Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
arb/fmprb/fib.c
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
113 lines (93 sloc)
2.92 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /*============================================================================= | |
| This file is part of ARB. | |
| ARB is free software; you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation; either version 2 of the License, or | |
| (at your option) any later version. | |
| ARB is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with ARB; if not, write to the Free Software | |
| Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
| =============================================================================*/ | |
| /****************************************************************************** | |
| Copyright (C) 2012 Fredrik Johansson | |
| ******************************************************************************/ | |
| #include "fmprb.h" | |
| /* | |
| Fibonacci numbers using binary powering. | |
| D. Takahashi, "A fast algorithm for computing large Fibonacci numbers", | |
| Information Processing Letters 75 (2000) 243–246 | |
| */ | |
| void fmprb_fib_fmpz(fmprb_t f, const fmpz_t n, long prec) | |
| { | |
| fmprb_t t, u; | |
| long wp, sign, i; | |
| if (fmpz_sgn(n) < 0) | |
| { | |
| fmpz_t m; | |
| fmpz_init(m); | |
| fmpz_neg(m, n); | |
| fmprb_fib_fmpz(f, m, prec); | |
| if (fmpz_is_even(m)) | |
| fmprb_neg(f, f); | |
| fmpz_clear(m); | |
| return; | |
| } | |
| if (fmpz_cmp_ui(n, 4) <= 0) | |
| { | |
| ulong x = fmpz_get_ui(n); | |
| fmprb_set_ui(f, x - (x > 1)); | |
| return; | |
| } | |
| wp = FMPR_PREC_ADD(prec, 3 * fmpz_bits(n)); | |
| fmprb_init(u); | |
| fmprb_init(t); | |
| fmprb_set_ui(f, 1UL); | |
| fmprb_set_ui(u, 1UL); | |
| sign = -1; | |
| for (i = fmpz_flog_ui(n, 2UL) - 1; i > 0; i--) | |
| { | |
| fmprb_mul(t, f, f, wp); | |
| fmprb_add(f, f, u, wp); | |
| fmprb_mul_2exp_si(f, f, -1); | |
| fmprb_mul(f, f, f, wp); | |
| fmprb_mul_2exp_si(f, f, 1); | |
| fmprb_submul_ui(f, t, 3, wp); | |
| fmprb_sub_si(f, f, 2 * sign, wp); | |
| fmprb_mul_ui(u, t, 5, wp); | |
| fmprb_add_si(u, u, 2 * sign, wp); | |
| sign = 1; | |
| if (fmpz_tstbit(n, i)) | |
| { | |
| fmprb_set(t, f); | |
| fmprb_add(f, f, u, wp); | |
| fmprb_mul_2exp_si(f, f, -1); | |
| fmprb_mul_2exp_si(t, t, 1); | |
| fmprb_add(u, f, t, wp); | |
| sign = -1; | |
| } | |
| } | |
| if (fmpz_tstbit(n, 0)) | |
| { | |
| fmprb_add(f, f, u, wp); | |
| fmprb_mul_2exp_si(f, f, -1); | |
| fmprb_mul(f, f, u, wp); | |
| fmprb_sub_si(f, f, sign, prec); | |
| } | |
| else | |
| { | |
| fmprb_mul(f, f, u, prec); | |
| } | |
| fmprb_clear(u); | |
| fmprb_clear(t); | |
| } | |
| void fmprb_fib_ui(fmprb_t f, ulong n, long prec) | |
| { | |
| fmpz_t t; | |
| fmpz_init_set_ui(t, n); | |
| fmprb_fib_fmpz(f, t, prec); | |
| fmpz_clear(t); | |
| } |