12 changes: 11 additions & 1 deletion doc/source/acb_hypgeom.rst
Expand Up @@ -222,7 +222,7 @@ Confluent hypergeometric functions
Bessel-*I* function is used in the right half-plane, to avoid loss
of accuracy due to evaluating the square root on the branch cut.

The error function
Error functions and Fresnel integrals
-------------------------------------------------------------------------------

.. function:: void acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z)
Expand Down Expand Up @@ -299,6 +299,16 @@ The error function
Computes the imaginary error function of the power series *z*,
truncated to length *len*.

.. function:: void acb_hypgeom_fresnel(acb_t res1, acb_t res2, const acb_t z, int normalized, slong prec)

Sets *res1* to the Fresnel sine integral `S(z)` and *res2* to
the Fresnel cosine integral `C(z)`. Optionally, just a single function
can be computed by passing *NULL* as the other output variable.
The definition `S(z) = \int_0^z \sin(t^2) dt` is used if *normalized* is 0,
and `S(z) = \int_0^z \sin(\tfrac{1}{2} \pi t^2) dt` is used if
*normalized* is 1 (the latter is the Abramowitz & Stegun convention).
`C(z)` is defined analogously.

Bessel functions
-------------------------------------------------------------------------------

Expand Down