Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
compute erf without cancellation problems for complex z
  • Loading branch information
fredrik-johansson committed Mar 14, 2016
1 parent 65d13e3 commit d0a2c0c
Show file tree
Hide file tree
Showing 3 changed files with 137 additions and 19 deletions.
1 change: 1 addition & 0 deletions acb_hypgeom.h
Expand Up @@ -128,6 +128,7 @@ void acb_hypgeom_gamma_upper(acb_t res, const acb_t s, const acb_t z, int modifi

void acb_hypgeom_expint(acb_t res, const acb_t s, const acb_t z, slong prec);

void acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z);
void acb_hypgeom_erf_1f1a(acb_t res, const acb_t z, slong prec);
void acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, slong prec);
void acb_hypgeom_erf_asymp(acb_t res, const acb_t z, slong prec, slong prec2);
Expand Down
135 changes: 120 additions & 15 deletions acb_hypgeom/erf.c
Expand Up @@ -141,11 +141,108 @@ acb_hypgeom_erf_asymp(acb_t res, const acb_t z, slong prec, slong prec2)
acb_clear(u);
}

void
acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z)
{
mag_t x, y;

mag_init(x);
mag_init(y);

/* |exp(-(x+y)^2)| = exp(y^2-x^2) */
arb_get_mag(y, acb_imagref(z));
mag_mul(y, y, y);

arb_get_mag_lower(x, acb_realref(z));
mag_mul_lower(x, x, x);

if (mag_cmp(y, x) >= 0)
{
mag_sub(re, y, x);
mag_exp(re, re);
}
else
{
mag_sub_lower(re, x, y);
mag_expinv(re, re);
}

/* Radius. */
mag_hypot(x, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
mag_mul(re, re, x);

/* 2/sqrt(pi) < 289/256 */
mag_mul_ui(re, re, 289);
mag_mul_2exp_si(re, re, -8);

if (arb_is_zero(acb_imagref(z)))
{
/* todo: could bound magnitude even for complex numbers */
mag_set_ui(y, 2);
mag_min(re, re, y);

mag_zero(im);
}
else if (arb_is_zero(acb_realref(z)))
{
mag_swap(im, re);
mag_zero(re);
}
else
{
mag_set(im, re);
}

mag_clear(x);
mag_clear(y);
}

void
acb_hypgeom_erf_1f1(acb_t res, const acb_t z, slong prec,
slong wp, int more_imaginary)
{
if (acb_rel_accuracy_bits(z) >= wp)
{
if (more_imaginary)
acb_hypgeom_erf_1f1a(res, z, wp);
else
acb_hypgeom_erf_1f1b(res, z, wp);
}
else
{
acb_t zmid;
mag_t re_err, im_err;

acb_init(zmid);
mag_init(re_err);
mag_init(im_err);

acb_hypgeom_erf_propagated_error(re_err, im_err, z);
arf_set(arb_midref(acb_realref(zmid)), arb_midref(acb_realref(z)));
arf_set(arb_midref(acb_imagref(zmid)), arb_midref(acb_imagref(z)));

if (more_imaginary)
acb_hypgeom_erf_1f1a(res, zmid, wp);
else
acb_hypgeom_erf_1f1b(res, zmid, wp);

arb_add_error_mag(acb_realref(res), re_err);
arb_add_error_mag(acb_imagref(res), im_err);

acb_clear(zmid);
mag_clear(re_err);
mag_clear(im_err);
}

acb_set_round(res, res, prec);
}

void
acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)
{
double x, y, absz2, logz;
slong prec2;
double x, y, abs_z2, log_z, log_erf_z_asymp;
slong prec2, wp;
int more_imaginary;

if (!acb_is_finite(z))
{
Expand All @@ -159,10 +256,10 @@ acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)
return;
}

if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 0) < 0 &&
arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 0) < 0))
if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -64) < 0 &&
arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -64) < 0))
{
acb_hypgeom_erf_1f1a(res, z, prec);
acb_hypgeom_erf_1f1(res, z, prec, prec, 1);
return;
}

Expand All @@ -176,26 +273,34 @@ acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)
x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN);
y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN);

absz2 = x * x + y * y;
logz = 0.5 * log(absz2);
abs_z2 = x * x + y * y;
log_z = 0.5 * log(abs_z2);
/* estimate of log(erf(z)), disregarding csgn term */
log_erf_z_asymp = y*y - x*x - log_z;

if (logz - absz2 < -(prec + 8) * 0.69314718055994530942)
if (log_z - abs_z2 < -(prec + 8) * 0.69314718055994530942)
{
/* If the asymptotic term is small, we can
compute with reduced precision */
prec2 = FLINT_MIN(prec + 4 + (y*y - x*x - logz) * 1.4426950408889634074, (double) prec);
compute with reduced precision. */
prec2 = FLINT_MIN(prec + 4 + log_erf_z_asymp * 1.4426950408889634074, (double) prec);
prec2 = FLINT_MAX(8, prec2);
prec2 = FLINT_MIN(prec2, prec);

acb_hypgeom_erf_asymp(res, z, prec, prec2);
}
else if (arf_cmpabs(arb_midref(acb_imagref(z)), arb_midref(acb_realref(z))) > 0)
{
acb_hypgeom_erf_1f1a(res, z, prec);
}
else
{
acb_hypgeom_erf_1f1b(res, z, prec);
more_imaginary = arf_cmpabs(arb_midref(acb_imagref(z)),
arb_midref(acb_realref(z))) > 0;

/* Worst case: exp(|x|^2), computed: exp(x^2).
(x^2+y^2) - (x^2-y^2) = 2y^2, etc. */
if (more_imaginary)
wp = prec + FLINT_MAX(2 * x * x, 0.0) * 1.4426950408889634074 + 5;
else
wp = prec + FLINT_MAX(2 * y * y, 0.0) * 1.4426950408889634074 + 5;

acb_hypgeom_erf_1f1(res, z, prec, wp, more_imaginary);
}
}

20 changes: 16 additions & 4 deletions doc/source/acb_hypgeom.rst
Expand Up @@ -225,14 +225,19 @@ Confluent hypergeometric functions
The error function
-------------------------------------------------------------------------------

.. function:: void acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z)

Sets *re* and *im* to upper bounds for the error in the real and imaginary
part resulting from approximating the error function of *z* by
the error function evaluated at the midpoint of *z*. Uses
the first derivative.

.. function:: void acb_hypgeom_erf_1f1a(acb_t res, const acb_t z, slong prec)

.. function:: void acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, slong prec)

.. function:: void acb_hypgeom_erf_asymp(acb_t res, const acb_t z, slong prec, slong prec2)

.. function:: void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)

Computes the error function respectively using

.. math ::
Expand All @@ -247,8 +252,15 @@ The error function
\left(1 - \frac{e^{-z^2}}{\sqrt{\pi}}
U(\tfrac{1}{2}, \tfrac{1}{2}, z^2)\right).
and an automatic algorithm choice. The *asymp* version takes a second
precision to use for the *U* term.
The *asymp* version takes a second precision to use for the *U* term.

.. function:: void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)

Computes the error function using an automatic algorithm choice.
If *z* is too small to use the asymptotic expansion, a working precision
sufficient to circumvent cancellation in the hypergeometric series is
determined automatically, and a bound for the propagated error is
computed with :func:`acb_hypgeom_erf_propagated_error`.

.. function:: void _acb_hypgeom_erf_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)

Expand Down

0 comments on commit d0a2c0c

Please sign in to comment.