation of the machine 
(little endian in Figure 3-17). 

Figure 3-18 word32me Relocatable Field on a Big-Endian Machine

Byte3 Byte2 Byte1 Byte0 Bytes in memory

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

word32

word32me Specifies a 32-bit field in Middle-Endian Storage. Bits 31..16 are stored first, and bits 15..0 are 
stored adjacently.The individual halfwords are stored in the native endian orientation of the machine 
(big endian in Figure 3-18). 

A The addend used to compute the value of the relocatable field

B The base address at which a shared object has been loaded into memory during 
execution.Generally, a shared object file is built with a 0-base virtual address, but the 
execution address will be different.

G The offset into the global offset table at which the address of the relocated symbol will 
reside during execution. 

GOT The address of the global offset table

L The place (section offset or address) of the PLT entry for a symbol. A procedure linkage 
table entry redirects a function call to the proper destination. The link editor builds the initial 
procedure linkage table, and the dynamic linker modifies the associated GOT entries during 
execution.
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A relocation entry's r_offset value designates the offset or virtual address of the first byte of the field to be 
relocated. The relocation type specifies which bits to change and how to calculate their values. The ARCv2 
architecture uses only Elf32_Rela relocation entries. The addend is contained in the relocation entry. Any 
data from the field to be relocated is discarded. In all cases, the addend and the computed result use the 
same byte order. 

 

MES Middle-Endian Storage
A 32-bit word is stored in two halfwords, with bits 31..16 stored first and bits 15..0 stored 
adjacently. The individual halfwords are stored in the native endian orientation of the 
machine. This type of storage is used for all instructions and long immediate operands in the 
ARCv2 architecture.

P The place (section offset or address) of the storage unit being relocated (computed using 
r_offset)

S The value of the symbol whose index resides in the relocation entry

SECTSTART Start of the current section. Used in calculating offset types.

_SDA_BASE_ Base of the small-data area

JLI Base of the JLI table

NoteNoteNoteNote With the exception of word32, all relocations with replacement fields in four-byte 
words must be written using Middle-Endian Storage.

Table 3-2 Relocation Types 

Name Value Field Calculation

R_ARC_NONE 0x0 none none
R_ARC_8 0x1 bits8 S+A
R_ARC_16 0x2 bits16 S+A
R_ARC_24 0x3 bits24 S+A
R_ARC_32 0x4 word32 S+A
R_ARC_N8 0x8 bits8 A–S 
R_ARC_N16 0x9 bits16 A–S 
R_ARC_N24 0xa bits24 A–S 
R_ARC_N32 0xb word32 P - (S+A) 
R_ARC_SDA 0xc disp9 S–_SDA_BASE_ +A
R_ARC_SECTOFF 0xd word32 (S-SECTSTART)+A
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R_ARC_S21H_PCREL 0xe disp21h (S+A-P)>>1 (convert to halfword 
displacement)

R_ARC_S21W_PCREL 0xf disp21w (S+A-P)>>2 (convert to longword 
displacement)

R_ARC_S25H_PCREL 0x10 disp25h (S+A-P)>>1 (convert to halfword 
displacement)

R_ARC_S25W_PCREL 0x11 disp25w (S+A-P)>>2 (convert to longword 
displacement)

R_ARC_SDA32 0x12 word32 (S+A)-_SDA_BASE_
R_ARC_SDA_LDST 0x13 disp9ls (S+A-_SDA_BASE_) (s9 range)
R_ARC_SDA_LDST1 0x14 disp9ls (S+A-_SDA_BASE_) >>1 (s10 range)
R_ARC_SDA_LDST2 0x15 disp9ls (S+A-_SDA_BASE_) >>2 (s11 range)
R_ARC_SDA16_LD 0x16 disp9s (S+A-_SDA_BASE_) (s9 range)
R_ARC_SDA16_LD1 0x17 disp9s (S+A-_SDA_BASE_) >>1 (s10 range)
R_ARC_SDA16_LD2 0x18 disp9s (S+A-_SDA_BASE_) >>2 (s11 range)
R_ARC_S13_PCREL 0x19 disp13s (S+A-P) >>2
R_ARC_W 0x1a word32 (S+A) & ~3 (word-align)
R_ARC_32_ME 0x1b word32me S+A (MES)
R_ARC_N32_ME 0x1c word32me (ME (A-S))
R_ARC_SECTOFF_ME 0x1d word32me (S-SECTSTART)+A (MES)
R_ARC_SDA32_ME 0x1e word32me (S+A)-_SDA_BASE_ (MES)
R_ARC_W_ME 0x1f word32me (S+A) & ~3 (word-aligned MES)
R_AC_SECTOFF_U8 0x23 disp9ls S+A-SECTSTART
R_AC_SECTOFF_U8_1 0x24 disp9ls (S+A-SECTSTART) >>1
R_AC_SECTOFF_U8_2 0x25 disp9ls (S+A-SECTSTART) >>2
R_AC_SECTOFF_S9 0x26 disp9ls S+A-SECTSTART - 256
R_AC_SECTOFF_S9_1 0x27 disp9ls (S+A-SECTSTART - 256) >>1
R_AC_SECTOFF_S9_2 0x28 disp9ls (S+A-SECTSTART - 256) >>2
R_ARC_SECTOFF_ME_1 0x29 word32me ((S-SECTSTART)+A) >>1 (MES)
R_ARC_SECTOFF_ME_2 0x2a word32me ((S-SECTSTART)+A) >>2 (MES)

Table 3-2 Relocation Types  (Continued)

Name Value Field Calculation
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Some relocation types have semantics beyond simple calculation, or are used with instructions and 
circumstances that call for description. 

R_ARC_SECTOFF_1 0x2b word32 ((S-SECTSTART)+A) >>1 
R_ARC_SECTOFF_2 0x2c word32 ((S-SECTSTART)+A) >>2 
R_ARC_SDA_12 0x2d disps12 (S + A) - _SDA_BASE_
R_ARC_LDI_SECTOFF1 0x2e disp7u (S - <ldi-table base> + A)  >> 2
R_ARC_LDI_SECTOFF2 0x2f disps12 (S - <ldi-table base> + A) >> 2
R_ARC_SDA16_ST2 0x30 disps9 (S+A-_SDA_BASE) >> 2
R_ARC_PC32 0x32 word32 S+A-P
R_ARC_GOTPC32 0x33 word32 GOT+G+A-P
R_ARC_PLT32 0x34 word32 L+A-P
R_ARC_COPY 0x35 none none
R_ARC_GLOB_DAT 0x36 word32 S
R_ARC_JMP_SLOT 0x37 word32 S
R_ARC_RELATIVE 0x38 word32 B+A
R_ARC_GOTOFF 0x39 word32 S+A-GOT
R_ARC_GOTPC 0x3a word32 GOT+A-P
R_ARC_GOT32 0x3b word32 G+A
R_ARC_S25H_PCREL_PLT 0x3d disp25w L+A-P
R_ARC_JLI_SECTOFF 0x3f disp10u S–JLI
R_ARC_AOM_TOKEN_ME 0x40 word32me AOM token (32 bits)(MES)
R_ARC_AOM_TOKEN 0x41 word32 AOM token (32 bits)
R_ARC_S25W_PCREL_PLT 0x4c disp25w L+A-P
R_ARC_S21H_PCREL_PLT 0x4d disp21h L+A-P

NoteNoteNoteNote With the exception of word32, all relocations with replacement fields in four-byte 
words must be written using Middle-Endian Storage.

Table 3-2 Relocation Types  (Continued)

Name Value Field Calculation
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R_ARC_S21H_PCREL

This relocation type is used with conditional branches, for example: 

R_ARC_S21W_PCREL

This relocation type is used with conditional branch and link, for example: 

R_ARC_S25H_PCREL

This relocation type is used with unconditional branches, for example: 

R_ARC_S25W_PCREL

This relocation type is used with unconditional branch and link, for example: 

R_ARC_SDA32

This relocation type is used with 32-bit small-data fixups, for example:

R_ARC_SDA_LDST*

The R_ARC_SDA_LDST* relocation types are used with small-data fixups on loads and stores. Examples:

R_ARC_SDA16_LD*

The R_ARC_SDA16_LD* relocation types are used with 16-bit GP-relative load instructions, when such 
instructions load a small-data variable relative to the GP. Examples:

R_ARC_S13_PCREL

This relocation type is used with 16-bit branch and link, for example:

bne label

blne label

b label

bl printf

add   r0, gp, var@sda

ldb   r0,  [gp, var@sda]   ; R_ARC_SDA_LDST
stw   r0,  [gp, var@sda]   ; R_ARC_SDA_LDST1
ld    r0,  [gp, var@sda]   ; R_ARC_SDA_LDST2

ldb_s  r0, [gp, var@sda]   ; R_ARC_SDA16_LD
ldw_s  r0, [gp, var@sda]   ; R_ARC_SDA16_LD1
ld_s   r0, [gp, var@sda]   ; R_ARC_SDA16_LD2

bl_s printf
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R_ARC_W

This relocation type is used to ensure 32-bit alignment of a fixup value. Examples:

R_ARC_*_ME

Relocation types ending in _ME behave like the non-ME relocation type of the same name, with the exception 
that they use Middle-Endian Storage: A 32-bit word is stored in two halfwords, with bits 31..16 stored first 
and bits 15..0 stored adjacently. The individual halfwords are stored in the native endian orientation of the 
machine. That is, the upper halfwords both have bits 31..16, but they are in a different sequence between big 
and little endian. 

This type of storage is used for all instructions and long immediate operands in the ARCv2 architecture.

R_AC_SECTOFF*

The R_AC_SECTOFF* relocation types allow a section-relative offset for ARCv2 loads and stores in the 
short-immediate-operand range of 0 to 255 (-256 to -255 for the S9 variety), so long as the base register is 
loaded with the address of the section. Addressing may be scaled such that the range for halfwords is 0 to 
510 (-256 to -510) and the range for 32-bit word accesses is 0 to 1020 (-256 to -1020), with byte accesses 
retaining the range 0 to 255 or -256 to -255. Examples:

ldb  r0, [r20, var@sectoff_u8]   ; R_AC_SECTOFF_U8
stw  r0, [r20, var@sectoff_u8]   ; R_AC_SECTOFF_U8_1
ld   r0, [r20, var@sectoff_u8]   ; R_AC_SECTOFF_U8_2
ldb  r0, [r20, var@sectoff_s9]   ; R_AC_SECTOFF_S9
stw  r0, [r20, var@sectoff_s9]   ; R_AC_SECTOFF_S9_1
ld   r0, [r20, var@sectoff_s9]   ; R_AC_SECTOFF_S9_2

R_ARC_SECTOFF*

The R_ARC_SECTOFF* relocation types are used with section-relative offset loads and stores from or to XY 
memory. 

mov   r0,  var@l
ld    r0, [pcl, lab - .@l]

NoteNoteNoteNote The ninth bit of the replacement field is not used for the following relocation types:

■ R_AC_SECTOFF_U8
■ R_AC_SECTOFF_U8_1
■ R_AC_SECTOFF_U8_2
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R_ARC_GOTPC32

This relocation type is used to obtain a PC-relative reference to the GOT entry for a symbol. This type is 
used for the same purpose as R_ARC_GOT32 but uses PC-relative addressing to reference the GOT whereas 
type R_ARC_GOT32 is typically used with a base register containing the address of the GOT. Example:

R_ARC_PLT32 

This relocation type computes the address of the symbol's PLT entry and additionally instructs the link 
editor to build a procedure linkage table. This relocation type is usually not explicitly needed, as the link 
editor converts function calls to use this type when building a shared library or dynamic executable. 
Example:

R_ARC_COPY 

The link editor creates this relocation type for dynamic linking. Its offset member refers to a location in a 
writable segment. The symbol table index specifies a symbol that should exist both in the current object file 
and in a shared object. During execution, the dynamic linker copies data associated with the shared object's 
symbol to the location specified by the offset. 

R_ARC_GLOB_DAT 

The link editor creates this relocation type for dynamic linking. This relocation type is used to set a global 
offset table entry to the address of the specified symbol. The special relocation type allows one to determine 
the correspondence between symbols and global offset table entries. 

R_ARC_JMP_SLOT 

The link editor creates this relocation type for dynamic linking. Its offset member gives the location of a 
PLT’s GOT entry. The dynamic linker modifies the GOT entry so that the PLT will transfer control to the 
designated symbol's address. 

R_ARC_RELATIVE 

The link editor creates this relocation type for dynamic linking. Its offset member gives a location within a 
shared object that contains a value representing a relative address. The dynamic linker computes the 
corresponding virtual address by adding the virtual address at which the shared object was loaded to the 
relative address. Relocation entries for this type must specify 0 for the symbol table index. 

R_ARC_GOTOFF 

This relocation type computes the difference between a symbol's value and the address of the global offset 
table. It additionally instructs the link editor to build the global offset table. This relocation type is not used 
for loading from the contents of the GOT, but to use the global data pointer anchored at the GOT to access 
other nearby data. Example:

ld r0, [pcl, var@gotpc]

bl func@plt

add r0, gp, var@gotoff
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R_ARC_GOTPC 

This relocation type resembles R_ARC_PC32, except it uses the address of the global offset table in its calculation. The symbol referenced in this 
relocation is _GLOBAL_OFFSET_TABLE_, which additionally instructs the link editor to build the global offset table. This relocation type provides a PC-
relative means of obtaining the address of the global offset table. Example: 

add gp, pcl, _GLOBAL_OFFSET_TABLE_@gotpc
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3.6.3 Relocation Table

# Generic
#Relocation.new("R_ARC_NONE          0x0   none      bitfield    none")
Relocation.new("R_ARC_8             0x1   bits8     bitfield    S+A")
Relocation.new("R_ARC_16            0x2   bits16    bitfield    S+A")
Relocation.new("R_ARC_24            0x3   bits24    bitfield    S+A")
Relocation.new("R_ARC_32            0x4   word32    bitfield    S+A")

# Unsupported
Relocation.new("R_ARC_N8            0x8   bits8     bitfield    A-S")
Relocation.new("R_ARC_N16           0x9   bits16    bitfield    A-S")
Relocation.new("R_ARC_N24           0xa   bits24    bitfield    A-S")
Relocation.new("R_ARC_N32           0xb   word32    bitfield    A-S")
Relocation.new("R_ARC_SDA           0xc   disp9     bitfield    ME(S+A-_SDA_BASE_)")
Relocation.new("R_ARC_SECTOFF       0xd   word32    bitfield    (S-SECTSTART)+A")

# arcompact elf me reloc
Relocation.new("R_ARC_S21H_PCREL    0xe   disp21h   signed      ME((S+A-P)>>1) (convert to halfword displacement)")
Relocation.new("R_ARC_S21W_PCREL    0xf   disp21w   signed      ME((S+A-P)>>2) (convert to longword displacement)")
Relocation.new("R_ARC_S25H_PCREL    0x10  disp25h   signed      ME((S+A-P)>>1) (convert to halfword displacement)")
Relocation.new("R_ARC_S25W_PCREL    0x11  disp25w   signed      ME((S+A-P)>>2) (convert to longword displacement)")
Relocation.new("R_ARC_SDA32         0x12  word32    signed      ME((S+A)-_SDA_BASE_)")
Relocation.new("R_ARC_SDA_LDST      0x13  disp9ls   signed      ME((S+A-_SDA_BASE_)) (s9 range)")
Relocation.new("R_ARC_SDA_LDST1     0x14  disp9ls   signed      ME((S+A-_SDA_BASE_)>>1) (s10 range)")
Relocation.new("R_ARC_SDA_LDST2     0x15  disp9ls   signed      ME((S+A-_SDA_BASE_)>>2) (s11 range)")

# Short instructions should no be marked as ME
Relocation.new("R_ARC_SDA16_LD      0x16  disp9s    signed      (S+A-_SDA_BASE_) (s9 range)")
Relocation.new("R_ARC_SDA16_LD1     0x17  disp9s    signed      (S+A-_SDA_BASE_)>>1 (s10 range)")
Relocation.new("R_ARC_SDA16_LD2     0x18  disp9s    signed      (S+A-_SDA_BASE_)>>2 (s11 range)")
Relocation.new("R_ARC_S13_PCREL     0x19  disp13s   signed      ((S+A-P)>>2)")

# Unsupported
Relocation.new("R_ARC_W             0x1a  word32    bitfield    (S+A)&~3 (word-align)")

# arcompact elf me reloc
Relocation.new("R_ARC_32_ME         0x1b  limm      signed      ME(S+A) (MES)")
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# TODO: This is a test relocation
Relocation.new("R_ARC_32_ME_S       0x69  limms     signed      ME(S+A) (MES)")

# Unsupported
Relocation.new("R_ARC_N32_ME        0x1c  word32    bitfield    ME(A-S) (MES)")
Relocation.new("R_ARC_SECTOFF_ME    0x1d  word32    bitfield    ME((S-SECTSTART)+A) (MES)")

# arcompact elf me reloc
Relocation.new("R_ARC_SDA32_ME      0x1e  limm      signed      (S+A-_SDA_BASE_)")

# Unsupported
Relocation.new("R_ARC_W_ME          0x1f  word32    bitfield    ME((S+A)&~3) (word-aligned MES)")
Relocation.new("R_AC_SECTOFF_U8     0x23  disp9ls   bitfield    ME(S+A-SECTSTART)")
Relocation.new("R_AC_SECTOFF_U8_1   0x24  disp9ls   bitfield    ME((S+A-SECTSTART)>>1)")
Relocation.new("R_AC_SECTOFF_U8_2   0x25  disp9ls   bitfield    ME((S+A-SECTSTART)>>2)")

Relocation.new("R_AC_SECTOFF_S9    0x26  disp9ls   bitfield    ME(S+A-SECTSTART-256)")
Relocation.new("R_AC_SECTOFF_S9_1  0x27  disp9ls   bitfield    ME((S+A-SECTSTART-256)>>1)")
Relocation.new("R_AC_SECTOFF_S9_2  0x28  disp9ls   bitfield    ME((S+A-SECTSTART-256)>>2)")

Relocation.new("R_ARC_SECTOFF_ME_1  0x29  word32    bitfield    ME(((S-SECTSTART)+A)>>1) (MES)")
Relocation.new("R_ARC_SECTOFF_ME_2  0x2a  word32    bitfield    ME(((S-SECTSTART)+A)>>2) (MES)")
Relocation.new("R_ARC_SECTOFF_1     0x2b  word32    bitfield    ((S-SECTSTART)+A)>>1")
Relocation.new("R_ARC_SECTOFF_2     0x2c  word32    bitfield    ((S-SECTSTART)+A)>>2")

Relocation.new("R_ARC_SDA_12        0x2d  disp12s   signed      (S+A-_SDA_BASE_)")

Relocation.new("R_ARC_SDA16_ST2     0x30  disp9s1   signed      (S+A-_SDA_BASE_)>>2 (Dsiambiguation for several 
relocations)")

# arcompact elf me reloc
Relocation.new("R_ARC_32_PCREL      0x31  word32    signed      S+A-PDATA")
Relocation.new("R_ARC_PC32          0x32  word32    signed      ME(S+A-P)")

# Special
Relocation.new("R_ARC_GOT32         0x3b  word32    dont        G+A") # == Special

# arcompact elf me reloc
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Relocation.new("R_ARC_GOTPC32       0x33  word32    signed      ME(GOT+G+A-P)")
Relocation.new("R_ARC_PLT32         0x34  word32    signed      ME(L+A-P)")
Relocation.new("R_ARC_COPY          0x35  none      signed      none")
Relocation.new("R_ARC_GLOB_DAT      0x36  word32    signed      S")
Relocation.new("R_ARC_JMP_SLOT      0x37  word32    signed      ME(S)")
Relocation.new("R_ARC_RELATIVE      0x38  word32    signed      ME(B+A)")
Relocation.new("R_ARC_GOTOFF        0x39  word32    signed      ME(S+A-GOT)")
Relocation.new("R_ARC_GOTPC         0x3a  word32    signed      ME(GOT_BEGIN-P)")

Relocation.new("R_ARC_S21W_PCREL_PLT         0x3c  disp21w    signed      ME((L+A-
P)>>2)")
Relocation.new("R_ARC_S25H_PCREL_PLT         0x3d  disp25h    signed      ME((L+A-
P)>>1)")

# WITH TLS
Relocation.new("R_ARC_TLS_DTPMOD    0x42  word32    dont        0") # , 0, 2, 32, FALSE, 
0, arcompact_elf_me_reloc, "R_ARC_TLS_DTPOFF",-1),
Relocation.new("R_ARC_TLS_TPOFF     0x44  word32    dont        0") # 
,"R_ARC_TLS_TPOFF"),
Relocation.new("R_ARC_TLS_GD_GOT    0x45  word32    dont        ME(G+GOT-P)") # , 0, 2, 
32, FALSE, 0, arcompact_elf_me_reloc, "R_ARC_TLS_GD_GOT",-1),
Relocation.new("R_ARC_TLS_GD_LD     0x46  none      dont        0") # 
,"R_ARC_TLS_GD_LD"),
Relocation.new("R_ARC_TLS_GD_CALL   0x47  word32    dont        0") # 
,"R_ARC_TLS_GD_CALL"),
Relocation.new("R_ARC_TLS_IE_GOT    0x48  word32    dont        ME(G+GOT-P)") # , 0, 2, 
32, FALSE, 0, arcompact_elf_me_reloc, "R_ARC_TLS_IE_GOT",-1),
Relocation.new("R_ARC_TLS_DTPOFF    0x43  word32    dont        ME(S-SECTSTART+A)") # , 
0, 2, 32, FALSE, 0, arcompact_elf_me_reloc, "R_ARC_TLS_DTPOFF",-1),
Relocation.new("R_ARC_TLS_DTPOFF_S9 0x49  word32    dont        ME(S-SECTSTART+A)") # , 
0, 2, 32, FALSE, 0, arcompact_elf_me_reloc, "R_ARC_TLS_DTPOFF_S9",-1),
Relocation.new("R_ARC_TLS_LE_S9     0x4a  word32    dont        ME(S+TCB_SIZE-TLS_REL)") 
# , 0, 2, 9, FALSE, 0, arcompact_elf_me_reloc, "R_ARC_TLS_LE_S9",-1),
Relocation.new("R_ARC_TLS_LE_32     0x4b  word32    dont        ME(S+A+TCB_SIZE-
TLS_REL)") # , 0, 2, 32, FALSE, 0, arcompact_elf_me_reloc, "R_ARC_TLS_LE_32",-1),
# WITHOUT TLS

Relocation.new("R_ARC_S25W_PCREL_PLT         0x4c  disp25w    signed      ME((L+A-
P)>>2)")
Relocation.new("R_ARC_S21H_PCREL_PLT         0x4d  disp21h    signed      ME((L+A-
P)>>1)")
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4
Program Loading and Dynamic Linking

This section discusses loading and linking requirements for ARCv2-based processors that support UNIX-style 
operating systems, including Linux.

4.1 Program Loading 
As the system creates or augments a process image, it logically copies a file's segment to a virtual memory 
segment. When and if the system physically reads the file depends on the program's execution behavior, 
system load, and so on. A process does not require a physical page unless it references the logical page 
during execution, and processes commonly leave many pages unreferenced. Therefore, delaying physical 
reads frequently obviates them, improving system performance. To obtain this efficiency in practice, 
executable and shared object files must have segment images with offsets and virtual addresses that are 
congruent, modulo the page size.

Virtual addresses and file offsets for segments in ARCv2-based processors are congruent modulo 64 K bytes 
(0x10000) or larger powers of two. Because 64 K bytes is the maximum page size, the files are suitable for 
paging regardless of physical page size.

The value of the p_align member of each program header in a shared object file must be 0x10000.

Figure 4-1 on page 52 is an example of an executable file assuming an executable program linked with a base address 
of 0x10000000.
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Figure 4-1 Executable File Layout

The following are possible corresponding program header segments:

Although the file offsets and virtual addresses are congruent modulo 64,000 bytes, the beginning and end 
file pages of each segment group can be impure. No restriction applies to the number or order of the 
segment groups, but ELF files traditionally contain one code group followed by one data group. For such a 
traditional single text and data file, up to four file pages can hold impure text or data (depending on page 
size and file system block size).

■ The first text page usually contains the ELF header, and other information.

■ The last text page typically contains a copy of the beginning of data.

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x10000100 0x1003bf00

p_paddr unspecified unspecified

p_filesz 0x2be00 0x4e00

p_memsz 0x2be00 0x5e24

p_flags PF_R+PF_X PF_R+PF_W

p_align 0x10000 0x10000

File Offset Virtual Address

0

0x100

0x2bf00

0x30d00

0x10000100

0x1002beff
0x1003bf00

0x10040cff

ELF header
Other information

Text segment
...

0x2be00 bytes

Data segment
...

0x4e00 bytes
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■ The first data page usually contains a copy of the end of text.

■ The last data page typically contains file information not relevant to the running process.

Logically, the system enforces memory permissions as if each segment were complete and separate; 
segment addresses are adjusted to ensure that each logical page in the address space has a single set of 
permissions. In Figure 4-1 on page 52, the file region holding the end of text and the beginning of data is 
mapped twice; at one virtual address for text and at a different virtual address for data.

The end of a data segment requires special handling if it is followed contiguously by the uninitialized data 
(.bss), which is required to be initialized at startup with zeros. So if the last page of a file’s representation of 
a data segment includes information that is not part of the segment, the extraneous data must be set to zero, 
rather than to the unknown contents. “Impurities” in the other start and end pages are not logically part of 
the process image; whether the system expunges them is unspecified. The memory image for the program 
above is shown here, assuming pages with a size of 4096 (0x1000) bytes.

Figure 4-2 Virtual Address

One aspect of segment loading differs between executable files and shared objects. Executable file segments 
may contain absolute code. For the process to execute correctly, the segments must reside at the virtual 

Text segment
0x10000000

Header padding

0x100 bytes

0x10000100

Text segment

0x2be00 bytes

0x1002bf00

Data padding

0x100 bytes

Data segment
0x1003b000

Text padding

0xf00 bytes

0x1003bf00

Data segment

0x4e00 bytes

0x10040d00

Uninitialized 
data

0x1024 bytes

0x10041d24

Page padding

0x2dc zero 
bytes
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addresses assigned when building the executable file, with the system using the p_vaddr values unchanged 
as virtual addresses.

However, shared object segments typically contain position-independent code. This allows a segment's 
virtual address to change from one process to another, without invalidating execution behavior.

Though the system chooses virtual addresses for individual processes, it maintains the relative positions of 
the segments. The difference between virtual addresses in memory must match the difference between 
virtual addresses in the file.

Table 4-1 shows the virtual-address assignments for shared objects that are possible for several processes, 
illustrating constant relative positioning. The table also illustrates the base-address computations.

Table 4-1 Virtual-Address Assignments

4.1.1 Program Interpreter 

The standard program interpreter is /usr/lib/ld.so.1. 

4.2 Dynamic Linking 

4.2.1 Dynamic Section 

Dynamic section entries give information to the dynamic linker. Some of this information is processor-
specific, including the interpretation of some entries in the dynamic structure.

4.2.1.1 DT_PLTGOT
The d_ptr member for this entry gives the address of the first byte in the procedure linkage table.

4.2.1.2 DT_JMPREL
As explained in the System V ABI, this entry is associated with a table of relocation entries for the procedure linkage 
table. For ARCv2-based processors, this entry is mandatory both for executable and shared-object files. Moreover, the 
relocation table's entries must have a one-to-one correspondence with the procedure linkage table. The table of 
DT_JMPREL relocation entries is wholly contained within the DT_RELA referenced table. See “Procedure Linkage 
Table ” on page 56 for more information.

Source Text Data Base Address

File 0x000200 0x02a400 —
Process1 0x100200 0x12a400 0x100000
Process2 0x200200 0x22a400 0x200000
Process3 0x300200 0x32a400 0x300000
Process4 0x400200 0x42a400 0x400000
Process1 0x100200 0x12a400 0x100000
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4.2.2 Global Offset Table 

Position-independent code generally may not contain absolute virtual addresses. The global offset table 
(GOT) holds absolute addresses in private data, making the addresses available without compromising the 
position independence and sharability of a program's text. A program references its GOT using position-
independent addressing and extracts absolute values, redirecting position-independent references to 
absolute locations.

When the dynamic linker creates memory segments for a loadable object file, it processes the relocation 
entries, some of which are of type R_ARC_GLOB_DAT, referring to the global offset table. The dynamic linker 
determines the associated symbol values, calculates their absolute addresses, and sets the GOT entries to the 
proper values. 

Because the executable file and shared objects have separate global offset tables, a symbol might appear in 
several tables. The dynamic linker processes all the global offset table relocations before giving control to 
any code in the process image, ensuring the absolute addresses are available during execution.

The dynamic linker may choose different memory segment addresses for the same shared object in different 
programs; it may even choose different library addresses for different executions of the same program. 
Nonetheless, memory segments do not change addresses after the process image is established. As long as a 
process exists, its memory segments reside at fixed virtual addresses.

The global offset table normally resides in the .got ELF section in an executable or shared object. The 
symbol _GLOBAL_OFFSET_TABLE_ can be used to access the table. This symbol can reside in the middle of 
the .got section, allowing both positive and negative subscripts into the array of addresses.

The entry at _GLOBAL_OFFSET_TABLE_[0] is reserved for the address of the dynamic structure, 
referenced with the symbol _DYNAMIC. This allows the dynamic linker to find its dynamic structure prior to 
the processing of the relocations.

The entry at _GLOBAL_OFFSET_TABLE_[1] is reserved for use by the dynamic loader. 

The entry at _GLOBAL_OFFSET_TABLE_[2] is reserved to contain a dynamic the lazy symbol-resolution entry 
point.

If no explicit .pltgot is used, _GLOBAL_OFFSET_TABLE_[3 .. 3+F] are used for resolving function 
references, and _GLOBAL_OFFSET_TABLE_[3+F+1 .. last] are for resolving data references.

Addressability to the global offset table (GOT) is accomplished using direct PC-relative addressing. There is 
no need for a function to materialize an explicit base pointer to access the GOT. GOT-based variables can be 
referenced directly using a single eight-byte long-intermediate-operand instruction:

ld rdest,[pcl,varname@gotpc]

Similarly, the address of the GOT can be computed relative to the PC:

add rdest,pcl, _GLOBAL_OFFSET_TABLE_ @gotpc

This add instruction relies on the universal placement of the address of the _DYNAMIC variable at location 0 of the 
GOT.

4.2.3 Function Addresses 

References to the address of a function from an executable file or shared object and the shared objects 
associated with it might not resolve to the same value. References from within shared objects are normally 
resolved by the dynamic linker to the virtual address of the function itself. References from within the 

https://solvnet.synopsys.com
http://www.designware.com


56 Synopsys, Inc.SolvNet
DesignWare.com

Version 4092-006
December 2018

Program Loading and Dynamic Linking ARCv2 System V ABI Supplement

executable file to a function defined in a shared object are normally resolved by the link editor to the 
address of the procedure linkage table entry for that function within the executable file. 

To allow comparisons of function addresses to work as expected, if an executable file references a function 
defined in a shared object, the link editor places the address of the PLT entry for that function in the 
associated symbol-table entry. The dynamic linker treats such symbol-table entries specially. If the dynamic 
linker is searching for a symbol, and encounters a symbol-table entry for that symbol in the executable file, it 
normally follows the rules below. 

1. If the st_shndx member of the symbol-table entry is not SHN_UNDEF, the dynamic linker has found 
a definition for the symbol and uses its st_value member as the symbol's address. 

2. If the st_shndx member is SHN_UNDEF and the symbol is of type STT_FUNC and the st_value 
member is not zero, the dynamic linker recognizes the entry as special and uses the st_value 
member as the symbol's address. 

3. Otherwise, the dynamic linker considers the symbol to be undefined within the executable file and 
continues processing. 

Some relocations are associated with PLT entries. These entries are used for direct function calls rather than 
for references to function addresses. These relocations are not treated in the special way described above 
because the dynamic linker must not redirect procedure linkage table entries to point to themselves. 

4.2.4 Procedure Linkage Table 

Procedure linkage tables (PLTs) are used to redirect function calls between the executables and shared 
objects or between shared objects. 

The PLT is designed to permit lazy or deferred symbol resolution at run time, and to allow for dynamic run-
time patching and upgrading of library code.

Several PLT entries may exist for the same function, corresponding to the calls and references from several 
different libraries, but for each program there is exactly one dominant PLT entry per function, which serves 
as the formal function address for the function. All pointer comparisons use this PLT address when 
referencing the function. The dominant PLT entry is the first PLT entry processed by the dynamic linker. 
The dynamic linker resolves all subsequent references to the function to this first address.

The PLT may be subsumed within the .got section, or divided into parts: 

■ A read-only executable part (.plt) 

The .plt portion of a PLT in such an arrangement consists of an array of 12-byte entries, one entry 
for each function requiring PLT linkage. 

■ A read-write data part (.pltgot)

The .pltgot portion is a subsection of the GOT table and contains one four-byte address per PLT 
entry. The purpose of a .pltgot is to isolate the PLT-specific .got entries from the rest of the 
.got; in this arrangement, no part of the .got is ever marked read only. If a PLT entry is required by 
the operating system, a static linker may generate a fixed sequence of code in the read-only part of 
the PLT that loads the address and jumps to it. 

Example 4-1 on page 57 lists a permissible assembly-language definition of a PLT entry.
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Example 4-1 PLT Entry in ARCv2 Assembly Language

ld %r12,[%pcl,func@gotpc]
j [%r12]
mov %r12,%pcl

This PLT entry sequence occupies 16 bytes of storage.

In Example 4-1, func@gotpc represents the PC-relative offset of the location in the GOT (or PLTGOT) that 
contains the actual address of the function or the address of the code stub that transfers control to the dynamic linker.

When executed, the PLT code loads the actual address of the function into r12 from the GOT. It then jumps through 
r12 to its destination. As it jumps, the delay-slot instruction loads r12 with the current value of the 32-bit-aligned PC 
address for identification. The PLT-entry PC address identifies the function called by allowing the lazy loader to 
calculate the index into the PLT, which also corresponds to the index of the relocation in the .rela.plt relocation 
section. 

The writable GOT or PLTGOT entry is initialized by the dynamic linker when the object is first loaded into memory. 
At first it is initialized to the special code stub that saves the volatile registers and calls the dynamic linker. The first 
time the function is called, the dynamic linker loads, links, and resolves the GOT or PLTGOT entry to point to the 
actual loaded function for subsequent calls.

The first entry in the PLT is reserved and is used as a reference to transfer control to the dynamic linker. At program 
load time, each GOT or PLTGOT entry is set to PLT[0], which is a hard-coded jump to the dynamic-link stub 
routine. 

The code residing at the beginning of the PLT occupies 24 bytes of storage. The code is the equivalent of the following:

ld r11, [pcl, (GOT+4)@gotpc] ; module info stored by dynamic loader
ld r10, [pcl, (GOT+8)@gotpc] ; dynamic loader entry point
j [r10]
address of GOT 

A relocation table (.rela.plt) is associated with the PLT. The DT_JMPREL entry in the dynamic section gives the 
location of the first relocation entry. The relocation table's entries parallel the PLT entries in a one-to-one 
correspondence. That is, relocation table entry 1 applies to PLT entry 1, and so on. The relocation type for each entry is 
R_ARC_JMP_SLOT. The relocation offset shall specify the address of the GOT or PLTGOT entry associated with the 
function, and the symbol table index shall reference the function's symbol in the .dynsym symbol table. The dynamic 
linker locates the symbol referenced by the R_ARC_JMP_SLOT relocation. The value of the symbol is the address of 
the first instruction of the function's PLT entry. 

The dynamic linker can resolve the procedure linkage table relocations lazily, resolving them only when 
they are needed. Doing so might reduce program startup time.

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value is non-null, the 
dynamic linker resolves the function call binding at load time, before transferring control to the program. 
That is, the dynamic linker processes relocation entries of type R_ARC_JMP_SLOT during process 
initialization. Otherwise, the dynamic linker evaluates procedure linkage table entries lazily, delaying 
symbol resolution and relocation until the first execution of a table entry.

Lazy binding generally improves overall application performance because unused symbols do not incur the 
dynamic-linking overhead. Nevertheless, some situations make lazy binding undesirable for some applications:
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■ The initial reference to a shared object function takes longer than subsequent calls because the 
dynamic linker intercepts the call to resolve the symbol, and some applications cannot tolerate such 
unpredictability.

■ If an error occurs and the dynamic linker cannot resolve the symbol, the dynamic linker terminates the program. 
Under lazy binding, this might occur at arbitrary times. Some applications cannot tolerate such unpredictability. 
By turning off lazy binding, the dynamic linker forces the failure to occur during process initialization, before 
the application receives control. 
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