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Abstract

Cortical and subcortical beta activity is closely related to
dopaminergic degeneration and motor symptoms in Parkinson’s
Disease. Here we study the relationship of electrophysiological
data, recorded in the subthalamic nucleus (STN) and primary
motor cortex (M1), behavioral ability and neuron degeneration.
More specifically, we investigate different beta burst parameters
in the 6-hydroxydopamine (6-OHDA) rat model. We show that
burst parameters are correlated with histological changes. More-
over, beta power and the proportion of long bursts provide the
best predictions on the actual dopaminergic stage. Employing
linear discriminant analysis, we distinguish healthy from lesioned
animals with an accuracy of over 80 %.
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1 Introduction

With an overall prevalence of 571 per 100000 (across different countries),
Parkinson’s disease (PD) is one of the most common neurological disor-
ders (Pringsheim et al., 2014). Prevalence appears to increase with age (Pring-
sheim et al., 2014). According to the International Parkinson and Movement
Disorder Society Clinical Diagnostic Criteria for Parkinson’s disease (Pos-
tuma et al., 2015), the diagnosis of PD is based on three cardinal motor
symptoms: bradykinesia (slowness of movements) in combination with either
rest tremor (trembling of a fully resting limb), rigidity (muscle stiffness) or
both. Further possible symptoms include cognitive impairments, depression,
sleep disorders, functional anosmia and autonomic dysfunctions (Schapira
et al., 2015).

PD is characterized by a progressive cell loss of the pars compacta of the
substancia nigra, leading to deficient nigral dopaminergic output and degen-
eration of striatal fibers (Bergman et al., 1990). Apparently, an overactivity
in several nuclei of the basal ganglia plays a major role in development of
motor abnormalities. Lesioning the STN in parkinsonian monkeys leads to
reduction of motor impairments (Bergman et al., 1990). In the past years
this finding was used to develop deep brain stimulation (DBS) as a therapy
for PD patients (Little et al., 2013). Here, the STN is stimulated with very
high frequencies, leading to a great reduction of motor symptoms (Schuep-
bach et al., 2013; Deuschl et al., 2006). Also the Striatum (STR) is part of
the network. It receives the main input from cortex and thalamus (Haber,
2003) and outputs to some of the basal ganglia nuclei and indirectly also to
the STN (Nambu et al., 1998).

Symptom severity of PD is closely related to beta oscillations (around 13
to 30 Hz) in the basal ganglia (Kiihn et al., 2006): for example, Neumann
and colleagues (Neumann et al., 2016) found that exaggerated beta band
power, measured in the STN of PD patients in the hypodopaminergic state,
was associated with higher scores on the Unified Parkinson’s Disease Rating
Scale (UPDRS-III).

Pathological beta oscillations have been studied both in human
patients (Kithn et al., 2006; Tinkhauser et al., 2017a; Tinkhauser et al.,
2017b) and in animal models (Beck et al., 2016; Feingold et al., 2015). The
6-hydroxydopamine (6-OHDA) rat model of PD mimics the human disease
closely (Deumens et al., 2002) as it also leads to a degeneration of dopaminer-
gic neurons in the substancia nigra. Several studies found exaggerated beta



band activity in 6-OHDA lesioned rats (Sharott et al., 2005; Beck et al.,
2016). In comparison to other models, like the reserpine model, the 6-OHDA
lesion proceeds chronic-progressively. Thus, the 6-OHDA lesion gets more
severe with time after the injection. This model property poses a unique
opportunity to observe the evolution of behavioral, electrophysiological, and
physiological symptoms over time and progressing degeneration. After ap-
proximately 20 days, the degeneration of the dopaminergic nigrostriatal sys-
tem is complete and remains stable afterwards (Beck et al., 2016).

Studying oscillations in the basal ganglia in more detail, several studies
found that beta activity occurs in brief events lasting less than 150 ms (Fein-
gold et al., 2015; Shin et al., 2017; Tinkhauser et al., 2017a). While short-
lived bursts appear to play a functional role in the basal ganglia—cortical mo-
tor circuit (Feingold et al., 2015), bursts of longer duration relate to patholog-
ical motor impairments like stiffness and slowness in PD (Tinkhauser et al.,
2017a; Tinkhauser et al., 2017b). The duration of beta bursts is positively
correlated with the burst amplitude (Tinkhauser et al., 2017a).

The specific relation between beta burst characteristics and nigral cell
loss has not been investigated so far. The study at hand aims at forging a
bridge among PD motor symptoms, beta burst characteristics, and objective
correlates of nigral degeneration as well as investigating its temporal evolu-
tion. Moreover, it investigates whether beta bursts occur in healthy control
animals. Due to lacking recordings of healthy subjects in human studies, this
has not been shown before.

The aim of the present thesis was to investigate the relationship among
dynamic beta burst properties, degeneration of the dopaminergic system over
time and the pathophysiology of parkinsonian symptom generation. We pre-
sumed the following outcomes regarding burst characteristics:

e Beta bursts occur in all groups and share common features when com-
pared to human data.

e The number of long beta bursts, time spent in bursts, burst amplitude
and the overlap of STN and primary motor cortex (M1) bursts increase
with time after 6-OHDA injection and is lowest in healthy control sub-
jects (Tinkhauser et al., 2017a).

e Number of long bursts, time spent in bursts, burst amplitude and the
overlap of STN and M1 bursts correlate positively with degeneration
of dopaminergic neurons.



e We can classify successfully whether a subject is healthy or lesioned
by including beta power and burst characteristics in the classification
process.

In the following sections, we describe the experimental setup (Section 2.1),
explain methods that we used to analyze beta bursts (Section 2), provide a
summary of the results (Section 3) and finally discuss the implications of our
results regarding clinical applications and future research (Section 4).

2 Material and Methods

2.1 Experiment

The present study capitalized on an ongoing effort to characterize oscillatory
basal ganglia activity in relation to nigral degeneration in the Movement
Disorders and Neuromodulation Unit. Electrode implants, recordings and
histological examinations were conducted by Jens Haumesser and Christoph
van Riesen, who provided the data for the present analysis. The experimen-
tal design included histological measurements from STR and the substancia
nigra pars compacta (SNc), motor behavior and electrophysiological signals
in the local field potential (LFP) from rats in different stages of the 6-OHDA
lesion. In first analyses it was shown that beta power is correlated with
behavioral and histological changes.

Animals. 46 male Wistar rats (Harlan Winkelmann, Germany) were
used in accordance to the German Animal Welfare Act and European regu-
lations. Animals had free access to water and food and were kept in standard
housing conditions. Due to highly abnormal burst patterns, which we at-
tributed to signal artifacts, we excluded one animal from STN burst analysis
and one other animal from M1 burst analysis.

Experimental Design. Subjects were divided into one control group
(n =9) and 4 experimental groups (n = 10;n = 9;n = 8, andn = 10,
respectively; Figure 1). Animals of the experimental groups were lesioned
with the neurotoxin 6-OHDA. Animals of the control group were subjected to
an injection of a solvent instead. In the four experimental groups, behavioral,
electrophysiological and histological measurements were taken after a latency
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Figure 1: Experimental design. Animals received an injection of 6-OHDA or
solvent on day 1. Depending on group, behavioral, electrophysiological, and
histological data were recorded after 2, 5, 10 or 20-30 days.

of 2, 5, 10, and 20-30 days, respectively. All animals of the control group were
measured after 30 days. Subsequently, behavioral and electrophysiological
measurements were obtained. Directly after the recordings, animals were
sacrificed to assess histological data of the nigrostriatal tract. Please note
that due to the histological measurements, it was not possible to collect data
in different lesion stages in the same animal—every animal underwent the
experiment once only and was not included in more than one group.

Lesion. 1 ul neurotoxin, dissolved in a solvent, or, in case of the control
group, solvent only was injected. Animals received the injection unilaterally
into the left medial forebrain bundle while being under urethane anesthesia.
After the surgery, they were administered analgesic carprofen for three days
to alleviate pain.

Behavioral Measurements. Two different tests to record character-
istics of motor behavior were employed: the cylinder test (Schallert et al.,
2000) and the drag test (Khaing et al., 2013), which both assess limb use
asymmetry.

For the cylinder test, rats were placed in a transparent glass cylinder
(height: 45 cm, diameter: 20 cm). While animals were vertically exploring
the cylinder with the forelimbs, contacts of the left vs. right forelimb with



the cylinder were counted. Each trial was stopped when at least one forepaw
had reached at least 15 contacts. It has been shown that 6-OHDA-lesioned
animals exert a greater asymmetry than healthy animals by avoiding to use
the impaired forelimb. Cylinder test scores show a very high correlation to
dopamine depletion (r = 0.91;p < 0.001) and a very high inter-rater
reliability (r > 0.95) (Schallert et al., 2000).

For the drag test, the rats’ hind limbs were elevated while the forelimbs
rested on the surface. Then the rat was dragged backwards and adjusting
forepaw steps were counted for each side separately. One trial was ended
when at least one side count reached 15 contacts with the ground.

We report results for both tests as relative ratios of the right (affected)
to the left (unaffected) forelimb.

Electrophysiological Recordings. LFP in M1 was recorded by in-
serting two custom-made Ag/AgCl electrodes in the epidural space above
the left M1. For STN recordings, a pair of microelectrodes was inserted
above the left STN. Correct electrode placement was verified histologically
post-mortem.

For referencing in M1 and STN recordings, two further electrodes were
placed epidurally above the ipsi- and contralateral cerebellum, respectively.
The raw 40 kHz-signal was bandpass-filtered (0.05 — 1000 Hz), amplified
(x 1750) and downsampled to 1 kHz. All electrophysiological measurements
were recorded under urethane anesthesia.

Histology. After electrophysiological recordings, the animals were sac-
rificed. Thereafter coronal brain sections of 40 um were prepared and sections
from the STR and SNc for further analysis with tyrosine hydroxylase (TH)
immunohistochemistry were selected.

For the SNc score, the number of TH-positive cells of the left (lesioned)
SNc with the number of the right (intact) SNc¢ was compared. The STR score
was obtained by comparing the fiber density of the left dorsolateral STR to
the density of the right dorsolateral STR.

Both scores represent the ratio of the left (lesioned) to the right (intact)
side.



2.2 Data Analysis

Preprocessing. LFP recordings of one STN electrode and one M1 elec-
trode per animal were selected manually according to the clearest signal
without major artifacts.

Since electrophysiological recordings were obtained under urethane anes-
thesia, two cortical states emerged in the signal: slow wave activity and the
activated state (Clement et al., 2008; Beck et al., 2016). The slow wave
activity is dominated by slow frequency—high amplitude oscillations and re-
sembles non-rapid eye movement sleep. In contrast, in the activated state,
high frequency—low amplitude waves are more prominent. This state is com-
parable to the pattern that can be found in awake attentive animals. Since
disease-related beta oscillations can be seen in the activated state only, all
analyses were confined to this state: for every recording, one 50 seconds-
episode of the signal was selected that showed a robust activated state pat-
tern and was free of major artifacts.

It has to be noted that the all processing steps described above were
conducted by members of the Movement Disorders and Neuromodulation
group of the Charité Berlin and have been available when we started with
the analyses described below.

Time—frequency Analysis and Normalization. We employed Mor-
let transformation to retrieve the time—frequency representation (TFR). We
retrieve the TFR for every frequency f of the signal z(¢) at time ¢ with the
convolution operation ®:

TFR(t, f) = x(t) @ w(t, f). (1)
We write w(t, f) for the Morlet wavelet:
w(t, f) = Ae~ 11278 giznft, (2)

where oy is the standard deviation (SD) of the signal in the time domain
and A is a normalization factor. In both time and frequency domain, Morlet
wavelets are Gaussian shaped. Here, o is the SD in the frequency at fre-
quency f, given by oy = ¢/f and ¢ is the width of the wavelet. The SD in
time domain is given by o, = 1/(27woy). In this study, we used a frequency
width of 10 cycles and a temporal width of 30,. We computed the wavelet
transformation in steps of 5 ms at frequencies between 1 and 100 Hz, at a
resolution of 1 Hz.



We normalized spectral density values by the cumulative average of the
8 to 12 and 31 to 90 Hz power.

Definition of Beta Bursts and Related Parameters. Since there
is no standard procedure to define bursts in the rat model, burst analysis
was adapted from Tinkhauser and colleagues (Tinkhauser et al., 2017a; Tin-
khauser et al., 2017b).

For every subject and time bin, we averaged the signal across frequen-
cies from 13 to 30 Hz and smoothed it in time employing moving average
(200 ms). Figure 2 illustrates the definition of bursts schematically: the sig-
nal was labeled as burst when exceeding a given amplitude threshold (green
line) for more than 100 ms. The blue array indicates the burst duration,
which is defined as the time from the point when the amplitude exceeds the
threshold to the point when the amplitude undergoes the threshold again.
The amplitude is defined as the peak amplitude of the burst (red array). As
the precise amplitudes of percentile-defined thresholds could vary between
groups, we defined the threshold for STN and M1 separately as the 75th
percentile of the amplitude distribution of all subjects and groups together.
Thus, we applied the same threshold in every group, but used a different
threshold for STN and M1 LFP recordings.

A burst was labeled to have a long duration when exceeding a cutoff of
350 ms; bursts shorter than the cutoff were labeled as short. We retrieved
the parameter % long bursts by dividing the number of long bursts by the
overall number of bursts per recording. The cutoff of 350 ms was chosen
arbitrarily by visually inspecting burst durations. We discuss limitations of
this procedure in Section 4. We derived the parameter time spent in bursts
as the number of time bins during a burst divided by all time bins of the
recording.

The overlap between STN and M1 bursts was calculated by deriving
the fraction of time points during a burst in both STN and M1. We set a
minimum overlap duration of 200 ms (procedure adapted from (Tinkhauser
et al., 2017b)).

To avoid distortion of signal noise, all bursts that lasted longer than the
median duration across subjects of all groups plus three standard deviations
were detected as outliers and rejected from further analysis. The same pro-
cedure of outlier rejection was applied to time spent in bursts, amplitude and
overlap.
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Figure 2: Definition of bursts. An example of a beta-filtered LFP signal
(top) and the time evolving wavelet amplitude derived from the wavelet
transformed signal (bottom). The green dashed line illustrates the threshold
which defines onset and offset of the bursts. The blue array indicates the
duration of a burst, the red array the amplitude. Adapted from Tinkhauser
et al. (Tinkhauser et al., 2017b).

Statistical Analysis. We used non-parametric permutation testing to
test whether the average of a parameter in the experimental groups dif-
fered significantly from the average in the control group, and to test whether
the mean of a parameter was correlated with the group label (control =
1;day 02 = 2;day 05 = 3;day 10 = 4 and day 20 — 30 = 5). To test the cor-
relation between burst characteristics and histology, we employed Spearman’s
rank correlation. Additionally, we performed partial Spearman’s correlation
analysis to determine to what extent correlations between burst parameters
in STN and histological findings can be explained by changes in the respective
burst parameter in M1 and vice versa.

We investigated whether a linear model of combinations of parameters as
predictors would achieve a good prediction of STR and SNc¢ scores. Thus,
we calculated a linear stepwise regression, by using the Matlab function step-
wiselm. We included all described parameters (7 = beta power, x5 = % long
bursts, x3 = time spent in bursts, x4 = burst amplitude and x5 = burst over-
lap) as independent variables and STR or SNc¢ scores as dependent variables.
Due to high correlation among all predictors we confined the model to a
linear prediction without interaction of the predictors. Criterion for adding



or removing a term was the change in the value of the Akaike information
criterion by adding or removing the term.

For classification we used Linear Discriminant Analysis (LDA). LDA is a
common technique for pattern classification. Thus, it calculates the separa-
bility between different classes. We define three different dependent variables
with two class labels each:

e Low vs. high STR score
e Low vs. high SNc score
e Experimental vs. control group.

We define the cutoff between low and high STR and SNc¢ score at 100 %.

We used an alpha level of .05 for all statistical tests (x p < .05;
kx p < .0l;xx%p < .001;%x%% p< .0001). In both the tests of group
differences and the correlation tests, four tests per parameter were conducted
(group differences: day 02, day 05, day 10 and day 20-30 against control, re-
spectively; correlation tests: STN-STR, STN-SN¢, M1-STR, M1-SNc¢). To
account for multiple comparison testing, we indicate when a p-value is not
significant after bonferroni correction (alphapon ferroni = alpha / 4 = .0125).
Group data are expressed as the mean + standard error of the mean.

We performed all analyses in MATLAB (MathWorks Inc.; R2017b) using
FieldTrip and Statistical Parametric Mapping open source toolboxes
(http://www.ru.nl/fcdonders/fieldtrip;  https://www.fil.ion.ucl.ac.uk/spm)
and with additional custom software.

3 Results

In the following section, we will summarize first results on behavior, histology
and beta power. Afterwards we will present the results of the beta burst
analysis.

3.1 Behavior

We express motor ability as use of the right (affected) forelimb relative to the
left (unaffected) forelimb in %. Thus, a lower score indicates higher motor
impairment.



Results from the cylinder test show a severe forelimb asymmetry already
at day two after the lesion, in comparison to the control group (p < .0001;
Figure 3A). All other groups also show a significant reduction of test score
(all p < .0001). Drag testing reveals similar results (Figure 3A): relative
to the control group, animals used their right forelimb much less at day two
already (p < .0001). Afterwards, the score remains relatively stable (see
Table S1) and significantly different from the control group (all p < .0001).
The behavioral results show that the 6-OHDA injection lesioned the animals
successfully. However, since we observe a clear bottom effect in behavioral
test scores from day two, we will focus on histology data for further analysis.

3.2 Histology

Histological findings are expressed as STR fiber density or SNc cell count
in the lesioned side compared to the intact side in %. Hence, lower scores
indicate a higher loss of TH-positive fibers and neurons.

In both STR and SNc¢ we observe a progressive degeneration of dopamin-
ergic neurons over time (Figure 3B). Nigrostriatal fiber densities of all ex-
perimental groups are lower than in the control group (see Table S1, all
p < .0001). At the two latest time points, we find an almost total loss of
fibers in STR.

Likewise, in SNc, averages of all time points differ significantly from the
control group (day 02: p = .006; day 05: p < .0002; day 10: p < .0001;
day 20-30: p < .0001; see Figure 3B and Table S1).

3.3 Beta Power

Figure 3C shows normalized power spectra from 5 to 40 Hz. The beta range
from 13 to 30 Hz is shaded in gray. Whereas the spectra of the control
group show only a slight deviance from the 1/f distribution, the experimental
groups demonstrate a clear peak in the beta range. The peak is visible in
group day 10 already and is most pronounced in group day 20-30. The beta
peak in the STN-day 20-30 signal is higher and more slim than in M1.

We obtain the mean power per group by averaging the power from 13
to 30 Hz and depict in Figure 3D. In STN the average power of day 10 and
day 20-30 differ significantly from the control group (day 10: p = .007;
day 20-30: p = .0002). Cortical data shows a significant increase of power
at day 20-30 only (p = .004), compared to the control group. However, we
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observe a linear increase of beta activity over time points in both STN and
M1 (correlation of mean power with group label STN: p = 1;p = .008; M1:
p = 1;p = .009). The correlation between STN beta power and histology
is highly significant for both STR and SNc scores (see Table 1 and Figure
S1). However, the correlation between M1 beta power and histology is not
significant after bonferroni correction (see Table 1).

3.4 Burst Duration

In Figure 4, we depict the burst length distribution for each group, binned
into 6 categories: 100 to 225 ms, 225 to 350 ms, 350 to 475 ms, 475 to 600 ms,
600 to 725 ms and 725 to 850 ms. In general, shorter bursts occur more
often than longer bursts. In both STN and M1, very short bursts appear
to be more frequent in healthy animals and animals of group day 02. In
contrast, subjects in group day 10 have fewer very short bursts and animals
of group day 20-30 the least. Correspondingly, groups of higher latency
after neurotoxin injection exhibit relatively more longer bursts. That is,
with increasing duration the pattern shifts to relatively less bursts in the
control group and more bursts for late latency groups.

When selecting only bursts of long (> 350 ms) duration, we observe an
increasing number of long bursts with time after injection (see Figure 3D and
Table S1). However, in STN, the number of long bursts is only significantly
higher in group day 20-30, compared to the control group (p = .006).
Likewise, also in M1, only the number of long bursts in group day 20-30
is significantly different from the control group (p = .009). However, in
M1 mean number of long bursts correlate significantly with the group label
(p = 1;p = .009). The percentage of long bursts in STN and M1 correlate
negatively with both histology scores (Table 1, Figure S2). However, the
correlation of STN and histology is not significant after bonferroni correction.

3.5 Time spent in bursts

Time spent in bursts in % indicates how much of the 50 sec recording time
was part of a burst episode. In both STN and M1, the data show an increase
of time spent in bursts with increasing measurement latency (see Figure 3D
and Table S1). However, in both STN and M1 this change differs only in
group day 20-30 significantly from the control group (STN: p = .003,
M1: p = .002). Mean time spent in bursts correlate significantly with the

12
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Parameter Structure STR STR (partial) STR (w/o c.) SNc SNc (partial) SNc (w/o c.)
. .83
fiber density STR - - - p < .0001 - -
STN —.50 —.42 —.41 —.58 —.51 —.51
power p = .0001 p = .005 p = .007 p < .0001 p = .0004 p = .0015
M1 —.31 .05 —.16 —.33 .1 —.17.
power p = .019f n.s. n.s. p = .014f n.s. n.s.
—.24 .02 —.27 —.27 —.01 —.23
% long burst STN n.s. n.s. n.s. p= ,036T n.s. n.s.
—.39 —.31 —.31 —.39 —.30 —.26
% long burst M1 p = .004 p=.oat p = .03t p = .004 n.s. n.s.
. . —.50 —.42 —.44 —.58 —.52 —.54
time spent in bursts  STN p = .0004 p = .0003 p = .004 p < .0001 p = .005 p = .0008
. . —.31 .06 —.18 —.33 .14 —.17
time spent in bursts M1 p= .017* ns. ns. p= .016T ns. ns.
. —.40 —.23 —.23 —.46 —.39 —.34
burst amplitude STN p=.003 n.s. n.s. p = .0008 p = .009 p=.02"
. —.36 —.12 —.32 —.26 .08 —.16
burst amplitude M1 p = .009 n.s. p= 03T p= .04t n.s. n.s.
—.31 —.23 —.27 —.14
overlap STN-M1 b= o2t — s, b= o4t — ns.

Table 1: Spearman’s rank correlations between electrophysiological param-
eters and histology. For both STR and SNc, the correlation to both STN
and M1 parameters are shown, as well as partial correlations and correlations
where subjects from the control group were excluded (w/o c). Note that the
partial correlation between an STN parameter and histology implicates that
the influence of M1 was partialed out. Correspondingly, a partial correlation
between a M1 parameter and histology implicates that the influence of STN
was partialed out. T Correlation not significant after bonferroni correction.

14



group label in both STN and M1: p = 1,p = .007 (STN); p = 1,p = .009
(M1). Correlation between time spent in bursts in STN and histology is
highly significant for both STR and SNec scores (see Table 1, Figure S3).
Correlation between M1-time spent in bursts and histology is not significant
after bonferroni correction (see Table 1).

3.6 Burst Amplitude

Besides the significant increase of beta burst amplitude in group day 20-30
in STN (p =.0006) and M1 (p = .03; not significant after bonferroni correc-
tion), we do not observe any other significant change of the amplitude (see
Figure 3D and Table S1). Also for amplitude we find a significant correlation
between mean and group label (STN: p = 1,p = .009; M1: p = 1,p = .007).
Additionally, we observe a medium correlation between burst amplitude and
histology measurements (see Table 1, Figure S4).

3.7 Overlapping Bursts

The mean percentage of overlapping bursts is significantly higher than zero
in all groups (experimental groups: p < .0001, control group: p = .004)
and ranges from 5% in the control group to 19% in group day 20-30 (see
Table S1). We observe a significant difference to mean overlap of the control
group in group day 20-30 only (p = .018; not significant after bonferroni
correction; Figure 3E). However, the linear increase across time points after
injection is visible in the correlation between mean overlap and group label
(p=1;p=.008). Percent of overlapping bursts correlates significantly with
both STR and SNc scores (see Table 1, Figure S5).

3.8 Correlation between Burst Duration and Ampli-
tude

To replicate the results of Tinkhauser and colleagues (Tinkhauser et al.,
2017b), we investigated the relationship between duration and amplitude.
We correlate the burst duration of every occurring burst of every animal
with the burst amplitude of the same burst. We observe a highly significant
correlation between the two parameters (STN: p = .85;p < .0001; M1: p =
.88;p < .0001, see Figure S6). The correlation does not differ between groups
(see Table S1).
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3.9 Correlation without Control Group

Are correlations between the respective parameters and histology measures
mainly driven by the difference between the control group and the experi-
mental groups? To test whether a parameter does also vary with different
degrees of the lesion, we computed all correlations without animals of the
control group (see Table 1). While we find more stable correlations among
the parameters in STN and histology in a majority of parameters, most cor-
relations for M1 are eliminated. An exception is the correlation of long bursts
with the STR score which stays stable for M1, but disappears for STN data.

3.10 Partial Correlations

To test whether the correlation between STN and histology are stable when
controlling for the influence of M1, we conducted partial correlations. Results
show that correlations remain stable in all parameters besides % long bursts
(see Table 1). In contrast, when correlating parameters of M1 without the
influence of the STN with histology, all effects besides the correlation between
% long bursts and STR score are eliminated.

3.11 Low and High Beta

Literature has shown that differences between healthy and impaired subjects
are generally more present in the low (13-20 Hz) than in the high (20-30 Hz)
beta band (Priori et al., 2004). To investigate whether we can confirm this
pattern in our data, we performed all analyses described above for low and
high beta separately. We find slightly more prominent patterns for low beta,
in comparison with high beta (data not shown). However, since differences
were small and not significant, we concentrated all further analyses on the
overall beta range from 13 to 30 Hz.

3.12 Stepwise Regression

In the sections above, we describe five different electrophysiological parame-
ters, their variation across groups and their correlation with histology. To get
clearer insight on the relative predictive value of these parameters in relation
to histological data, we performed a stepwise multivariable linear regression.
This way we aimed to find a model that fits STN or M1 electrophysiological
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data to either of the dependent variables STR score (y;) or SNc score (ys).
We included all parameters described above as independent variables: % long
bursts (x7), beta power (x3), time spent in bursts (x3), burst amplitude (x4)
and burst overlap (z5).

We conducted the regression separately for STN and M1 parameters.
For STN data, we find that a combination of power and % long burst fits
both histological data best. For both STR and SNec, we reach a high fit
(STR: R* = 0.36; SNc: R? = 0.47; model formula and coefficients are sum-
marized in Figure 5A). For M1 data, the % long bursts alone outperforms
all other parameters and combinations by reaching a medium to high fit of
R?=0.18 (STR) and R? = 0.19 (SNc; see Figure 5B). In Figure S7 we show
the estimated data of the respective models, performed with a leave-one-out
validation. Since we observe many subjects whose % long burst score is at
zero, we computed estimates and leave-one-out predictions without subjects
with zero long bursts and depict them in Figure S8 and Figure S9. Without
subjects with zero bursts, STN-% long bursts does not improve the model
significantly and predicting with M1-% long bursts does not reach better
estimates than a prediction with M1-power.

Finally, we ran a stepwise regression by including all parameters of STN
and M1. Here we find that the combination of STN-power and STN-% long
bursts outperform all other combinations (fits see above).

3.13 Classification

So far, we found quite robust correlations among electrophysiological pa-
rameters and histology. To investigate how well we can predict the stage
of neuron degeneration with electrophysiology, we conducted an LDA with
five-fold stratified cross-validation. We investigated classification accuracy
for three different criteria (see Section 1): impaired (low) vs. intact (high)
nigrostriatal fiber density; impaired (low) vs. intact (high) SNc cell count;
and experimental groups vs. control group.

Including STN-power and STN-% long bursts, we reach an accuracy of
86.7 % for STR scores, 80.0 % for SNc scores and 82.2 % when taking groups
as criteria. Combining M1-power and M1-% long bursts leads to a classifi-
cation accuracy of 86.6 % for STR labels, 77.8 % for SNC labels, and 77.8 %
for the group labels.
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Figure 5: Original and estimated histology scores. (A) Histology data
estimated from STN electrophysiology. Significant predictors are % long
burst (z1) and beta power (x2) for both STR and SNc scores. (B) Histol-
ogy data estimated from M1 electrophysiology. The model with only % long
burst (x;1) performs best for both STR and SNec scores.

18



4 Discussion

Three main conclusions may be drawn from this study: first, beta power and
burst parameters—such as the proportion of long bursts or time spent in
bursts—are highly correlated with the degree of nigrostriatal dopaminergic
degeneration. Second, in a linear stepwise regression, a model with beta
power and the percentage of long beta burst in the STN achieves the best fit
to explain both STR and SNc variance. Third, we can distinguish healthy
from lesioned subjects with a classification accuracy of over 80 %. These
findings support the notion that beta parameters can serve as biomarkers for
the stage of neuron degeneration.

In the present study, we find beta bursts in all groups, including the
control group. This is an important finding, since beta bursts has not been
studied in healthy subjects before. The finding suggests that beta bursts
should not be mistaken as pathological per se. However, higher burst rates,
a higher amount of long bursts and high-amplitude bursts seem to be more
likely in PD (Tinkhauser et al., 2017a; Tinkhauser et al., 2017b).

Motor Pathways. In general, rhythmic oscillations in the brain are
thought to build up a communication between neuronal ensembles (Fries,
2015). These rhythmic synchronizations propagate on specific networks and
pathways. There are several pathways that build the basal ganglia—motor
cortex loop, which is crucial for movement generation. The indirect pathway
evolves from the cortex via the STR and the globus pallidum pars externa
to the STN (Albin et al., 1995). From STN, the signal is forwarded via the
globus pallidum pars interna to the thalamus. The SN¢ modulates signal pro-
cessing in the indirect pathway with dopamine. Dopamine depletion results
in inhibition of the thalamus (Albin et al., 1995). The hyperdirect pathway
takes a shortcut from the motor cortex directly to the STN (West et al.,
2018). A recent study of Neumann and colleagues (Neumann et al., 2018)
shows that the indirect and the hyperdirect pathway play a different role
in motor preparation and kinematics. There are several hypotheses on how
the beta rhythm propagates in this circuit and why beta oscillations impact
motor function in PD (Shin et al., 2017; Frank, 2006; West et al., 2018).
However, the precise mechanism is still unclear. When we eliminated the
influence of STN in the correlation between histology measurements and M1
parameters, the relation still remains stable in most parameters. In contrast,
we do not find significant partial correlations between M1 and histology with-
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out the influence of STN. Similarly, we find a more stable correlation among
oscillatory STN-parameters and histology when leaving out the control group,
compared to M1-parameters. It is not entirely clear why the relation asso-
ciation between beta characteristics and dopaminergic degeneration is more
stable in the STN. While various factors may account for this observation, the
direct loss of dopaminergic control over subthalamic afferents likely results
in a more immediate disruption of local neuronal ensembles in the STN.

The occurence of long beta bursts indicates that neurons are more likely
to fire together. In this state, neurons do not carry information individually
which leads to a limitation of the neuron’s coding capacity (Brittain and
Brown, 2014). Normally, beta oscillations seem to play a functional role
in motor slowing and decrease during movement initiation (Lofredi et al.,
2018). However, long high-amplitude beta bursts, as observed in PD, might
impair information coding on the network level (Feingold et al., 2015). This
is, they appear to not be limited to local synchronizations but also involve
pathological synchronization across several structures in the basal ganglia—
cortical network (Tinkhauser et al., 2018). In the present study, we observed
bursts that lasted up to 850 ms in both cortical and subcortical regions of the
most affected animals. On average, we observed around 25 % long bursts in
highly affected subjects. Also beta power was highly elevated. The severity
of these alterations fits the notion that beta bursts build up by resonating in
the long range motor loop, involving cortical ends of the loop as well as parts
of the basal ganglia. In our analysis we show that the overlap between bursts
in STN and M1 increases with the degree of neuron degeneration. For future
work it would be interesting to take more stable and informative coherence
measures to investigate the connectivity between both sites and to put it into
context of neuron degeneration.

Parkinson Therapy. The cause of irregularities in motor cortex—basal
ganglia circuit in PD is dopamine deficiency due to degeneration of dopamin-
ergic neurons in the basal ganglia (Bernheimer et al., 1973). Thus, levodopa—
a precursor of dopamine—is used for therapy of PD symptoms like akine-
sia (Postuma et al., 2015). Moreover, DBS of the basal ganglia at regular and
high frequencies (in excess of 100 Hz) is an effective treatment of PD (Schuep-
bach et al., 2013; Deuschl et al., 2006). Kiihn and colleagues (Kiihn et al.,
2008) showed that high frequency stimulation of the STN both suppresses
beta activity and reduces motor impairments. While in conventional DBS
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stimulation pulses occur at a constant frequency, adaptive DBS (or closed-
loop DBS) monitors biomarkers and regulates pulses accordingly (Meidahl
et al., 2017): adaptive DBS stimulates only while the marker exceeds a pre-set
threshold. Closed-loop DBS appears to induce fewer side effects and is more
effective than conventional DBS. In PD, the severity of an ongoing tremor
has been shown to be a useful peripheral biomarker (Meidahl et al., 2017).
However, a downside of peripheral markers is that they close the loop after
the event (for example, an increase of tremor amplitude) already occurred. In
contrast, central biomarkers make it possible to intervene earlier. Although
it is not exhaustively clear whether beta power has a causal relation to PD
symptoms (Sherman et al., 2016), it has been proposed as a biomarker for
adaptive DBS in PD (Little et al., 2013). This gains further support from
Neumann and colleagues (Neumann et al., 2017) who showed that the cor-
relation between beta activity and motor symptoms in PD patients remain
stable over the long term. The present study shows that it is possible to
predict the state of dopaminergic degeneration in the substancia nigra with
beta parameters with high accuracy. Beta parameters of the STN achieved
slightly better predictions than parameters of M1. Class labels derived from
STR scores could be predicted best. These findings support the idea to take
beta power and beta burst properties as biomarkers for the pathophysiology
of PD patients.

Relation to Studies in Parkinson Patients. Tinkhauser and col-
leagues (Tinkhauser et al., 2017a) compared PD patients who received ei-
ther conventional DBS, adaptive DBS, or no stimulation. In conventional
DBS, both short and long bursts were suppressed in proportion. In contrast,
adaptive DBS increased the number of short beta bursts and decreased the
number of long bursts. Thus, high-frequency stimulation seems to cut long
beta bursts short, which has a positive effect on movement control. This
finding is highly relevant, as the number of short bursts correlated nega-
tively and number of long bursts positively with clinical impairment. In the
study at hand, we had the unique opportunity to forge a link among corti-
cal and subcortical beta parameters and the degree of dopaminergic neuron
degeneration. We found a positive correlation between the relative number
of long bursts and dopaminergic degeneration in the SNc. This supports the
view of the pathological relevance of long beta bursts in PD patients.

21



In a further study (Tinkhauser et al., 2017b), the authors investigated
the relation of beta burst characteristics with the dopaminergic state of PD
patients. They found an increase of shorter, lower amplitude beta bursts
when patients were treated with levodopa, in comparison to levodopa with-
drawal. The present study did not compare ON- and OFF-medication PD
patients but animals in different stages of a 6-OHDA lesion. However, both
studies come to similar results. Especially the shift in the burst distribution
from relatively-less short and relatively-more long bursts in highly impaired
groups 4 compared to healthy controls, strongly resembles the pattern dif-
ferences of OFF-medication patients, compared to ON-medication patients
in (Tinkhauser et al., 2017b). To investigate the impact of levodopa on burst
activity and histology, future studies could investigate beta burst character-
istics in 6-OHDA-lesioned subjects that were treated with levodopa.

Long Bursts and Histology. To the best of out knowledge, the present
study is the first investigation of the relation among beta bursts and histo-
logical data in a parkinsonian animal model. Our results suggest that beta
power as well as the proportion of long burst in the LEP STN signal are well
suited biomarkers for inferring the degree of neurodegeneration. When hav-
ing only cortical electrophysiological signals on hand, the occurrence of long
bursts may even be more informative than beta power. When considering
the relatively-low correlation between STN-% long bursts and histology data,
it seems surprising that this parameter outperforms other burst parameters
in the stepwise regression. However, we found that STN-% long bursts has
the lowest correlation to STN-beta power, in comparison to other parame-
ters (data not shown). This indicates that % long bursts explains a variance
share of the dependent variables that is not covered by prediction with beta
power only. Additionally, we speculate that the distance of M1 to STN may
act like a filter on long bursts: only in highly impaired animals, long bursts
can also be seen in M1.

Defining the Threshold. Defining the 75th percentile threshold, which
separates beta bursts from noise, has a large impact on amplitude and du-
ration parameters. Choosing a low threshold includes more low—amplitude
bursts than choosing a high threshold. In contrast, high-amplitude bursts
are always included. Hence, the level of the threshold determines how many
low—amplitude bursts are included in the analysis. This not only influences
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amplitude parameters: since amplitude and duration are shown to be highly
correlated, it also impacts duration parameters: bursts are truncated closer
to their peak in case of a higher threshold, which leads to a shorter duration.

In our hypotheses (see Section 1) we expect that amplitude and duration
vary across groups. Assuming that burst amplitude is lower in the control
group than in the day 20-30 group, this poses a major confound when defining
the threshold per subject: in the control group, more low-amplitude bursts
lead to a lower threshold which in turn leads to including more low-amplitude
bursts. Likewise, in the day 20-30 group, the occurrence of more high-
amplitude bursts leads to a higher threshold, which leads to exclusion of
the low-amplitude bursts that would have been in the signal. Hence, the
difference between the two groups is more extreme than when taking the
same threshold for both groups. Since the correlation between amplitude
and duration does not change among groups (see Section 3.8), the same
applies to duration parameters.

In the study of (Tinkhauser et al., 2017a), the authors implemented a
within-subjects design and defined the threshold per subject, but applied
the same threshold in all conditions. This procedure is reasonable to account
for between-subjects variance in burst character that is not related to the
experimental conditions. In the study at hand, this was not possible due
to a between-subjects design. However, we assumed that unrelated burst
variance would be randomly distributed among subjects of different groups.
Thus, we decided to apply the same threshold—the average of all animals of
all conditions—to all recordings.

Limitations. It has to be noted that the investigation of bursts is still
new. In particular, there is no standard procedure for defining bursts yet.
Thus, a number of decisions have to be made regarding normalizing, defining
thresholds and determining the cut off between long and short bursts. In
the sections above, we aimed to show our methodology as transparent as
possible. However, we want to emphasize that parts of the analysis had an
exploratory character and have to be replicated in the future.

Furthermore, it seems surprising that we observe a positive % long burst
coefficient in the stepwise regression with STN parameters although the STN-
% long bursts parameter correlates negatively with histology. Considering the
results of the regression without subjects with zero long bursts, the percent-
age of long bursts may not be as predictive as seems at first sight. We suggest
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to replicate our findings and further investigate the long burst-histology re-
lationship before using them in clinical setups.

Besides, it could be that the animals were still recovering from the surgery
in the day 02 group. This may have impaired their behavioral score and could
explain the drastic drop of behavioral performance. This suggestion gains
support from a finding of Deumens and colleagues (Deumens et al., 2002)
who showed that about 50 % of dopaminergic cells in the SNc¢ have already
degenerated when PD symptoms start to emerge. To control for unspecific
effects of surgery recovery, a control group at every time point after the
surgery, especially after two days, would have been necessary.

5 Conclusion

Beta power and burst parameters are highly correlated with nigrostriatal cell
loss.We can distinguish healthy from lesioned subjects with a high classifi-
cation accuracy. This supports the idea that beta parameters can serve as
biomarkers for the stage of neuron degeneration.
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Supplementary Material

Parameter Structure Control day 02 day 05 day 10 day 20-30
. 106.30 24.27 18.92 7.02 9.53
cylinder test score (%) -a. + 7.20 + 7.51 +9.91 + 3.70 + 4.24
drag test %) ) 108.10 33.46 33.84 37.83 33.88
rag test score (7 n-a. + 10.06 + 4.70 + 4.83 + 4.77 + 6.05

. 110.70 68.91 20.97 3.49 1.76
fiber density (%) STR +418  +6.54  +532  + 1.39 + 3.08
106.70 89.90 72.67 45.14 16.24
cell count; (%) SNe +3.10 +4.06 +6.02  +3.22 + 1.82
3.97 4.15 4.62 5.15 6.37
Power (a.u.) STN + .25 + .23 + .24 + .29 + .49
M1 3.93 4.58 4.82 5.22 7.85
+ .25 + .23 + .46 + .78 +1.28
7.61 6.53 8.97 8.32 23.76
long burst (%) STN + 2.45 + 1.82 + 1.62 + 2.74 + 6.26
M1 4.99 8.48 11.21 13.89 25.51
+2.03 +3.21 +1.95 + 5.49 + 6.25
) ) 12.96 13.40 18.34 23.32 36.85
time spent in bursts (s)  STN +2.50 4200 4266  + 3.06 £ 5.11
M1 10.82 15.57 19.33 23.69 38.01
+2.15 +2.28 + 4.07 + 7.59 + 7.77
) 108.48 117.87 131.61 121.21 269.65
burst amplitude (a.u.) STN 4+ 10.56 4 13.18 4 11.76 =+ 13.02 =+ 78.31
M1 132.86 139.23 139.85 161.82 210.55
+20.61 4+ 16.62 + 156  + 31.47 + 36.82
4.97 7.56 10.25 11.11 18.96
0y —
overlap (%) STN-M1 + 1.38 + 1.47 + 2.68 + 3.94 + 5.60
.82 79 .86 .82 88
dur-amp STN + .03 + .02 + .02 + .02 + .01
M1 .84 81 .85 .87 .87
+ .02 + .03 + .02 + .03 + .02

Table S1: Group averages and standard error of the mean for all parameters.
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Figure S1: Power-histology correlation. Correlation between STN (left) and
M1 (right) beta power and SNec cell count (top) and STR fiber density (bot-
tom). Red dots represent single subjects. The gray lines indicate the first
order fit between the two variables.
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Figure S3: Correlation between time spent in bursts and histology. Red dots
represent single subjects, gray lines indicate the first order fit between the
two variables.
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Figure S7: Original and predicted histology scores. (A) Prediction based on
STN models. (B) Prediction based on M1 models. Cross-validated using a

leave-one-out procedure.
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Figure S9: Original and predicted histology scores without subjects with zero
long bursts. (A) Prediction based on STN models. (B) Prediction based on
M1 models. Cross-validated using a leave-one-out procedure.
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