|
|
@@ -0,0 +1,419 @@ |
|
|
/*============================================================================= |
|
|
|
|
|
This file is part of ARB. |
|
|
|
|
|
ARB is free software; you can redistribute it and/or modify |
|
|
it under the terms of the GNU General Public License as published by |
|
|
the Free Software Foundation; either version 2 of the License, or |
|
|
(at your option) any later version. |
|
|
|
|
|
ARB is distributed in the hope that it will be useful, |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
GNU General Public License for more details. |
|
|
|
|
|
You should have received a copy of the GNU General Public License |
|
|
along with ARB; if not, write to the Free Software |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|
|
|
|
|
=============================================================================*/ |
|
|
/****************************************************************************** |
|
|
|
|
|
Copyright (C) 2015 Fredrik Johansson |
|
|
|
|
|
******************************************************************************/ |
|
|
|
|
|
#include "acb_hypgeom.h" |
|
|
|
|
|
/* |
|
|
|
|
|
which == 0 -- z |
|
|
which == 1 -- z/(z-1) |
|
|
which == 2 -- 1/z |
|
|
which == 3 -- 1/(1-z) |
|
|
which == 4 -- 1-z |
|
|
which == 5 -- 1-1/z |
|
|
|
|
|
*/ |
|
|
|
|
|
void |
|
|
_acb_hypgeom_2f1_transform_limit(acb_t res, const acb_poly_t a, const acb_poly_t b, |
|
|
const acb_poly_t c, const acb_poly_t z, int which, long prec) |
|
|
{ |
|
|
acb_poly_t ba, ca, cb, cab, ac1, bc1, ab1, ba1, w, t, u, v, s; |
|
|
acb_t tt; |
|
|
|
|
|
acb_poly_init(ba); |
|
|
acb_poly_init(ca); acb_poly_init(cb); acb_poly_init(cab); |
|
|
acb_poly_init(ac1); acb_poly_init(bc1); |
|
|
acb_poly_init(ab1); acb_poly_init(ba1); |
|
|
acb_poly_init(w); acb_poly_init(t); |
|
|
acb_poly_init(u); acb_poly_init(v); |
|
|
acb_poly_init(s); |
|
|
acb_init(tt); |
|
|
|
|
|
acb_poly_add_si(s, z, -1, prec); /* s = 1 - z */ |
|
|
acb_poly_neg(s, s); |
|
|
acb_poly_sub(ba, b, a, prec); /* ba = b - a */ |
|
|
acb_poly_sub(ca, c, a, prec); /* ca = c - a */ |
|
|
acb_poly_sub(cb, c, b, prec); /* cb = c - b */ |
|
|
acb_poly_sub(cab, ca, b, prec); /* cab = c - a - b */ |
|
|
acb_poly_add_si(ac1, ca, -1, prec); acb_poly_neg(ac1, ac1); /* ac1 = a - c + 1 */ |
|
|
acb_poly_add_si(bc1, cb, -1, prec); acb_poly_neg(bc1, bc1); /* bc1 = b - c + 1 */ |
|
|
acb_poly_add_si(ab1, ba, -1, prec); acb_poly_neg(ab1, ab1); /* ab1 = a - b + 1 */ |
|
|
acb_poly_add_si(ba1, ba, 1, prec); /* ba1 = b - a + 1 */ |
|
|
|
|
|
/* t = left term, u = right term (DLMF 15.8.1 - 15.8.5) */ |
|
|
if (which == 2) |
|
|
{ |
|
|
acb_poly_inv_series(w, z, 2, prec); /* w = 1/z */ |
|
|
acb_hypgeom_2f1_series_direct(t, a, ac1, ab1, w, 1, 2, prec); |
|
|
acb_hypgeom_2f1_series_direct(u, b, bc1, ba1, w, 1, 2, prec); |
|
|
} |
|
|
else if (which == 3) |
|
|
{ |
|
|
acb_poly_inv_series(w, s, 2, prec); /* w = 1/(1-z) */ |
|
|
acb_hypgeom_2f1_series_direct(t, a, cb, ab1, w, 1, 2, prec); |
|
|
acb_hypgeom_2f1_series_direct(u, b, ca, ba1, w, 1, 2, prec); |
|
|
} |
|
|
else if (which == 4) |
|
|
{ |
|
|
acb_poly_set(w, s); /* w = 1-z */ |
|
|
acb_poly_add(v, ac1, b, prec); /* v = a+b-c+1 */ |
|
|
acb_hypgeom_2f1_series_direct(t, a, b, v, w, 1, 2, prec); |
|
|
acb_poly_add_si(v, cab, 1, prec); /* v = c-a-b+1 */ |
|
|
acb_hypgeom_2f1_series_direct(u, ca, cb, v, w, 1, 2, prec); |
|
|
} |
|
|
else if (which == 5) |
|
|
{ |
|
|
acb_poly_inv_series(w, z, 2, prec); /* w = 1-1/z */ |
|
|
acb_poly_neg(w, w); |
|
|
acb_poly_add_si(w, w, 1, prec); |
|
|
acb_poly_add(v, ac1, b, prec); /* v = a+b-c+1 */ |
|
|
acb_hypgeom_2f1_series_direct(t, a, ac1, v, w, 1, 2, prec); |
|
|
acb_poly_add_si(v, cab, 1, prec); /* v = c-a-b+1 */ |
|
|
acb_poly_add_si(u, a, -1, prec); /* u = 1-a */ |
|
|
acb_poly_neg(u, u); |
|
|
acb_hypgeom_2f1_series_direct(u, ca, u, v, w, 1, 2, prec); |
|
|
} |
|
|
else |
|
|
{ |
|
|
printf("invalid transformation!\n"); |
|
|
abort(); |
|
|
} |
|
|
|
|
|
/* gamma factors */ |
|
|
acb_poly_rgamma_series(v, a, 2, prec); |
|
|
acb_poly_mullow(u, u, v, 2, prec); |
|
|
acb_poly_rgamma_series(v, ca, 2, prec); |
|
|
acb_poly_mullow(t, t, v, 2, prec); |
|
|
|
|
|
acb_poly_rgamma_series(v, b, 2, prec); |
|
|
if (which == 2 || which == 3) |
|
|
acb_poly_mullow(t, t, v, 2, prec); |
|
|
else |
|
|
acb_poly_mullow(u, u, v, 2, prec); |
|
|
|
|
|
acb_poly_rgamma_series(v, cb, 2, prec); |
|
|
if (which == 2 || which == 3) |
|
|
acb_poly_mullow(u, u, v, 2, prec); |
|
|
else |
|
|
acb_poly_mullow(t, t, v, 2, prec); |
|
|
|
|
|
if (which == 2 || which == 3) |
|
|
{ |
|
|
if (which == 2) |
|
|
acb_poly_neg(s, z); /* -z, otherwise 1-z since before */ |
|
|
|
|
|
acb_poly_neg(v, a); |
|
|
acb_poly_pow_series(v, s, v, 2, prec); |
|
|
acb_poly_mullow(t, t, v, 2, prec); |
|
|
|
|
|
acb_poly_neg(v, b); |
|
|
acb_poly_pow_series(v, s, v, 2, prec); |
|
|
acb_poly_mullow(u, u, v, 2, prec); |
|
|
} |
|
|
else |
|
|
{ |
|
|
acb_poly_pow_series(v, s, cab, 2, prec); |
|
|
acb_poly_mullow(u, u, v, 2, prec); |
|
|
|
|
|
if (which == 5) |
|
|
{ |
|
|
acb_poly_neg(v, a); |
|
|
acb_poly_pow_series(v, z, v, 2, prec); |
|
|
acb_poly_mullow(t, t, v, 2, prec); |
|
|
|
|
|
acb_poly_neg(v, ca); |
|
|
acb_poly_pow_series(v, z, v, 2, prec); |
|
|
acb_poly_mullow(u, u, v, 2, prec); |
|
|
} |
|
|
} |
|
|
|
|
|
acb_poly_sub(t, t, u, prec); |
|
|
|
|
|
if (which == 2 || which == 3) |
|
|
acb_poly_sin_pi_series(v, ba, 2, prec); |
|
|
else |
|
|
acb_poly_sin_pi_series(v, cab, 2, prec); |
|
|
|
|
|
acb_poly_get_coeff_acb(tt, t, 1); |
|
|
acb_poly_get_coeff_acb(res, v, 1); |
|
|
acb_div(res, tt, res, prec); |
|
|
acb_const_pi(tt, prec); |
|
|
acb_mul(res, res, tt, prec); |
|
|
|
|
|
acb_poly_clear(ba); |
|
|
acb_poly_clear(ca); acb_poly_clear(cb); acb_poly_clear(cab); |
|
|
acb_poly_clear(ac1); acb_poly_clear(bc1); |
|
|
acb_poly_clear(ab1); acb_poly_clear(ba1); |
|
|
acb_poly_clear(w); acb_poly_clear(t); |
|
|
acb_poly_clear(u); acb_poly_clear(v); |
|
|
acb_poly_clear(s); |
|
|
acb_clear(tt); |
|
|
} |
|
|
|
|
|
void |
|
|
acb_hypgeom_2f1_transform_limit(acb_t res, const acb_t a, const acb_t b, |
|
|
const acb_t c, const acb_t z, int regularized, int which, long prec) |
|
|
{ |
|
|
acb_poly_t aa, bb, cc, zz; |
|
|
|
|
|
if (acb_contains_zero(z) || !acb_is_finite(z)) |
|
|
{ |
|
|
acb_indeterminate(res); |
|
|
return; |
|
|
} |
|
|
|
|
|
if (!regularized) |
|
|
{ |
|
|
acb_t t; |
|
|
acb_init(t); |
|
|
acb_gamma(t, c, prec); |
|
|
acb_hypgeom_2f1_transform_limit(res, a, b, c, z, 1, which, prec); |
|
|
acb_mul(res, res, t, prec); |
|
|
acb_clear(t); |
|
|
return; |
|
|
} |
|
|
|
|
|
acb_poly_init(aa); |
|
|
acb_poly_init(bb); |
|
|
acb_poly_init(cc); |
|
|
acb_poly_init(zz); |
|
|
|
|
|
acb_poly_set_acb(aa, a); |
|
|
acb_poly_set_acb(bb, b); |
|
|
acb_poly_set_acb(cc, c); |
|
|
acb_poly_set_acb(zz, z); |
|
|
|
|
|
acb_poly_set_coeff_si(aa, 1, 1); |
|
|
|
|
|
_acb_hypgeom_2f1_transform_limit(res, aa, bb, cc, zz, which, prec); |
|
|
|
|
|
acb_poly_clear(aa); |
|
|
acb_poly_clear(bb); |
|
|
acb_poly_clear(cc); |
|
|
acb_poly_clear(zz); |
|
|
} |
|
|
|
|
|
void |
|
|
acb_hypgeom_2f1_transform_nolimit(acb_t res, const acb_t a, const acb_t b, |
|
|
const acb_t c, const acb_t z, int regularized, int which, long prec) |
|
|
{ |
|
|
acb_t ba, ca, cb, cab, ac1, bc1, ab1, ba1, w, t, u, v, s; |
|
|
|
|
|
if (acb_contains_zero(z) || !acb_is_finite(z)) |
|
|
{ |
|
|
acb_indeterminate(res); |
|
|
return; |
|
|
} |
|
|
|
|
|
if (!regularized) |
|
|
{ |
|
|
acb_init(t); |
|
|
acb_gamma(t, c, prec); |
|
|
acb_hypgeom_2f1_transform_nolimit(res, a, b, c, z, 1, which, prec); |
|
|
acb_mul(res, res, t, prec); |
|
|
acb_clear(t); |
|
|
return; |
|
|
} |
|
|
|
|
|
acb_init(ba); |
|
|
acb_init(ca); acb_init(cb); acb_init(cab); |
|
|
acb_init(ac1); acb_init(bc1); |
|
|
acb_init(ab1); acb_init(ba1); |
|
|
acb_init(w); acb_init(t); |
|
|
acb_init(u); acb_init(v); |
|
|
acb_init(s); |
|
|
|
|
|
acb_add_si(s, z, -1, prec); /* s = 1 - z */ |
|
|
acb_neg(s, s); |
|
|
|
|
|
acb_sub(ba, b, a, prec); /* ba = b - a */ |
|
|
acb_sub(ca, c, a, prec); /* ca = c - a */ |
|
|
acb_sub(cb, c, b, prec); /* cb = c - b */ |
|
|
acb_sub(cab, ca, b, prec); /* cab = c - a - b */ |
|
|
|
|
|
acb_add_si(ac1, ca, -1, prec); acb_neg(ac1, ac1); /* ac1 = a - c + 1 */ |
|
|
acb_add_si(bc1, cb, -1, prec); acb_neg(bc1, bc1); /* bc1 = b - c + 1 */ |
|
|
acb_add_si(ab1, ba, -1, prec); acb_neg(ab1, ab1); /* ab1 = a - b + 1 */ |
|
|
acb_add_si(ba1, ba, 1, prec); /* ba1 = b - a + 1 */ |
|
|
|
|
|
/* t = left term, u = right term (DLMF 15.8.1 - 15.8.5) */ |
|
|
if (which == 2) |
|
|
{ |
|
|
acb_inv(w, z, prec); /* w = 1/z */ |
|
|
acb_hypgeom_2f1_direct(t, a, ac1, ab1, w, 1, prec); |
|
|
acb_hypgeom_2f1_direct(u, b, bc1, ba1, w, 1, prec); |
|
|
} |
|
|
else if (which == 3) |
|
|
{ |
|
|
acb_inv(w, s, prec); /* w = 1/(1-z) */ |
|
|
acb_hypgeom_2f1_direct(t, a, cb, ab1, w, 1, prec); |
|
|
acb_hypgeom_2f1_direct(u, b, ca, ba1, w, 1, prec); |
|
|
} |
|
|
else if (which == 4) |
|
|
{ |
|
|
acb_set(w, s); /* w = 1-z */ |
|
|
acb_add(v, ac1, b, prec); /* v = a+b-c+1 */ |
|
|
acb_hypgeom_2f1_direct(t, a, b, v, w, 1, prec); |
|
|
acb_add_si(v, cab, 1, prec); /* v = c-a-b+1 */ |
|
|
acb_hypgeom_2f1_direct(u, ca, cb, v, w, 1, prec); |
|
|
} |
|
|
else if (which == 5) |
|
|
{ |
|
|
acb_inv(w, z, prec); /* w = 1-1/z */ |
|
|
acb_neg(w, w); |
|
|
acb_add_si(w, w, 1, prec); |
|
|
acb_add(v, ac1, b, prec); /* v = a+b-c+1 */ |
|
|
acb_hypgeom_2f1_direct(t, a, ac1, v, w, 1, prec); |
|
|
acb_add_si(v, cab, 1, prec); /* v = c-a-b+1 */ |
|
|
acb_add_si(u, a, -1, prec); /* u = 1-a */ |
|
|
acb_neg(u, u); |
|
|
acb_hypgeom_2f1_direct(u, ca, u, v, w, 1, prec); |
|
|
} |
|
|
else |
|
|
{ |
|
|
printf("invalid transformation!\n"); |
|
|
abort(); |
|
|
} |
|
|
|
|
|
/* gamma factors */ |
|
|
acb_rgamma(v, a, prec); |
|
|
acb_mul(u, u, v, prec); |
|
|
acb_rgamma(v, ca, prec); |
|
|
acb_mul(t, t, v, prec); |
|
|
|
|
|
acb_rgamma(v, b, prec); |
|
|
if (which == 2 || which == 3) |
|
|
acb_mul(t, t, v, prec); |
|
|
else |
|
|
acb_mul(u, u, v, prec); |
|
|
|
|
|
acb_rgamma(v, cb, prec); |
|
|
if (which == 2 || which == 3) |
|
|
acb_mul(u, u, v, prec); |
|
|
else |
|
|
acb_mul(t, t, v, prec); |
|
|
|
|
|
if (which == 2 || which == 3) |
|
|
{ |
|
|
if (which == 2) |
|
|
acb_neg(s, z); /* -z, otherwise 1-z since before */ |
|
|
|
|
|
acb_neg(v, a); |
|
|
acb_pow(v, s, v, prec); |
|
|
acb_mul(t, t, v, prec); |
|
|
|
|
|
acb_neg(v, b); |
|
|
acb_pow(v, s, v, prec); |
|
|
acb_mul(u, u, v, prec); |
|
|
} |
|
|
else |
|
|
{ |
|
|
acb_pow(v, s, cab, prec); |
|
|
acb_mul(u, u, v, prec); |
|
|
|
|
|
if (which == 5) |
|
|
{ |
|
|
acb_neg(v, a); |
|
|
acb_pow(v, z, v, prec); |
|
|
acb_mul(t, t, v, prec); |
|
|
|
|
|
acb_neg(v, ca); |
|
|
acb_pow(v, z, v, prec); |
|
|
acb_mul(u, u, v, prec); |
|
|
} |
|
|
} |
|
|
|
|
|
acb_sub(t, t, u, prec); |
|
|
|
|
|
if (which == 2 || which == 3) |
|
|
acb_sin_pi(v, ba, prec); |
|
|
else |
|
|
acb_sin_pi(v, cab, prec); |
|
|
|
|
|
acb_div(t, t, v, prec); |
|
|
acb_const_pi(v, prec); |
|
|
acb_mul(t, t, v, prec); |
|
|
acb_set(res, t); |
|
|
|
|
|
acb_clear(ba); |
|
|
acb_clear(ca); acb_clear(cb); acb_clear(cab); |
|
|
acb_clear(ac1); acb_clear(bc1); |
|
|
acb_clear(ab1); acb_clear(ba1); |
|
|
acb_clear(w); acb_clear(t); |
|
|
acb_clear(u); acb_clear(v); |
|
|
acb_clear(s); |
|
|
} |
|
|
|
|
|
void |
|
|
acb_hypgeom_2f1_transform(acb_t res, const acb_t a, const acb_t b, |
|
|
const acb_t c, const acb_t z, int regularized, int which, long prec) |
|
|
{ |
|
|
if (which == 1) |
|
|
{ |
|
|
acb_t t, u, v; |
|
|
|
|
|
acb_init(t); |
|
|
acb_init(u); |
|
|
acb_init(v); |
|
|
|
|
|
acb_sub_ui(t, z, 1, prec); /* t = z-1 */ |
|
|
acb_div(u, z, t, prec); /* u = z/(z-1) */ |
|
|
acb_neg(t, t); |
|
|
acb_neg(v, a); |
|
|
acb_pow(t, t, v, prec); /* t = (1-z)^-a */ |
|
|
acb_sub(v, c, b, prec); /* v = c-b */ |
|
|
|
|
|
acb_hypgeom_2f1_direct(res, a, v, c, u, regularized, prec); |
|
|
acb_mul(res, res, t, prec); |
|
|
|
|
|
acb_clear(t); |
|
|
acb_clear(u); |
|
|
acb_clear(v); |
|
|
} |
|
|
else |
|
|
{ |
|
|
acb_t d; |
|
|
acb_init(d); |
|
|
|
|
|
if (which == 2 || which == 3) |
|
|
{ |
|
|
acb_sub(d, b, a, prec); |
|
|
} |
|
|
else |
|
|
{ |
|
|
acb_sub(d, c, a, prec); |
|
|
acb_sub(d, d, b, prec); |
|
|
} |
|
|
|
|
|
if (acb_is_int(d)) |
|
|
acb_hypgeom_2f1_transform_limit(res, a, b, c, z, regularized, which, prec); |
|
|
else |
|
|
acb_hypgeom_2f1_transform_nolimit(res, a, b, c, z, regularized, which, prec); |
|
|
|
|
|
acb_clear(d); |
|
|
} |
|
|
} |
|
|
|