Skip to content

francescopittaluga/invsfm

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
viz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

InvSFM: Revealing Scenes by Inverting Structure from Motion Reconstructions

teaser figure Synthesizing Imagery from a SFM Point Cloud: From left to right--Top view of a SfM reconstruction of an indoor scene; 3D points projected into a viewpoint associated with a source image; the image reconstructed using our technique; and the source image.


This repository contains a reference implementation of the algorithms described in the CVPR 2019 paper Revealing Scenes by Inverting Structutre from Motion Reconstructions. This paper was selected as a Best Paper Finalist at CVPR 2019. For more details about the project, please visit the main project page.

If you use this code/model for your research, please cite the following paper:

@inproceedings{pittaluga2019revealing,
  title={Revealing scenes by inverting structure from motion reconstructions},
  author={Pittaluga, Francesco and Koppal, Sanjeev J and Bing Kang, Sing and Sinha, Sudipta N},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={145--154},
  year={2019}
}

Installation Guide

The code was tested with Tensorflow 1.10, Ubuntu 16, NVIDIA TitanX / NVIDIA 1080ti.

Step 1: Install dependencies

See requirements.txt. The training code depends only on tensorflow. The demos additionally depend on Pillow and scikit-image.

Step 2: Download the pre-trained model weights

Run $ bash download_wts.sh to programatically download and untar wts.tar.gz (1.24G). Alternatively, manually download wts.tar.gz from here and untar it in the root directory of the repo.

Step 3: Download the demo data

Run $ bash download_data.sh to programatically download and untar data.tar.gz (11G). Alternatively, manually download data.tar.gz from here and untar it in the root directory of the repo.

Step 4: Run the demos

$ python demo_5k.py 
$ python demo_colmap.py

Note: Run $ python demo_5k.py --help and $ python demo_colmap.py --help to see the various demo options available.

Step 5: Run the training scripts

$ python train_visib.py 
$ python train_coarse.py 
$ python train_refine.py 

Note: Run $ python train_*.py --help to see the various training options available.

About

InvSFM: Revealing Scenes by Inverting Structure from Motion Reconstructions [CVPR 2019]

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published